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A Swarm Intelligence Based Protocol for Data
Acquisition in Networks with Mobile Sinks

Hua Yang, Fengji Ye, and Biplab Sikdar,Member, IEEE

Abstract—This paper addresses the problem of data acquisition
in ad hoc and sensor networks with mobile sinks and proposes a
protocol based on swarm intelligence, SIMPLE, to route data
in such environments. The proposed protocol is based on a
swarm agent that integrates the residual energy of nodes into
the route selection mechanism and maximizes the network’s
lifetime by evenly balancing the residual energy across nodes
and minimizing the protocol overhead. The protocol is robust
and scales well with both the network size and in the presence
of multiple sinks. An information theoretic lower bound on the
protocol overhead associated with the swarm agent advertisement
is obtained. Simulation results are used to verify SIMPLE’s
performance.

Index Terms—Swarm intelligence, data acquisition, mobile
sink, energy awareness

I. I NTRODUCTION

Ad hoc and sensor networks may have a large number of
nodes deployed over large areas and nodes typically have lim-
ited battery and computational capabilities. The introduction
of mobility, either in the nodes or in the agents which collect
data from them (i.e. sinks), makes the design of networking
protocols more challenging and complicated. Examples of
possible scenarios, for example, include sensor networks that
are deployed to monitor areas with natural disasters, forests
or civilian areas. Information is generated at the sensors and
reported to the sinks, which could be first responders, forest
rangers or policemen, respectively. In these scenarios, which
reflect the scenarios of interest in this paper, most of the nodes
stay static while sinks are mobile. The problem addressed in
the paper is:how should the static sources report their data
to a mobile sink so that network lifetime is maximized?

The constant and unpredictable changes in the sink’s lo-
cation form the main obstacle in the path of designing data
acquisition protocols in the mobile sink scenario. Most of
the existing proposals addressing this issue are based on the
assumption that the mobile sink continuously updates all the
nodes in the network with its current location information
[1], [2]. However, such frequent updates lead to excessive
consumption of the nodes’ battery in addition to creating traffic
congestion. Besides being energy unaware, the communication
and state overheads associated with maintaining the routesin

H. Yang is with Intel Research Labs, Shanghai, China.
F. Ye is with Cisco Systems, San Jose, CA 95134 USA.
B. Sikdar is with the Department of Electrical, Computer and Systems

Engineering, Rensselaer Polytechnic Insitute, Troy, NY 12180 USA.
This work was supported in part by NSF grants 0347623 and 0313095.
Manuscript received Decenber 31, 2006; revised July 25, 2007 and Septem-

ber 20, 2007.

most existing protocols degrades their scalability and ability
to maximize network lifetime.

With the specific goal of maximizing the network lifetime
in the “data acquisition using mobile sink” scenario, this paper
presents an on-line, energy aware protocol, SIMPLE, based on
the concept of swarm intelligence [3]. Without requiring indi-
vidual nodes to possess much intelligence, global information
or cooperate with each other tightly, the protocol specifiesa set
of simple rules for each node and by their collective behavior,
the globally optimum performance is achieved. In particular,
SIMPLE achieves the following:

1) Smart Data Delivery to the Mobile Sink: SIMPLE
has been designed to tolerate a degree of information
inaccuracy regarding the sink’s location. Thus frequent
and expensive updates of all nodes with the sink’s
location information are avoided.

2) Network Lifetime Maximization: The protocol maxi-
mizes the network lifetime, defined as the time till the
first node runs out of battery power.

3) Robustness and Scalability:Nodes can keep record of
multiple path gradients to counteract node failure events.
Also, when multiple sinks are present in the network,
nodes can choose to report to the sink that maximizes
the network lifetime and the protocol scales with the
number of sources.

The main drawback of the proposed scheme is the energy
required to transmit the swarm agent packets to set up the
routes although most other protocol also incur similar over-
heads. Additionally, there is a small delay, in the order of few
hundreds of milliseconds, associated with the setup of routes
using the proposed scheme.

The rest of the paper is organized as follows: Section II
presents the related work. Background information and the
SIMPLE protocol are elaborated upon in Section III and
Section IV respectively. Section V is devoted to the analysis
of the proposed protocol. We present the simulation resultsin
Section VI and conclude in Section VII.

II. RELATED WORK

The problem of data acquisition in ad-hoc networks with
static sinks has been extensively studied in recent years. Using
“hop-count” as the metric, authors of [4], [5] propose short-
est path routing without considering the energy constraints.
Minimum energy routing protocols that fail to balance the
energy consumption across nodes leading to shorter network
lifetimes are proposed in [6], [7]. In [8] it is shown that energy
aware metrics can significantly improve the performance of
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routing protocols in wireless ad hoc networks. In [9] the
lifetime maximization problem is formulated as an offline
linear programming problem that requires full knowledge of
traffic demands. In [10], [11] “maximizing network lifetime” is
taken as the objective and online algorithms are developed for
routing data in static networks. The similar offline algorithm
in [12] deals with static or slowly changing dynamic networks.

In mobile sink scenarios, frequently updating all nodes with
a sink’s current location leads to significant overheads. Recent
literature suggests several alternative approaches. Directed
diffusion [2] and its enhancements [13] route data based
on data interests periodically broadcast by the sink but are
incapable of accommodating high levels of network and sink
dynamics. A scheme whereeachnode builds a “grid” to route
data to mobile sinks and thus incurs high overhead is proposed
in [14]. Authors of [15] propose a set of algorithms that
adaptively select a path that consists of a subset of nodes
with high residual energy or a path with least total power
consumption. The energy aware routing protocols proposed in
[16], [17] require power control while this paper considers
fixed transmission powers. Power aware routing schemes that
require the nodes to be aware of their geographic location
are proposed in [18], [19]. A probabilistic routing protocol is
proposed in [20] where the probability of choosing a node as
a forwarding node is inversely proportional to the aggregate
load the node is carrying.

A cluster based architecture is considered in [21] and the
authors propose power allocation strategies for cluster heads
to offset the impact of skewed loads on the residual power
distribution. This framework is not scalable and applicable in
the non cluster based networks considered in this paper. The
PANDA-RB routing algorithm proposed in [22] is capable of
balancing the residual energy levels at all nodes but relieson
flooding, making it resource expensive. The authors of [23]
propose an energy aware routing protocol that accounts for
residual energy levels at each node. The protocol however
requires an elaborate route discovery phase where each node
is required to reply to the sink, making it computation and
energy intensive.

In contrast, the proposed protocol does not require any
prior knowledge of the sink’s mobility pattern, the distribution
governing the data generation or traffic demands at the nodes.
Also, no geographic information is needed in our scheme. In
addition to being simple and distributed, SIMPLE is scalable,
robust and handles node mobility, failures, insertions and
deletions easily.

III. B ACKGROUND AND DEFINITIONS

A. Assumptions and Terminology

This paper makes the following assumptions about the
network: (1) no prior knowledge about the sink’s mobility
characteristics is available; (2) all sensors in the network
are potential sources and no prior knowledge about data
generation characteristics of a source is available; (3) all
sensors transmit at the same power level. These assumptions
reflect the conditions in most realistic deployment scenarios
and are necessary to ensure that the developed protocol is
practical. The paper also uses the following definitions:

• Gradient of a node indicates its next hop neighbor on
the selected path leading to the sink.

• Downstream and Upstream:Downstream is defined as
the “to-the-sink” direction, while upstream refers to the
opposite.

B. Problem Definition

The objective of this paper is to develop a routing mecha-
nism to allow static sources to report their data to mobile sinks
while maximizing the network lifetime. As in [9], [24] we
define network lifetime as the time until the first battery drains
out, i.e., the minimum lifetime over all nodes. Then following
the arguments of [9], [24], a routing mechanism that strives
to balance the residual energy levels of all nodes and picks
paths with nodes with higher residual energies maximizes
the network lifetime. Energy aware schemes such as CMAX,
zPmin and “max-min” that balance the energy consumption
levels of nodes have been proposed in literature. In this paper
we propose a variation of the “max-min” approach which is
described in detail below. The reader is referred to [10], [11]
for details on the CMAX andzPmin algorithms.

Suppose between a given source and destination there exist
n paths, which we denote bypj , j ∈ 1, 2, · · · , n. The residual
energy of thekth nodevk

j on pathpj is denoted byek
j , k ∈

1, 2, · · · , hj , wherehj is the hop count on pathpj . Max-min
routing chooses the pathpx where:

x = arg max
j∈1,2,···n

min
k∈1,2,··· ,hj

ek
j (1)

i.e. it chooses the path which contains the node with the high-
est minimum residual energy. Distributing the routing burden
on nodes with higher residual energies serves to prolong the
life of nodes with depleted energy levels thereby increasing
the network lifetime. All three algorithms CMAX,zPmin and
max-min take the energy balance issue into consideration.
Although their performance is close to each other, in this
paper, we choose the max-min algorithm for selecting routes
because:

• Both CMAX (and its distributed version D-CMAX) and
zPmin involve non-trivial parameter tuning based on spe-
cific source traffic patterns (which are usually not known
beforehand) in order to achieve their best performance.

• zPmin requires multiple shortest path algorithm invoca-
tions to calculate one shortest path, which does not scale
when the number of edges grows bigger.

If not indicated otherwise, throughout this paper the term
“max-min path” will be used to refer to the path specified
by Eqn. (1).

IV. T HE DATA ACQUISITION PROTOCOL: SIMPLE

In this section we develop a routing protocol, SIMPLE, to
address the problem of data delivery from the nodes to the
mobile sink. For ease of illustration, we first start with the
case of a single sink in the network. We address the multiple
sink scenario in Section V-E.
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Fig. 1. Example: using a swarm agent to update the max-min path.
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Fig. 2. Propagation of theprecursorand follower.

A. Protocol Description

The proposed routing protocol is motivated by swarm
intelligence and bandwidth measurement techniques in wired
networks presented in [25] and references therein. Rather than
storing complete path information for the max-min path, each
node only maintains a “gradient” pointing to its downstream
neighbor on the max-min path leading to the sink. The protocol
is based on “swarm agents” which comprise of two very
short packets, namely theprecursorandfollower. The packets
comprising the swarm agent are injected into the network by
the sink are sent out by the sink to mark out the max-min
path gradient, as defined in Eqn. (1), at each node. Each
set of swarm agent packets is stamped with an unique and
increasing sequence number. These packets are then forwarded
by the nodes while following a set of rules. Using the example
topology shown in Figure 1, we now show how the swarm
agent updates the max-min path gradients at all nodes.

The swarm agent is advertised to the network by the sink
each time it wants to update the routes in the network. As
shown in Figure 2, upon receiving theprecursor, each node
immediately re-advertises it to all its neighbors. It then starts a
timer and waits for it to expire before forwarding thefollower.
The value of the timer,T , is a non-negative, bounded and
decreasing function of the residual energy level at the node.

Any function that satisfies these properties, for example

T = 2 − er (2)

whereer is the node’s remaining energy (normalized between
[0, 1]), may be chosen and our scheme does not depend on
the specific function. Thus, nodes with higher residual energy
will time out faster and this is the key to differentiating paths
with different minimum residual energy levels. In the rest of
the discussion, we show that thefollower from the max-min
path arrives at each node first and the node can thus simply
mark the sender of thefollower as the gradient. In Figure 1 the
numbers alongside the nodes that are outside the parentheses
are the nodes’ normalized residual energy and numbers inside
the parentheses are the nodes’ corresponding timer value.
Figure 2 also shows how thefollower is propagated at each
intermediate sensor. For the sake of an easily understandable
protocol description, we omit the delays induced by queueing
and MAC layer, which will be addressed in next section.

The sink sends out the swarm agent at time0. Since
the precursor simply cuts through and we are omitting the
queueing and MAC layer delays, all nodes receive thepre-
cursor at time 0. Based on the max-min path definition,
sink → 1 → 2 → 3 → 4 (path 1 in the figure) is the max-
min path between the sink and node4. Even though the other
path sink → 6 → 4 (path 2 in the figure) has fewer hops
than the max-min path, it is still “longer” since node6 has
only 0.4 energy left, which is the least among all nodes on
paths between the sink and node4. We use node4 as an
example to explain how the gradient is marked out at each
node. Following are events occurring at the times indicated
by the circled numbers in Figure 2:

Time 1©: Node1 receives thefollower;
Time 2©: Node1’s timer times out at time 1.2, and the
follower is sent out;
Time 3©: Node 2 receives thefollower at time 1.2 and
sends it out at time 1.5 when its timer times out;
Time 4©: Node 3’s timer has already timed out when
it receives thefollower at time 1.5 and thus forwards it
immediately. Thefollower reaches node4 at time 1.5;
Time 5©: Node6 receives thefollower at time0;
Time 6©: Node6 sends out thefollower at time1.6 when
it times out. Node4 gets a second copy of thefollower
from node6 at time 1.6 and it is simply dropped. Node
6 can be recorded as the backup path gradient.

On path 1, the longest timer times out ahead of that from
path 2 even though the latter has fewer hops. Thus in our
scheme, the first copy of thefollower will always arrive along
the max-min path. In Section V we formally prove that our
technique indeed selects the max-min path. Since each node
can safely refrain from relaying allfollowers except the first
copy, this greatly suppresses the amount of swarm agent copies
that are circulating in the network. In our example, since node
4 receives thefollower from node3 first, it makes node3
its “gradient” on the max-min path leading to the sink. To
counteract node failures or sleeping, node6 can be marked as
the backup path gradient to the sink.

It should be pointed out that for gradient initialization
immediately after the deployment of the ad hoc or sensor
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Fig. 3. Scenario 1: Sink’s movement has lower effect on nodes further away.

network, since every node has same residual energy,Einit,
our scheme actually initializes the max-min path as the path
with minimum hops, which is consistent with energy efficiency
rules. From an individual node’s point of view, all its opera-
tions are straightforward and the globally optimal gradient is
set up without involving any global information collectionor
complicated computation algorithms, enabling the scheme to
scale. The scalability issue will be further elaborated upon in
Section V-C.

A strong point of SIMPLE is that it is naturally loop free
since nodei will always discard any swarm agent from nodej
if it has already sent one toj. Also, the scheme does not rely
on any assumptions regarding messages sent from the sink to
the nodes, such as queries. If the nodes’ report is triggered
by queries from the sink to all nodes, the swarm agent can
actually be integrated into the queries with little extra cost.

B. Constrained Advertisement Model

The scheme designed above updates the max-min path from
each sensor to the sink using the swarm agent. However, some
of these advertisements may be redundant and could be sup-
pressed without sacrificing too much of the performance. We
first identify the scenarios with redundant swarm agents. Then,
a constrained advertisement model is presented to enhance the
protocol efficiency.

1) Advertisement Suppression Scenarios:We first define
the “utility” of a node. Nodei’s utility increases if any nodej
picks i as its next hop on the max-min path based on nodei’s
advertisement. Otherwise the utility of nodei will decrease,
for example, exponentially as time lapses. Since all advertise-
ments cost energy, a higher utility/energy consumption ratio
is desired for each node. Before introducing how unnecessary
advertisements are suppressed, we first identify the scenarios
where they occur.

Scenario 1:In Figure 3 suppose nodei is not updated with
the sink’s movement. Messages originating at or relayed by
i will be sent along gradientgi, set up based on the sink’s
old position. Denoting the progress along gradientgi by l, we
define the “effective progress”ii′ as:

‖ii′‖ = l × cos(θi) (3)

As we can see, when a node is further away from the sink,
such as nodej, θ becomes smaller and the effective progress
is closer tol. This suggests that for a given sink displacement,
nodes further away are less affected. Thus, gradients of nodes

further away from the sink can be updated less frequently as
compared to nodes nearer to the sink. This scenario is similar
to the scenario considered in Section 3.3.2 of [26].

Scenario 2: Consider three nodesi, j and k on pathspi,
pj and pk between sources and destinationd. If node i has
the maximum residual energy, pathpi will be chosen as the
max-min path and nodej and k’s advertisements are futile
and only serve to lower their utility/energy ratio. Ideally, we
would like to have only the nodes on the max-min path to
advertise the swarm agent, while all other nodes suppress their
advertisements to save energy.

Scenario 3: Consider a scenario where nodei frequently
relays data to the sink, while nodej seldom does so. In this
case, nodei should advertise more frequently than nodej since
i’s upstream neighbors are expectingi’s advertisement, and
the advertisement will increase nodei’s utility. In the extreme
case, if a node is never chosen to relay data for others, its
agent advertisements will not increase its utility but decrease
its utility/energy consumption ratio. Thus, nodes that seldom
relay data should advertise less frequently than nodes that
often relay data.

2) A Probabilistic Advertising Model:A deterministic so-
lution to suppress advertisements in the scenarios described
above requires global information at each node, which makesit
impractical. We thus introduce a probabilistic model for swarm
agent re-advertisement. Based on the discussion above, we let
a node’s re-advertising probabilityρ:

1) increase if it relays data for its neighbors;
2) decrease if the node does not relay any data as time

elapses;
3) have a higher lower-bound when the node has more

residual energy.

An algorithm based on these rules to calculate the re-
advertisement probability is shown in Algorithm 1. Note that
we set a lower bound so that a sensor’sρ will never reach
0 except when its energy is fully depleted. Thus, even less
active nodes will advertise occasionally so that they may be
selected when the energy of other nodes depletes. By applying
this probabilistic model, nodes further away from the sink will
have a smaller advertisement intensity as compared to nodes
closer to the sink. In addition, nodes with more residual energy
will have a higher probability to join the advertisement.

The probabilistic re-advertisement is essentially a trade-
off between network’s energy balance and overhead energy
consumption. Non suppression of advertisements makes the
network most balanced but incurs the highest overhead, while
suppressing all advertisements causes the opposite. Suppres-
sion of the agents however does not mean that packets are
not delivered to the sink as shown in Section V-E as well
as through simulation results. The scheme adapts to node
insertions and deaths fairly easily. When a new sensor joins
the network, it forwards any received swarm agent to make
its neighbors aware of its existence. When a sensor leaves or
dies, its upstream neighbors will not receive any further swarm
agents, which naturally removes the node from their next hop
candidates list.



5

Algorithm 1 Algorithm for calculating re-advertisement prob-
ability

t: time at which last swarm agent was received
ρ(t): re-advertisement probability at timet
relay: binary variable to indicate if node is a relay node
lbound: lower bound on re-advertisement probability
α, β, δ, γ: positive constants,0 < δ, γ < 1
while (1) do

if new swarm agent received then
t + τ : current time
lbound = δ + γ

residual energy
battery capacity

tmp1 = ρ(t) − αeβτ−1

tmp2 = max{lbound, tmp1}
if relay == 1 then

ρ(t + τ) = 1+tmp2

2
else

ρ(t + τ) = tmp2

end if
relay = 0

end if
if data packet forwarded then

relay = 1
end if

end while

V. PROTOCOLANALYSIS

In this section, we analytically address various aspects of
the proposed protocol.

A. Validity of the Max-min Path

Claim 1: When MAC and other delays are negligible com-
pared to the swarm agent’s timer, at any arbitrary nodev with
n paths to the sinkpi, i = 1, · · · , n, the gradient set up by
the unconstrained swarm agent is given by

arg max
1≤j≤n

min
1≤k≤hj

ek
j (4)

conforming to the max-min path specified in Eqn. (1).
Proof: Let the sink send out a swarm agent at timet.

Define a mapping function:

tv = M(ev) (5)

whereev is the residual energy of nodev and M(ev) could
be any bounded and monotonous decreasing function.tv gives
the initial value of nodev’s timer for the swarm agent. The
swarm agent traveling along pathpj is also attached with an
“agent timer”,Tj , with initial value 0 when advertised from
the sink.

Let vk
j denote thek-th hop on pathpj with initial energy

ek
j and timertkj . As the swarm agent passes through this node,

the agent timer, denoted asT k
j , will be updated as:

T k
j = max{T k−1

j , tkj }
= max{T k−1

j ,M(ek
j )} (6)

The swarm agent will be re-advertised by nodevk
j when T k

j

times out. Thus, finally nodev will receive a swarm agent
from pathpj with attached agent timer of value:

Tj = max
1≤k≤hj

M(ek
j )

wherehj is the total hop count along pathpj . Now assume
that nodev receives swarm agents fromn different paths. It is
easy to see that an agent with a smaller “agent timer” always
arrives earlier. From the monotonous decreasing nature of the
mapping function (5), agent timer of the first arriving swarm
agent isTx where:

x = arg min
1≤j≤n

Tj

= arg min
1≤j≤n

max
1≤k≤hj

M(ek
j )

= arg max
1≤j≤n

min
1≤k≤hj

ek
j (7)

The equation above is exactly the same as Eqn. (1) which
defines the max-min path thereby proving the claim.

Note that all then paths leading to nodev can share many
intermediate nodes, but this does not affect the validity ofour
conclusion. Duplicates of the swarm agent simply get dropped
at each node, which saves energy.

B. Errors in the Presence of MAC Layer Delays

The protocol correctness proof in the preceding section
assumed that there are no MAC layer delays. In the presence
of MAC layer delays, thefollower from the max-min path may
be delayed long enough so that thefollower from a path with
smaller minimum residual energy may reach a tagged node
first. However, if the lower bound on the timers associated
with the followers is is made large compared to the expected
MAC layer delay at a node, the probability of such events
becomes very small. In this section we evaluate the likelihood
of such errors in selecting the max-min path.

Consider two paths from the sink to a tagged node,A and
B, with M and N hops, respectively. Let∆A−B denote the
difference in the timer values of the nodes with the minimum
residual energies in pathsA andB and letδB−A denote the
difference in the cumulative MAC layer delays of pathB and
path A. An error in marking the correct gradient occurs if
∆A−B < δB−A when∆A−B > 0 or if ∆A−B > δB−A when
∆A−B < 0. We now evaluate the likelihood of these events.

The timer at each node for delaying thefollower is depen-
dent on the node’s residual energy. We assume that the energy
levels at each node is independent and identically distributed
(iid). Consequently, the timer value at each node is also iid
with probability density function (pdf)fd(x) with a ≤ x ≤ b
wherea and b are the lower and upper limits on the timer.
Using standard results from order statistics, the pdf of the
minimum timer value along pathA is

fM.A(x) = M(1 − Fd(x))M−1fd(x) (8)

whereFd(x) is the cumulative distribution function (CDF) of
fd(x). The corresponding expression for pathB is obtained
by substitutingN for M in Eqn. (8). The pdf of the difference
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in the minimum timer value of pathA from pathB is given
by

f∆A−B
(x) =

{

∫ b

a−t
fM,B(t)fM,A(x + t)dt a − b ≤ t < 0

∫ b−t

a
fM,B(t)fM,A(x + t)dt 0 ≤ t ≤ b − a

(9)
We assume the MAC layer channel access delays at each node
in the network is iid with pdffD(x), 0 ≤ x < ∞ with mean
µ and varianceσ2. Also, we assume thata ≫ E[D], i.e. the
lower bound on the timer is much greater than the expected
MAC layer delay at a node. We do not account for any
queueing delays since the swarm agent packets are expected
to receive prioritized treatment and moved to the head of the
MAC layer queue. The total time that elapses from the instant
the swarm agent is sent by the sink till the follower reaches
the tagged node can be broken into three parts: (i) the MAC
layer delays experienced by theprecursorwhile reaching the
node with the minimum residual energy, (ii) thefollower timer
delay at this node and (iii) the MAC layer delays experienced
by the follower after it leaves this node. Since the statistical
distribution characterizing the MAC layer delays ofprecursors
and followers is identical, the total MAC layer delay of path
A (B) is the sum of theM (N ) random variables with pdf
fD(x). The cumulative MAC layer delays along a path and
its variance increases with the hop count. Thus the likelihood
that the difference in the MAC layer delay on the two paths
exceeds the difference of the timer values of the nodes with
the minimum residual energies in the two paths increases with
the path length. As the path length increases, from the central
limit theorem, the cumulative delay on each path follows a
Gaussian distribution and for pathA is given by

fD,A(x) =
1√

2πσA

e
− 1

2

“

x−µA
σA

”2

(10)

with µA = Mµ andσ2
A = Mσ2. For pathB, we haveµB =

Nµ and σ2
B = Nσ2. The difference in the delays of pathB

andA characterizesδB−A and its pdf is given by

fδB−A
(x) =

1
√

2π(σ2
A + σ2

B)
e
− 1

2

„

(x+µA−µB)2

σ2
A

+σ2
B

«

(11)

The probability that the follower from the non max-min path
reaches the tagged node first is then

P [error] = P [∆A−B < δB−A,∆A−B > 0]

+P [∆A−B > δB−A,∆A−B < 0] (12)

From [27] the average 802.11 MAC layer access delays and its
variance is about a millisecond when a node competes with
10-15 nodes for the channel. Thus we may useµ = 1ms
and σ2 = 1ms2 for our example numerical evaluation. The
evaluation of Eqn. (12) requires knowledge of the distribution
of the residual power levels at each node and to the best of
our knowledge, such distributions are not known. However, an
indication of the low probability of error due to MAC layer
delays can be seen from the fact that even if the difference in
the timer values of the two paths is 20ms, withM = 20 and
N = 25, the probability of error is less than 0.0001.

The requirement of large timer values as compared to the
expected MAC layer delays at a node does not adversely affect

the time required to setup the routes. This is because for the
most part, the timers of different nodes overlap. As an extreme
example, consider the setup of routes when the battery levels
of all nodes is almost 0. If we consider that timer values are
bounded in the range[0.1, 0.2] seconds, then the timer value of
all nodes will be close to 0.2 seconds. If the expected value of
the sum of the MAC layer access delays and the swarm agent
transmission time at each node is realistically assumed to be
2ms, aprecursorfrom the sink reaches a node 100 hops away
after 200ms. This node waits for at most 0.2 seconds before
sending out thefollower. Thus routes are setup at a node 101
hops away after approximately 0.4 seconds. The route setup
delay is smaller when the network is initially set up and also
if smaller values are used for the timer range.

C. Scalability of SIMPLE with Constrained Flooding

The potential scalability issue of SIMPLE concerns the
advertisement scope of the swarm agent as the network size
grows. A swarm agent’s “advertisement scope” is defined by
its radiusL, indicating that at least one node advertising the
swarm agent isL hops away from the sink. In order to prove
the scalability of SIMPLE with probabilistic forwarding, we
now show thatL is bounded even when the network size is
not. If we defineC(G) as coverage of the sensor networkG,
then we have:

Claim 2:

lim
C(G)→∞

Prob(L → ∞) = 0 (13)

Proof: Assume that the mobile sink is advertising the
swarm agent to the network at a rate ofRs agents per second.
DefineRvi

as the advertisement intensity of an arbitrary node
vi in the sensor network. Denote nodevi’s re-advertisement
probability asρvi

, and SPvi
as the set of all nodes on the

max-min path from nodevi to the sink. Then at nodevi:

Rvi
= ρvi

Rs

∏

vj∈SPvi

ρvj

wherevj are all nodes on nodevi’s max-min path to the sink,
andρvj

is the re-advertisement probability of nodevj . Since

ρvi
≤ 1, for any vi

we have
lim

h(vi)→∞
Prob(Rvi

= 0) = 1

whereh(vi) is nodevi’s hop count to the sink andh(vi) → ∞
whenC(G) → ∞. The equation above indicates that a node’s
advertisement intensity goes to 0 as its distance from the sink
increases. Thus, following equation is proved:

lim
C(G)→∞

Prob(L → ∞) = 0 (14)

This scalability claim does not apply to SIMPLE without
constrained flooding. Eqn. (14) indicates that the “advertise-
ment scope” is bounded even when the sensor network’s size
grows larger. Thus as nodes get further away from the sink,
their gradient might not be updated often. In Section V-E we
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address the problem of how nodes far away from the sink
and thus with possibly outdated location information correctly
deliver their data to the sink.

D. Protocol Overhead

Swarm agents are sent out by the sink occasionally to keep
the other nodes abreast of its location. In this section, we
obtain an information theoretic bound on the overhead incurred
due to the transmission of the swarm agents. We obtain the
minimum rate at which swarm agents must be sent, so that
the probability that each node has the correct gradient to the
sink when it has data to send, is greater than an arbitrary value
1−ǫ. Here we consider SIMPLE without constrained flooding
in order to estimate the worst case overhead.

We formulate the problem of obtaining the protocol over-
head as a rate distortion problem. For each node, the prob-
ability that it perceives the sink as its neighbor when it is
not, is used as the distortion measure. We assume that an
arbitrary number,n, of nodes are randomly and uniformly
distributed on a two dimensional plane. The set of all nodes is
denoted byN . In addition to these nodes which are assumed
to be static, a mobile sink continuously moves around the
network. The movement of the sink is governed by a two
dimensional random walk in continuous time. The position
of node j at time t is denoted byxj(t), yj(t) and the
distance between two nodesi and j at time t is given by
∆ij(t) =

√

(xi(t) − xj(t))2 + (yi(t) − yj(t))2. All nodes
and the sink are assumed to have a transmission range ofr.

Each node determines whether it is a neighbor of the sink or
not, and also the route to the sink, based on the swarm agents
it receives. We denote byNs(t) = {j : ∆sj(t) ≤ r, j ∈ N}
the set of nodes that are actually neighbors of the sink at time
t and by N̂(t) the set of nodes that perceive themselves to
be the sink’s neighbor. A node may perceive itself to be the
sink’s neighbor when it is not, or vice versa, due to use of
outdated swarm agent information. We also define

Zj(t) =

{

1 if j ∈ Ns(t)
0 otherwise

and Ẑj(t) =

{

1 if j ∈ N̂s(t)
0 otherwise

(15)
as variables to indicate whether nodej actually is or perceives
to be the sink’s neighbor or not. The difference

Ej(t) = Zj(t) − Ẑj(t) (16)

denotes the accuracy of the information about the sink’s
position available at nodej. It is desired thatEj(t) = 0 at all
times for allj so that accurate forwarding information may be
used by the nodes while transferring packets to the sink. We
now state the minimum swarm agent rate problem in terms of
Ej(t).

Minimum swarm agent frequency problem:What is the
minimum rate at which the sink must transmit swarm agents
such that

P [Ej(T
k
j ) = 0] ≥ 1 − ǫ, ∀j ∈ N , 1 ≤ k < ∞ (17)

whereT k
j is the instance when nodej generates or receives

its k-th packet to be sent to the sink.

We now formulate the minimum swarm agent frequency
problem as a rate distortion problem. Our analysis is based
on extending the results of [28] which considers the problem
of protocol overhead in location based routing. We denote by
ZN

j and ẐN
j the vectors

ZN
j = {Zj(T

1
j ), Zj(T

2
j ), · · · , Zj(T

N
j )}

ẐN
j = {Ẑj(T

1
j ), Ẑj(T

2
j ), · · · , Ẑj(T

N
j )}

and denote byPN (ǫ) the family of joint probability distribu-
tion functions ofZN

j and ẐN
j such thatP [Ej(T

k
j ) = 0] ≥

1− ǫ, ∀j ∈ N and1 ≤ k < ∞. We also denote byRN (ǫ) the
minimum swarm agent rate such thatP [Ej(T

k
j ) = 0] and as

per the discussion on rate distortion in [29], it is given by

RN (ǫ) = min
PN∈PN (ǫ)

1

N
IPN

(ZN
j ; ẐN

j ) (18)

whereIPN
(ZN

j ; ẐN
j ) is the mutual information betweenZN

j

andẐN
j . The minimum swarm agent rate,R(ǫ), is then given

by
R(ǫ) = lim

N→∞
min RN (ǫ) (19)

We now obtain a bound forRN (ǫ) and consequentlyR(ǫ) by
evaluating a bound forIPN

(ZN
j ; ẐN

j ).
Claim 3: The minimum swarm agent rateR(ǫ) is greater

than or equal toR1(ǫ).

R(ǫ) ≥ R1(ǫ) (20)

Proof: To prove the equation above, we first show that
the mutual information betweenZN

j and ẐN
j satisfies the

relationship

inf
PN∈PN (ǫ)

IPN
(ZN

j ; ẐN
j ) ≥ NR1(ǫ) (21)

To show Eqn. (21) holds, we note that the standard definition
of mutual information gives us

IPN
(ZN

j ; ẐN
j ) = H(ZN

j ) − H(ZN
j | ẐN

j ) (22)

From Eqn. (B3) of [30]

H(ZN
j | ẐN

j ) ≤ H(Zj(T
1
j ) | Ẑj(T

1
j )) +

N
∑

k=2

H(Zj(T
k
j ) − Zj(T

k−1
j ) | Zj(T

k−1
j ), Ẑj(T

k
j )) (23)

We define the random variable

χk = Ẑj(T
k
j ) − Zj(T

k−1
j ). (24)

Then from Eqns. (B5) and (B6) of [30] we have

H(Zj(T
k
j ) − Zj(T

k−1
j ) | Zj(T

k−1
j ), Ẑj(T

k
j )) ≤ H(Zj(T

k
j )

−Zj(T
k−1
j ) | χk) (25)

H(ZN
j | ẐN

j ) ≤ H(Zj(T
1
j ) | Ẑj(T

1
j ))+

N
∑

k=2

H(Zj(T
k
j )−Zj(T

k−1
j ) | χk)

(26)
Now, Zj(T

k
j ) and Zj(T

k−1
j ) are independent of each other.

Thus we also have

H(ZN
j ) = H(Zj(T

1
j )) +

N
∑

k=2

H(Zj(T
k
j ) − Zj(T

k−1
j )) (27)
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Substituting Eqns. (26) and (27) in Eqn. (22) we have

IPN
(ZN

j ; ẐN
j ) ≥ I(Zj(T

1
j ); Ẑj(T

1
j ))

+

N
∑

k=2

I(Zj(T
k
j ) − Zj(T

k−1
j );χk)(28)

Now, the difference in the actual and perceived neighborhood
information at timeT k

j is

Dk = Ẑj(T
k
j ) − Zj(T

k
j ) = χk − (Zj(T

k
j ) − Zj(T

k−1
j ))

(29)
We denote the expected value ofDk by dk, i.e., dk =
E[Dk]. ConsiderZj(T

1
j ): Zj(T

1
j ) has the same distribution as

Zj(T
k
j ) − Zj(T

k−1
j ) and also satisfies Eqn. (29). Then from

the definition of the rate distortion function

R1(d
k) = min

P1∈P1(dk)

1

1
I(Zj(T

k
j ) − Zj(T

k−1
j );χk)

≤ I(Zj(T
k
j ) − Zj(T

k−1
j );χk), k ≥ 2 (30)

Defined1 = E[Ẑj(T
1
j )−Zj(T

1
j )]. Then substituting Eqn. (30)

in Eqn. (28) and using the convexity of the rate distortion
function we have

IPN
(ZN

j ; ẐN
j ) ≥ R1(d

1) +

N
∑

k=2

R1(d
k) ≥ NR1

(

1

N

N
∑

k=1

dk

)

(31)
Now, if PN ∈ PN (ǫ), we have

1

N

N
∑

k=1

dk =
1

N

N
∑

k=1

E[Ẑj(T
1
j ) − Zj(T

1
j )] ≤ 1

N

N
∑

k=1

ǫ = ǫ

(32)
SinceR1 is a non-increasing function, combining Eqns. (31)
and (32) gives us

IPN
(ZN

j ; ẐN
j ) ≥ NR1(ǫ) (33)

which proves that Eqn. (21) holds. To prove the claim we note
that the definition of the rate distortion function gives us

RN (ǫ) = min
PN∈PN (ǫ)

1

N
IPN

(ZN
j ; ẐN

j ) ≥ R1(ǫ) (34)

and thus

R(ǫ) = lim
N→∞

min RN (ǫ) ≥ R1(ǫ) (35)

which proves that Eqn. (20) holds and thus proves the claim.

As the next step, we find a bound onR1(ǫ) in order to bound
R(ǫ). Here we consider two cases:(1) Zj(0) = 1: nodej is
initially in the neighborhood of the sink and(2) Zj(0) = 0:
nodej is not in the sink’s neighborhood initially.R1(ǫ) is then
bounded by the maximum of the rate distortion functions for
these two cases.
Case 1:Denote byLj the region in space of possible positions
for node j at time t = 0 such thatZj(0) = 1, i.e. Lj =
{xj , yj :

√

(xs(0) − xj)2 + (ys(0) − yj)2 ≤ r}.
Claim 4: The rate distortion function in this case,R1,C1(ǫ)

is bounded by

R1,C1(ǫ) ≥ max
xj(0),yj(0)∈Lj

H(Zj(T
1
j ))+ǫ log

( ǫ

2

)

+(1−ǫ) log(1−ǫ)

(36)

Proof: From the definition of mutual information

IP1
(Zj(T

1
j ); Ẑj(T

1
j )) ≥= H(Zj(T

1
j )) − H(Ej(T

1
j )) (37)

SinceZj(T
1
j ) andẐj(T

1
j ) take on a value of either 0 or 1, its

probability mass function can be written in terms of somep1,
p2 andp3 as

Ej(T
1
j ) =







−1 w.p. p1
0 w.p. p2
1 w.p. p3

(38)

whereP [Ej(T
1
j ) = 0] = p2 ≥ 1 − ǫ and p1 + p2 + p3 = 1.

Thus we havep1 + p3 ≤ ǫ. The entropy ofEj(T
1
j ) is then

given by H(Ej(T
1
j )) = −p1 log p1 − p2 log p2 − p3 log p3

which is maximized whenp2 = 1 − ǫ and p1 = p3 = ǫ/2.
This maximum entropy is given by

H(Ej(T
1
j )) = −ǫ log

( ǫ

2

)

− (1 − ǫ) log(1 − ǫ) (39)

Now H(Zj(T
1
j )) depends on the position of nodej at t = 0

and the swarm agent rate should account for the initial location
that results in the maximum entropy. Substituting Eqn. (39)in
Eqn. (37) we then have

IP1
(Zj(T

1
j ); Ẑj(T

1
j )) ≥ max

xj(0),yj(0)∈Lj

H(Zj(T
1
j ))

+ǫ log
( ǫ

2

)

+ (1 − ǫ) log(1 − ǫ)

To obtainH(Zj(T
1
j )) we note that ifP [Zj(T

1
j ) = 1] = δ

thenH(Zj(T
1
j )) = −δ log δ−(1−δ) log(1−δ). We now obtain

the probabilityP [Zj(T
1
j ) = 1] by obtainingP [Zj(T

1
j ) = 1 |

∆sj(0) = l, T 1
j = τ ] with l ≤ r and then unconditioning

on τ . Since the sink follows a two dimensional random walk
with varianceα, unconditioning the result of Appendix case
1, Eqn. (48), on packet interarrival times (which have a pdf
fT (τ)), we have

P [Zj(T
1
j ) = 1 | ∆sj(0) = l] =

∫ ∞

0

∫ r−l

0

2x

ατ
e−

x2

ατ fT (τ)dxdτ

+

∫ ∞

0

∫ r+l

r−l

2 cos−1
(

−r2+l2+x2

2lx

)

πατ
xe−

x2

ατ fT (τ)dxdτ

Note that H((Zj(T
1
j )) = −δ log δ − (1 − δ) log(1 − δ) is

maximized atδ = 0.5 and we denote the maximum value of
H((Zj(T

1
j )) for this case (i.e. whereZj(0) = 1), achieved at

l = l∗ (say), byH∗
C1(Zj(T

1
j )). We then have

R1,C1(ǫ) ≥ H∗
C1(Zj(T

1
j )) + ǫ log

( ǫ

2

)

+ (1 − ǫ) log(1 − ǫ)

(40)
Case 2:Denote byL′

j the region in space of possible positions
for node j at time t = 0 such thatZj(0) = 0, i.e. L′

j =

{xj , yj :
√

(xs(0) − xj)2 + (ys(0) − yj)2 > r}.
Claim 5: The rate distortion function in this case,R1,C2(ǫ)

is bounded by

R1,C2(ǫ) ≥ max
xj(0),yj(0)∈L′

j

H(Zj(T
1
j ))+ǫ log

( ǫ

2

)

+(1−ǫ) log(1−ǫ)

(41)
Proof: The proof is identical to that for Case 1.
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Fig. 4. Bound on swarm agent rate,ǫ = 0.01.

Using the results of the Appendix Case 2, Eqn. (50),
H(Zj(T

1
j ) | ∆sj(0) = l) with l > r in this case is given

by

P [Zj(T
1
j ) = 1 | ∆sj(0) = l] =

∫ ∞

0

∫ r+l

l−r

2 cos−1
(

−r2+l2+x2

2lx

)

πατ
xe−

x2

ατ fT (τ)dxdτ

(42)
For this case, the maximumH(Zj(T

1
j )) is achieved whenl =

r and we denote this entropy byH∗
C2(Zj(T

1
j )). We then have

R1,C2(ǫ) ≥ H∗
C2(Zj(T

1
j )) + ǫ log

( ǫ

2

)

+ (1 − ǫ) log(1 − ǫ)

(43)
The lower bound on the swarm agent rate is then

R(ǫ) ≥ R1(ǫ) ≥ max{R1,C1(ǫ), R1,C2(ǫ))} (44)

Figure 4 compares the bound on the swarm agent rate as
obtained from Eqn. (44) for different variances of the Brow-
nian motion and packet arrival rates. The packet interarrival
time is assumed to follow an exponential distribution.

E. Robustness of SIMPLE

We now consider the forwarding of data in scenarios where
the gradient at a node is outdated due to the movement of
the sink. For this discussion, we assume that the sink moves
at speedv and sends out swarm agents at rateR. Consider
a nodei whose max-min path gradient is out of date and
still leads to the sink’s old position,A. At time t node i
sends a packet to the sink, which has now moved to position
B. If the gradients of the nodes on the path toA have not
been updated yet, the packet moves towardsA and in the
worst case, reachesA where it is unable to reach the sink.
The gradient atA is updated after at most a period equal
to the interval between swarm agent advertisements1/R and
the MAC layer delays and maximum timer value associated
with the follower on the max-min path to the sink. Once the
gradient is updated atA, the packet is now forwarded towards
the current location. This precess may be repeated a number
of times at different locations before the packet finally reaches
the destination. However, as long as the distance traversedby
the sink between two updates is smaller than the distance that
the packet traverses in this interval, the packet is guaranteed to

catchup with the sink. As an example, for a 512B data packet
sent at 1Mbps, the transmission and channel access time would
typically be less than 10ms. If the average distance traveled
towards the sink between two successive hops is considered
to be a very small 10m, the packet progresses towards the
sink at a speed of 2000m/s which is much higher than typical
maximum sink speeds of 35-45m/s (130-160km/hr or 80-
100mph). Thus, the information delivery path is rectified on
the fly and the protocol is robust.

The above discussion also suggests that even if swarm
agents are not advertised by the sink at the rate determined
in Section V-D, packets are still delivered correctly. This
observation may be exploited to reduce the frequency of
swarm agent advertisements and the associated overhead.

F. Operation under Multiple Sinks

For operation in the presence of multiple sinks, thefollower
packet contains a field,Tmax, that contains the largest timer
value that thefollower has experienced in the path. The sink
initializes its value to zero and at each node, the value in the
receivedfollower is compared with the node’s own timer. The
larger of the two values is stamped in thefollower sent out
by the node. With multiple sinks, each sink asynchronously
sends out its swarm agents. Each node compares theTmax

value for the swarm agents of each sink that it receives and
selects the sink with the smallestTmax so as to pick the
path with the highest residual energy. In addition, gradients
for other sinks may be stored as backup paths in case the
neighbor with the max-min path becomes unavailable. Finally,
to provide resilience against sinks that may leave the network
or lose connectivity, each node may maintain a keep-alive
timer for each sink. If a swarm agent is not received from
a sink before its keep-alive timer expires, the sink may be
considered unavailable and the best route among the remaining
sinks is chosen.

G. SIMPLE’s Overhead Message Complexity

The algorithms presented in [10] are mainly designed for
scenarios with static sinks where data could be exchanged
between any arbitrary pair of nodes. These algorithms syn-
chronize the residual energy of nodes within the same “local
broadcast area”. From an individual node’s point of view, this
makes the algorithm’s message overhead complexity (i.e. the
number of messages transmitted by a node for an instance
of route setup)O(n) , wheren ≥ 1 is the number of nodes
within the “local broadcast area”. In addition, it is hard to
adapt these algorithms for mobile sink scenarios. The TTDD
protocol in [14] is even more complicated since each potential
source builds a grid structure of its own spanning the whole
network. The message complexity is actuallyO(N), whereN
is the number of sources in the network. On the other hand,
SIMPLE has an overhead message complexityO(1) since each
node may forward a swarm agent from the sink only once.

H. Miscellaneous Issues

1) Heterogeneity of Node Batteries:Node batteries are
allowed to be heterogeneous in terms of their capacities
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and energy consumption rates. In SIMPLE a node’s battery
capacity is normalized in terms of the maximum number of
messages it can forward.

2) Detecting Node Failures:When nodei forwards a mes-
sage to the sink via its downstream neighborj, it can detect
node j’s failure by listening for the expected transmission
from j. If no transmission is detected from nodej within a
reasonable amount of time, nodei can assume nodej is dead
and retransmit the message via another downstream neighbor.

3) Static Sink: When a sink stays static, it may still
advertise the swarm agent after it receives a given amount
of data in order to avoid the use of static routes.

4) Energy Saving by Sleeping:SIMPLE allows nodes to go
into the sleep mode. A node can start or stop advertising the
swarm agent to switch between sleep and awake states.

VI. SIMULATION RESULTS

In this section we present the simulation results to verify
SIMPLE’s performance and evaluate the effect of various en-
vironmental factors. We used a custom built simulator, written
in MATLAB to generate the results. We compare SIMPLE
with both the minimum hop count routing algorithm ([4], [5])
and the MREP protocol [15] and all three protocols were
implemented in our simulator. The route discovery process
for the minimum hop routing is similar to that for SIMPLE
except for the fact that only one packet is sent and no timers
are required. The frequency of routing updates was kept the
same in all the protocols.

In the simulations, the sink’s movement follows a random
walk and data packets or messages are generated at each node
according to either a Poisson process or at constant intervals.
For each setting, the simulation was repeated with 15 random
seeds and the results were averaged. The 95% confidence
interval in the worst case was found to be approximately
20% of the mean. In the simulations for SIMPLE, the timer
values for thefollower were chosen in the range[50, 100]ms.
Following the 1st order radio model of [31], the energy
consumption costs for transmission (ETx

(k, d)) and reception
(ERx

(k, d)) of a k-bit message transmitted over a distanced
is assumed to be:

ETx
(k, d) = kEelec + ǫampkd2

ERx
(k, d) = kEelec (45)

where Eelec = 62.5/bit is the energy dissipated to run the
transmitter or receiver circuitry andǫamp = 100pJ/bit/m2 is
for the transmitter amplifier. For our results, we normalizethe
energy consumed for receiving a packet to 1. The ratio of the
transmission and reception energy given by the equation above
is then taken to obtain the normalized transmission energy.

A. Comparison with MREP and Minimum Hop Routing Algo-
rithms

We first compare SIMPLE with the MREP [15] and min-
imum hop count routing algorithms. MREP was chosen be-
cause it was shown to perform better than existing protocols
including those in [22] and tries to address exactly the same
max-min residual energy problem as defined in Section III-B.

In our simulations, MREP performs broadcast searching for
routes to each node from a moving sink. The percentage
thresholdsperc for each route discovery process are set to
20%, 10% and 0%, respectively. We tested SIMPLE with
and without swarm agent suppression, denoted by SIMPLE-S
and SIMPLE in the figures, respectively. All SIMPLE-S tests
use the same parameter set while calculating re-advertisement
probability according to Algorithm 1 withα = β = 0.4,
δ = 0.2 andγ = 0.1.

In this set of experiments, 200 nodes were uniformly dis-
tributed in a100×100m2 network area. Each node’s transmis-
sion range was set to either 35m to simulate a dense network
(high connectivity) or 25m to simulate a sparse network (low
connectivity). The precursor and follower packets were 32
bytes each and the report message was 320 bytes. Each node
had 500 units of initial energy.

1) Network Lifetime vs. Sink Speed:In Figures 5 and 8
we compare the lifetime of the four protocols for various sink
speeds in dense and sparse networks, respectively. For these
results, data or reports are generated at each node with rate
λ = 0.3 messages per second and the sink’s speed is varied
from 2m/s to 10m/s. The swarm agent advertisement rates
were kept at 0.2, 0.4, 0.6, 0.8 and 1.0 agents per second for
speeds of 2, 4, 6, 8 and 10m/s, respectively. These values are
greater than the corresponding lower bounds obtained from
the analysis in Section V-D forǫ = 0.01. As the sink’s speed
increases, SIMPLE and SIMPLE-S consume more energy with
frequent path updates. However, the lifetime increases because
the energy depletion rates of nodes is more balanced across the
network. The sink’s mobility actually helps to avoid draining
the energy of the same set of nodes. This is also verified by
the results of MREP and min-hop routing. The reason why
SIMPLE and SIMPLE-S outperform the other two protocols
is that they not only try to minimize each data report’s energy
consumption, they also take energy balance into consideration.
We also note that the swarm agent suppression technique
improves SIMPLE’s performance.

2) Network Lifetime vs. Report Intensity:Figures 6 and 9
compares the performance of the four protocols when mes-
sages are generated at the nodes at different rates according to
a Poisson distribution with the sink speed kept at 2m/s. Swarm
agents were generated at a rate of 0.5 agents per second for
these simulations. When the reporting intensity is moderate,
SIMPLE and SIMPLE-S perform much better than MREP and
min-hop routing. Their advantage tapers off slightly when the
report intensity becomes very high. Figures 7 and 10 compare
the four protocols when messages are generated at the nodes
at a constant rate. The results are very similar to those for the
Poisson case suggesting that SIMPLE’s performance benefits
do not depend on the underlying traffic model.

B. Effect of Environmental Factors

In this section we observe the effect of various environ-
mental factors on SIMPLE’s energy consumption and lifetime,
starting with the sink’s speed. In this section’s simulations,
nodes are uniformly distributed in a100 × 100m2 network
area. The transmission range is 25m and nodes’ initial energy
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Fig. 5. Lifetime versus sink speeds in dense
networks.

Fig. 6. Lifetime versus Poisson report intensity in
dense networks.

Fig. 7. Lifetime versus CBR report intensity in
dense networks.
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Fig. 8. Lifetime versus sink speeds in sparse
networks.

Fig. 9. Lifetime versus Poisson report intensity in
sparse networks.

Fig. 10. Lifetime versus CBR report intensity in
sparse networks.

is 500 units. Data reports are generated at each node with rate
0.05 messages per second.

1) Effect of Sink Speed and Length of Swarm Agent:Figure
11 shows the effect of the sink’s speed and the ratio of data
and swarm agent size on the energy consumption induced by
the swarm agent (without suppression) for a network of 200
nodes. Swarm agents were generated for these results at a rate
of 0.1v wherev is the sink speed. These values were greater
than the minimum swarm agent rates obtained from Section
V-D for ǫ = 0.01. It can be seen that for different length
ratios, energy consumption induced by the swarm agent only
increases slightly as the sink moves faster. This is in concert
with the results in Figures 5 and 8. When the swarm agent is
much smaller than the data, the energy consumption induced
by the swarm agent can be as low as 1%-5%.

2) Effect of Node Density:In Figure 12 we plot the
swarm agent’s (without suppression) energy consumption as
a function of the node density for data and swarm agent size
ratios of 10:1 and 50:1 with swarm agents generated at a rate
of 0.5 agents per second. When the swarm agent’s lengths is
small compared to the data, the energy consumption can drop
to as low as 5% when the node density reaches 0.08 nodes/m2.
When node density increases, the burden of relaying data
becomes less on each node. According to the constrained
advertisement model in Section IV-B, nodes relaying less data
will have a lower advertisement probabilityρ. Thus, energy
consumption induced by the swarm agent also decreases. This
indirectly verifies that SIMPLE’s probability model guarantees
the protocol’s scalability with the node density.

3) Effect of Swarm Agent Suppression:In this section, we
investigate the effect of the swarm agent suppression technique
proposed in Section IV-B on the protocol’s performance. For
these results, we consider a network of 200 nodes, swarm
agent rate of 0.5 agents per second and increase the ratio of
the swarm agent and data size to 2:5 to enable a more effective
observation of the tradeoff between protocol overhead and the
network’s lifetime.

Figure 13 presents the network’s lifetime (y axis) for various
swarm agent suppression degrees (x axis). The degree of
suppression is represented by the percentage of node energy
that is consumed by swarm agents. To show the trend, a fitted
curve drawn using 10th degree exponential curve fitting with
error bounded within 15% is also shown in the figure. We note
that both zero and full suppression lead to lowered network
lifetimes. Going left to right, the two extremes in the figure
are elaborated as follows:

• No suppression, dynamic:Protocols in this category
try to continuously update the whole network with the
sink’s latest location. The max-min path chosen will
thus be optimal and the network’s residual energy is
optimally balanced, which prolongs the network’s life-
time. Although [2] is not energy aware, it does belong
to this category as does SIMPLE without suppression.
However, even though protocols in this category can find
the energy-wise optimal path, the significant overhead
decreases the network’s lifetime.

• Full suppression, static: Paths to the sink are updated
as infrequently as possible. Most nodes are unaware of
the sink’s movement and information is delivered through
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Fig. 11. Effect of Sink’s Speed and swarm agent’s
size relative to the data report’s size.

Fig. 12. Node Density vs. Swarm Agent’s Energy
Consumption

Fig. 13. Lifetime achieved with different suppres-
sion ratios.

stale and usually sub-optimal and longer routes. However,
energy is conserved in the sense that protocol overhead is
trivial compared to the previous case. In addition, energy
of nodes on the static paths may get depleted very quickly,
which shortens the network lifetime.

C. Multi-sink Scenarios

In this section we investigate the energy depletion in multi-
sink scenarios. When multiple sinks are present in a small
scale network, swarm agents from all sinks can traverse the
whole network so that nodes can find the closest sink to deliver
their information. A large scale network can be subdivided
into small scale ones and sinks, with their associated swarm
agents, will be confined in their respective subareas. Since
the subareas in a large scale network are equivalent to small
scale networks, simulations in this section focus on the energy
depletion in a small scale network with multiple sinks.

In this simulation, 400 nodes, with 25m as their transmission
range and 500 units of initial energy, are present in a network
of 200 × 200m2 area. The speed of the sinks is kept at
10m/s, data is generated at each node with rateλ = 0.05 and
the swarm agent (without suppression) rate was kept at 0.5
agents per second. Figure 14 shows that for a given reporting
intensity, as the number of sinks increases from 1 to 4, the
time it takes for the average residual energy at a node to
drop from 500 to 150 becomes longer instead of shorter. This
reason is that although multiple sinks introduce greater energy
consumption due to more swarm agents, it also helps decrease
the average hop count between nodes and their corresponding
sinks, as shown in Figure 15. The energy saved by traversing
a smaller number of hops outweighs the increased energy
consumption due to more swarm agents.

D. Protocol Resilience Against Node Failures

In this section we verify SIMPLE’s resilience against node
failures. Initially, 200 nodes, with initial energy of 500 units
and transmission range 25m, are distributed in a100×100m2

area. One mobile sink is present in the network, with a speed
of 10m/s and the swarm agent (without suppression) rate is
0.5 agents per second. Report events are generated at each
node with a rate of0.05 messages per second. In addition to
the max-min path, nodes also record multiple backup paths to

counteract node failures. Figure 16 shows that with only two
backup paths the protocol’s resilience against node failures is
greatly improved.

VII. C ONCLUSIONS

This paper presents an energy aware data acquisition pro-
tocol for networks with mobile sinks. The protocol design is
based on techniques of swarm intelligence, energy-wise max-
min path and a probabilistic model for dynamically updating
the max-min paths. The swarm intelligence approach maxi-
mizes individual node’s lifetime since it greatly simplifies the
node’s operations, keeping requirements in line with a typical
sensor or node’s limited computational capabilities, restricted
storage and limited energy. The protocol tries to maximize the
network’s lifetime by dynamically choosing energy efficient
paths and balancing the residual energy at each node. SIMPLE
scales with multiple sinks and is robust against node failures.

VIII. A PPENDIX

Case 1:Whenxj(0), yj(0) ∈ Lj , Zj(T
1
j ) = 1 andZj(0) = 1,

the sink is initially within a circular region of radiusr centered
at xj(0), yj(0). Then the probabilityP [Zj(T

1
j ) = 1] depends

on the likelihood that the sink is still within the circular
region at timet = T 1

j . This probability can be evaluated
by integrating the pdf of the position of the sink over the
circular region. Figure 17 shows such a scenario where node
j’s position is marked by A and the sink’s initial position is
marked by B. The probability that the sink stays in nodej’s
neighborhood can be obtained by first integrating the pdf of
the sink’s motion over the circle of radiusr − l centered at
B and then over arcs subtending an angle of2π − 2θ at B as
the radius sweeps over the ranger − l ≤ x ≤ r + l. Using
elementary trigonometry

θ = π − β = π − cos−1

(−r2 + l2 + x2

2lx

)

(46)

For two dimensional Brownian motion with varianceα, the
distancex and angleφ of the sink at timeτ is with respect
to its origin at time 0 is given by

p(x, φ) =
x

πατ
e−

x2

ατ 0 ≤ φ < 2π, 0 ≤ x < ∞ (47)
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Fig. 15. The average hop count decreases as the
number of sinks increases

Fig. 16. Multiple paths improve the protocol’s
resilience against node failures
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Then

P [Zj(T
1
j ) = 1 | ∆sj(0) = l, T 1

j = τ ] =

∫ r−l

0

∫ 2π

0

x

πατ
e−

x2

ατ dθ′dx

+

∫ r+l

r−l

∫ 2π−2θ

0

x

πατ
e−

x2

ατ dθ′dx (48)

Case 2:When xj(0), yj(0) ∈ L′
j , Zj(T

1
j ) = 1 and Zj(0) =

0, the sink is initially outside the circular region of radiusr
centered at nodej’s location but moves inside the circle at
time T 1

j . Figure 18 shows such a scenario using the same
notation as in the previous case. In this case we integrate for

arcs subtending an angle2θ as x varies froml − r to l + r.
The angleθ is given by

θ = cos−1

(−r2 + l2 + x2

2lx

)

(49)

and thus the probability that the sink, starting at a distance of
l, l > r, from nodej at t = 0 becomes its neighbor att = T 1

j

is given by

P [Zj(T
1
j ) = 1 | ∆sj(0) = l, T 1

j = τ ] =

∫ r+l

l−r

∫ 2θ

0

x

πατ
e−

x2

ατ dθ′dx

(50)
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