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Abstract—This paper addresses the problem of data acquisition most existing protocols degrades their scalability anditgbi
in ad hoc and sensor networks with mobile sinks and proposes a to maximize network lifetime.

protocol based on swarm intelligence, SIMPLE, to route data  \yith the specific goal of maximizing the network lifetime
in such environments. The proposed protocol is based on a.

swarm agent that integrates the residual energy of nodes into in the “data acqwsmon using mobile sink” scenario, thiper
the route selection mechanism and maximizes the network’s Presents an on-line, energy aware protocol, SIMPLE, based o
lifetime by evenly balancing the residual energy across nodes the concept of swarm intelligence [3]. Without requiringliin
and minimizing the protocol overhead. The protocol is robust vidual nodes to possess much intelligence, global infoonat
and scales well with both the network size and in the presence or cooperate with each other tightly, the protocol speciisst

of multiple sinks. An information theoretic lower bound on the f simol les f h nod d by thei llective betravi
protocol overhead associated with the swarm agent advertiseme Of simple rules 1or each node and by their colleclive benavio

is obtained. Simulation results are used to verify SIMPLE's the globally optimum performance is achieved. In particula

performance. SIMPLE achieves the following:
Index Terms—Swarm intelligence, data acquisition, mobile 1) Smart Data Delivery to the Mobile Sink: SIMPLE
sink, energy awareness has been designed to tolerate a degree of information

inaccuracy regarding the sink’s location. Thus frequent
and expensive updates of all nodes with the sink’s
|. INTRODUCTION location information are avoided.

Ad hoc and sensor networks may have a large number of2) Network Lifetime Maximization: The protocol maxi-

nodes deployed over large areas and nodes typically have lim ~ Mizes the network lifetime, defined as the time till the
ited battery and computational capabilities. The intrdidunc first node runs out of ba.t'tery power.

of mobility, either in the nodes or in the agents which cdllec 3) Robustness and ScalabilityNodes can keep record of
data from them (i.e. sinks), makes the design of networking ~Multiple path gradients to counteract node failure events.
protocols more challenging and complicated. Examples of ~AlS0, when multiple sinks are present in the network,
possible scenarios, for example, include sensor netweis t nodes can choose to report to the sink that maximizes
are deployed to monitor areas with natural disasters, fores (e network lifetime and the protocol scales with the
or civilian areas. Information is generated at the sensonds a number of sources.

reported to the sinks, which could be first responders, fordde main drawback of the proposed scheme is the energy
rangers or policemen, respectively. In these scenarioghwhrequired to transmit the swarm agent packets to set up the
reflect the scenarios of interest in this paper, most of tlieso routes although most other protocol also incur similar ever
stay static while sinks are mobile. The problem addressedfigads. Additionally, there is a small delay, in the ordere f

the paper ishow should the static sources report their datdundreds of milliseconds, associated with the setup ofesout
to a mobile sink so that network lifetime is maximized?  using the proposed scheme.

The constant and unpredictable changes in the sink’s lo-The rest of the paper is organized as follows: Section II
cation form the main obstacle in the path of designing dapgesents the related work. Background information and the
acquisition protocols in the mobile sink scenario. Most cpIMPLE protocol are elaborated upon in Section Ill and
the existing proposals addressing this issue are basedeon3gction IV respectively. Section V is devoted to the analysi
assumption that the mobile sink continuously updates all tBf the proposed protocol. We present the simulation results
nodes in the network with its current location informatioP€ction VI and conclude in Section VII.

[1], [2]. However, such frequent updates lead to excessive
consumption of the nodes’ battery in addition to creatiadfit 1. RELATED WORK
congestion. Besides being energy unaware, the commuoricati The problem of data acquisition in ad-hoc networks with

and state overheads associated with maintaining the routeS avic sinks has been extensively studied in recent yeaiagU

“hop-count” as the metric, authors of [4], [5] propose short
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routing protocols in wireless ad hoc networks. In [9] the « Gradient of a node indicates its next hop neighbor on
lifetime maximization problem is formulated as an offline  the selected path leading to the sink.
linear programming problem that requires full knowledge of « Downstream and Upstream:Downstream is defined as
traffic demands. In [10], [11] “maximizing network lifetimes the “to-the-sink” direction, while upstream refers to the
taken as the objective and online algorithms are developed f  opposite.
routing data in static networks. The similar offline alglonit
in [12] deals with static or slowly changing dynamic netwark

In mobile sink scenarios, frequently updating all nodesiwiB. Problem Definition
a sink’s current location leads to significant overheadseRe  The opjective of this paper is to develop a routing mecha-
literature suggests several alternative approaches.ct®te nism to allow static sources to report their data to mobinsi
diffusion [2] and its enhancements [13] route data basgghile maximizing the network lifetime. As in [9], [24] we
on data interests periodically broadcast by the sink but &jgfine network lifetime as the time until the first batteryidsa
incapable of accommodating high levels of network and sinjt, j.e., the minimum lifetime over all nodes. Then follogi
dynamics. A scheme wheemachnode builds a “grid” to route the arguments of [9], [24], a routing mechanism that strives
data to mobile sinks and thus incurs high overhead is prabosg palance the residual energy levels of all nodes and picks
in [14]. Authors of [15] propose a set of algorithms thahaths with nodes with higher residual energies maximizes
adaptively select a path that consists of a subset of nodgg network lifetime. Energy aware schemes such as CMAX,
with high residual energy or a path with least total powefp . and “max-min” that balance the energy consumption
consumption. The energy aware routing protocols propasedigvels of nodes have been proposed in literature. In thigpap
[16], [17] require power control while this paper considerge propose a variation of the “max-min” approach which is
fixed transmission powers. Power aware routing schemes thakcriped in detail below. The reader is referred to [101] [1
require the nodes to be aware of their geographic locatigf} getails on the CMAX and P,.;,, algorithms.
are proposed in [18], [19]. A probabilistic routing proté@®  g,nnose between a given source and destination there exist
proposed in [20] where the probability of choosing a node 3Spaths, which we denote by.j€1,2,-- n. The residual
a forwarding node is inversely proportional to the aggregaénergy of thekth nodevf on pathp; is denoted bye;?,k c

load the node is carrying. , _ , 1,2,--- , h;, whereh; is the hop count on path;. Max-min
A cluster based architecture is considered in [21] and ”PG'uting chooses the pah, where:

authors propose power allocation strategies for clustad$e
to offset the impact of skewed loads on the residual power r =arg max min e;? (1)
distribution. This framework is not scalable and applieaiol JELZ, - m k€L 2, by

the non cluster based networks considered in this paper. The i chooses the path which contains the node with the-high
PANDA-RB routing algorithm proposed in [22] is capable ofgt minimum residual energy. Distributing the routing aurd
balancing the residual energy levels at all nodes but relies ,, odes with higher residual energies serves to prolong the
flooding, making it resource expensive. The authors of [28}¢ of nodes with depleted energy levels thereby incragsin
propose an energy aware routing protocol that accounts {fg network lifetime. All three algorithms CMAX; P, and
residual energy levels at each node. The protocol howeyaL, min take the energy balance issue into consideration.
requires an elaborate route discovery phase where each ngfliough their performance is close to each other, in this

is required to reply to the sink, making it computation anfaper we choose the max-min algorithm for selecting routes
energy intensive. because-

In contrast, the proposed protocol does not require any . _
prior knowledge of the sink’s mobility pattern, the distrilon - Both C_MAX (and 'ts, @stnbuted Version D-CMAX) and
governing the data generation or traffic demands at the nodes ZP"”” involve nc_)n—tr|V|aI parameter tuning based on spe-
cific source traffic patterns (which are usually not known

Also, no geographic information is needed in our scheme. In ) ; }
addition to being simple and distributed, SIMPLE is scatabl ~ Peforehand) in order to achieve their best performance.
2P requires multiple shortest path algorithm invoca-

robust and handles node mobility, failures, insertions and® ~ X
deletions easily tions to calculate one shortest path, which does not scale
when the number of edges grows bigger.

lIl. BACKGROUND AND DEFINITIONS If not indicated otherwise, throughout this paper the term
A. Assumptions and Terminology “max-min path” will be used to refer to the path specified

This paper makes the following assumptions about ty Ean. (1).
network: (1) no prior knowledge about the sink’s mobility
characteristics is available; (2) all sensors in the networ
are potential sources and no prior knowledge about data
generation characteristics of a source is available; (B) al In this section we develop a routing protocol, SIMPLE, to
sensors transmit at the same power level. These assumptiaddress the problem of data delivery from the nodes to the
reflect the conditions in most realistic deployment scesarimobile sink. For ease of illustration, we first start with the
and are necessary to ensure that the developed protocotdse of a single sink in the network. We address the multiple
practical. The paper also uses the following definitions:  sink scenario in Section V-E.

IV. THE DATA ACQUISITION PrROTOCOL SIMPLE



Any function that satisfies these properties, for example
T=2—e, (2)

wheree,. is the node’s remaining energy (normalized between
[0,1]), may be chosen and our scheme does not depend on
the specific function. Thus, nodes with higher residual gyper
will time out faster and this is the key to differentiatingtips
with different minimum residual energy levels. In the reét o
the discussion, we show that tfi@lower from the max-min
path arrives at each node first and the node can thus simply
mark the sender of thiellower as the gradient. In Figure 1 the
numbers alongside the nodes that are outside the paresthese
are the nodes’ normalized residual energy and numberseinsid
the parentheses are the nodes’ corresponding timer value.
Figure 2 also shows how thiellower is propagated at each
intermediate sensor. For the sake of an easily understendab
protocol description, we omit the delays induced by quegiein
and MAC layer, which will be addressed in next section.

The sink sends out the swarm agent at tithe Since
12 I the precursor simply cuts through and we are omitting the
@/ gueueing and MAC layer delays, all nodes receive e
14 cursor at time 0. Based on the max-min path definition,

I B sink — 1 — 2 — 3 — 4 (path 1 in the figure) is the max-
1.6 CD/ @)/ %4

min path between the sink and nodleEven though the other
1.8

Fig. 1. Example: using a swarm agent to update the max-min path.
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path sink — 6 — 4 (path 2 in the figure) has fewer hops
than the max-min path, it is still “longer” since nodehas
only 0.4 energy left, which is the least among all nodes on
paths between the sink and node We use nodel as an
example to explain how the gradient is marked out at each
node. Following are events occurring at the times indicated
by the circled numbers in Figure 2:

Time D: Node 1 receives thdollower,

Time @: Node 1's timer times out at time 1.2, and the

E—
Precursor

Follower

Fig. 2. Propagation of thprecursorand follower.

A. Protocol Description

The proposed routing protocol is motivated by swarm
intelligence and bandwidth measurement techniques indwire
networks presented in [25] and references therein. Raltiagr t
storing complete path information for the max-min path,heac
node only maintains a “gradient” pointing to its downstream
neighbor on the max-min path leading to the sink. The prdtoco
is based on “swarm agents” which comprise of two very
short packets, namely therecursorandfollower. The packets
comprising the swarm agent are injected into the network by

follower is sent out;

Time 3: Node 2 receives thdollower at time 1.2 and
sends it out at time 1.5 when its timer times out;
Time @: Node 3’s timer has already timed out when
it receives thefollower at time 1.5 and thus forwards it
immediately. Thefollower reaches nodé at time 1.5;
Time ®: Node 6 receives thdollower at time 0;

Time ®): Node6 sends out théollower at time1.6 when

it times out. Nodet gets a second copy of tHellower
from node6 at time 1.6 and it is simply dropped. Node
6 can be recorded as the backup path gradient.

the sink are sent out by the sink to mark out the max-min On path 1, the longest timer times out ahead of that from
path gradient, as defined in Eqn. (1), at each node. Egshth 2 even though the latter has fewer hops. Thus in our
set of swarm agent packets is stamped with an unique agtheme, the first copy of tHellower will always arrive along
increasing sequence number. These packets are then fedvatfle max-min path. In Section V we formally prove that our
by the nodes while following a set of rules. Using the examptgchnique indeed selects the max-min path. Since each node
topology shown in Figure 1, we now show how the swarman safely refrain from relaying afbllowers except the first

agent updates the max-min path gradients at all nodes.

copy, this greatly suppresses the amount of swarm agergsopi

The swarm agent is advertised to the network by the sitat are circulating in the network. In our example, sincdeno
each time it wants to update the routes in the network. Asreceives thefollower from node 3 first, it makes node3
shown in Figure 2, upon receiving thprecursor each node its “gradient” on the max-min path leading to the sink. To
immediately re-advertises it to all its neighbors. It théarts a counteract node failures or sleeping, n@gdean be marked as

timer and waits for it to expire before forwarding tfalower.

the backup path gradient to the sink.

The value of the timer[’, is a non-negative, bounded and It should be pointed out that for gradient initialization
decreasing function of the residual energy level at the nodmmediately after the deployment of the ad hoc or sensor



further away from the sink can be updated less frequently as
compared to nodes nearer to the sink. This scenario is simila
to the scenario considered in Section 3.3.2 of [26].

Scenario 2: Consider three nodes j and k& on pathsp;,

p; andp; between source and destination. If node : has
the maximum residual energy, path will be chosen as the
\_, max-min path and nodg¢ and k's advertisements are futile
o and only serve to lower their utility/energy ratio. Ideallye
would like to have only the nodes on the max-min path to
advertise the swarm agent, while all other nodes suppress th
advertisements to save energy.

Scenario 3: Consider a scenario where noddrequently
network, since every node has same residual endfgy,, relays data to the sink, while nogeseldom does so. In this
our scheme actually initializes the max-min path as the pathse, nodeé should advertise more frequently than ngdsnce
with minimum hops, which is consistent with energy efficignci’s upstream neighbors are expectitig advertisement, and
rules. From an individual node’s point of view, all its operathe advertisement will increase node utility. In the extreme
tions are straightforward and the globally optimal gratlisn case, if a node is never chosen to relay data for others, its
set up without involving any global information collection agent advertisements will not increase its utility but dese
complicated computation algorithms, enabling the schemeits utility/energy consumption ratio. Thus, nodes thatlesi
scale. The scalability issue will be further elaboratedrupo relay data should advertise less frequently than nodes that
Section V-C. often relay data.

A strong point of SIMPLE is that it is naturally loop free 2) A Probabilistic Advertising ModelA deterministic so-
since node will always discard any swarm agent from nofle |ytion to suppress advertisements in the scenarios describ
if it has already sent one tp Also, the scheme does not relyapove requires global information at each node, which mitkes
on any assumptions regarding messages sent from the siniigractical. We thus introduce a probabilistic model foasm

the nodes, such as queries. If the nodes’ report is triggerggent re-advertisement. Based on the discussion abovetwe |
by queries from the sink to all nodes, the swarm agent ca@Mmode’s re-advertising probability.

actually be integrated into the queries with little extratco

|
Sink's old
position

Sink's new
position

Fig. 3. Scenario 1: Sink's movement has lower effect on node¢bduaway.

1) increase if it relays data for its neighbors;

B. Constrained Advertisement Model 2) glzc;)rsesss.e if the node does not relay any data as time

The scheme designed above updates the max-min path frong) have a higher lower-bound when the node has more
each sensor to the sink using the swarm agent. However, SOMe | asidual energy.

of these advertisements may be redundant and could be sup-
pressed without sacrificing too much of the performance. We algorithm based on these rules to calculate the re-
first identify the scenarios with redundant swarm agentenTh advertisement probability is shown in Algorithm 1. Notettha
a constrained advertisement model is presented to enhlaecene set a lower bound so that a sensor'svill never reach
protocol efficiency. 0 except when its energy is fully depleted. Thus, even less
1) Advertisement Suppression Scenaridde first define active nodes will advertise occasionally so that they may be
the “utility” of a node. Node’’s utility increases if any nodg Selected when the energy of other nodes depletes. By agplyin
picksi as its next hop on the max-min path based on nigle this probabilistic model, nodes further away from the sirik w
advertisement. Otherwise the utility of nodewill decrease, have a smaller advertisement intensity as compared to nodes
for example, exponentially as time lapses. Since all agheert closer to the sink. In addition, nodes with more residuatgye
ments cost energy, a higher utility/energy consumptioio rawill have a higher probability to join the advertisement.
is desired for each node. Before introducing how unnecgssar The probabilistic re-advertisement is essentially a trade
advertisements are suppressed, we first identify the dosnaoff between network’s energy balance and overhead energy
where they occur. consumption. Non suppression of advertisements makes the
Scenario 1:In Figure 3 suppose nodes not updated with network most balanced but incurs the highest overheadgewhil
the sink’s movement. Messages originating at or relayed bMppressing all advertisements causes the opposite. &uppr
¢ will be sent along gradieny;, set up based on the sink’ssion of the agents however does not mean that packets are
old position. Denoting the progress along gradignby /, we not delivered to the sink as shown in Section V-E as well
define the “effective progress’’ as: as through simulation results. The scheme adapts to node
77 = 1 x cos(6;) 3) insertions anq deaths fairly easily: When a new sensor joins
! the network, it forwards any received swarm agent to make
As we can see, when a node is further away from the sirits neighbors aware of its existence. When a sensor leaves or
such as nodg, # becomes smaller and the effective progressies, its upstream neighbors will not receive any furthearsaw
is closer tal. This suggests that for a given sink displacemeragents, which naturally removes the node from their next hop
nodes further away are less affected. Thus, gradients afsnodandidates list.



Algorithm 1 Algorithm for calculating re-advertisement prob-The swarm agent will be re-advertised by naejewhen T]k

ability times out. Thus, finally node will receive a swarm agent
t: time at which last swarm agent was received from pathp; with attached agent timer of value:
p(t): re-advertisement probability at time .
relay: binary variable to indicate if node is a relay node Ty = 185, M(ej)

lround: lower bound on re-advertisement probability )
a, B, 8, ~: positive constants) < 8,y < 1 where h; is the total hop count along pagh. Now assume

while (1) do that nodev receives swarm agents fromdifferent paths. It is
easy to see that an agent with a smaller “agent timer” always

if new swarm agent received then - g :
arrives earlier. From the monotonous decreasing naturkeof t

t + 7: current time

I Y S residual energy mapping function (5), agent timer of the first arriving swarm
bound battery capacity agent isT,, where:
tmpy = p(t) — ae’T
tmps = max{lpound, tmpi } r = argminT}
if relay == 1 then Isjsn i
_ l+tm — i M(eF
e T T, B, M)
(t+7)=tm = argmax min ¥ @)
I?i . p2 1<j<n 1<k<h; 7
end i
relay = 0 The equation above is exactly the same as Eqgn. (1) which
end if defines the max-min path thereby proving the claim. =
if data packet forwarded then Note that all then paths leading to node can share many
relay = 1 intermediate nodes, but this does not affect the validitpuof
end if conclusion. Duplicates of the swarm agent simply get drdppe
end while at each node, which saves energy.
B. Errors in the Presence of MAC Layer Delays
V. PROTOCOLANALYSIS The protocol correctness proof in the preceding section
In this section, we analytically address various aspects &FSumed that there are no MAC layer delays. In the presence
the proposed protocol. of MAC layer delays, théollower from the max-min path may

be delayed long enough so that ttelower from a path with
smaller minimum residual energy may reach a tagged node
A. Validity of the Max-min Path first. However, if the lower bound on the timers associated
Claim 1: When MAC and other delays are negligible Com\_/vith the followersis is made large compargd to the expected
pared to the swarm agent’s timer, at any arbitrary nodéth MAC layer delay at a nqde, th_e probability of such eyents
n paths to the sink;, i = 1,--- ,n, the gradient set up by becomes very small. In this section we evaluate the likeliho

the unconstrained swarm agent is given by of such'errors in selecting the max-min path.
Consider two paths from the sink to a tagged nadeand

argmax min eé? (4) B, with M and N hops, respectively. Let ,_p denote the
1<j<n 1Sk<h; difference in the timer values of the nodes with the minimum
conforming to the max-min path specified in Eqn. (1). residual energies in path$ and B and letég_4 denote the

difference in the cumulative MAC layer delays of paghand
path A. An error in marking the correct gradient occurs if
Aa_p<dp_awhenAy _p>0o0rif Ay_p > dp_a when

t, = M(e,) (5) Aa-p <0.We now evaluate the likelihood of these events.

The timer at each node for delaying tf@lower is depen-
wheree, is the residual energy of nodeand M (e,) could dent on the node’s residual energy. We assume that the energy
be any bounded and monotonous decreasing funatiogives |evels at each node is independent and identically dig&ibu
the initial value of nodev's timer for the swarm agent. The (iid). Consequently, the timer value at each node is also iid
swarm agent traveling along path is also attached with an with probability density function (pdf)f,(z) with a <z <b
“agent timer”, T}, with initial value 0 when advertised from whereq and b are the lower and upper limits on the timer.
the sink. Using standard results from order statistics, the pdf of the
Let 'uf denote thek-th hop on pathp; with initial energy minimum timer value along patH is

ef and timerté?. As the swarm agent passes through this node, M1
the agent timer, denoted &%, will be updated as: faa(z) = M(1— Fy(2))" ™ fa() (8)

where F;(z) is the cumulative distribution function (CDF) of
fa(z). The corresponding expression for pabhis obtained
= max{T}"", M(e})} (6) by substitutingV for M in Eqgn. (8). The pdf of the difference

Proof: Let the sink send out a swarm agent at time
Define a mapping function:

k _ k—1 L4k
Ty = max{T; 7}



in the minimum timer value of pati from path B is given the time required to setup the routes. This is because for the
by most part, the timers of different nodes overlap. As an exére
b example, consider the setup of routes when the batteryslevel
fan p(@) = { f%:tth,B(t)fM,A(:c +i)dt a—b<t<0 44 nodes is almost 0. If we consider that timer values are
Jo ) fara(@+t)dt 0<t<b—a pounded inthe range.1,0.2] seconds, then the timer value of
(9)  all nodes will be close to 0.2 seconds. If the expected value o
We assume the MAC layer channel access delays at each n@gesym of the MAC layer access delays and the swarm agent
in the network is iid with pdffp(z), 0 <2 < oo with mean  yransmission time at each node is realistically assumedeto b
p and variancer®. Also, we assume that > E[D], i.e. the oms, aprecursorfrom the sink reaches a node 100 hops away
lower bound on the timer is much greater than the expectgfler 200ms. This node waits for at most 0.2 seconds before
MAC layer delay at a node. We do not account for anyanging out thdollower. Thus routes are setup at a node 101
queueing delays since the swarm agent packets are expegigss away after approximately 0.4 seconds. The route setup

to receive prioritized treatment and moved to the head of th@jay is smaller when the network is initially set up and also
MAC layer queue. The total time that elapses from the instafitsmaller values are used for the timer range.

the swarm agent is sent by the sink till the follower reaches

the tagged node can be broken into three parts: (i) the MAC . . . .

layer delays experienced by tieecursorwhile reaching the C. Scalability of SIMPLE with Constrained Flooding

node with the minimum residual energy, (ii) tfalower timer The potential scalability issue of SIMPLE concerns the
delay at this node and (jii) the MAC layer delays experienceflvertisement scope of the swarm agent as the network size
by the follower after it leaves this node. Since the statisticgrows. A swarm agent’s “advertisement scope” is defined by
distribution characterizing the MAC layer delaysprecursors its radiusL, indicating that at least one node advertising the
and followersis identical, the total MAC layer delay of pathswarm agent id. hops away from the sink. In order to prove

A (B) is the sum of theM (V) random variables with pdf the scalability of SIMPLE with probabilistic forwarding, ev
fp(x). The cumulative MAC layer delays along a path antiow show thatZ is bounded even when the network size is
its variance increases with the hop count. Thus the likeliho not. If we defineC(G) as coverage of the sensor netwark

that the difference in the MAC layer delay on the two path&en we have:

exceeds the difference of the timer values of the nodes withClaim 2:

the minimum residual energies in the two paths increasds wit .

the path length. As the path length increases, from the @lentr c(gﬁo@ Prob(Z — o) =0 (13)

limit theorem, the cumulative delay on each path follows a
Gaussian distribution and for path is given by

fp,a(z)

Proof: Assume that the mobile sink is advertising the
swarm agent to the network at a rate®f agents per second.
_ 1 e_% (%)2 (10) Define R,,, as the advertisement intensity of an arbitrary node
V2moa v; in the sensor network. Denote nodgs re-advertisement
with p4 = My ando? = Mo?. For pathB, we haveus = probability asp,,, and SP,, as the set of all nodes on the

Nu ando? = No?. The difference in the delays of pafh max-min path from node; to the sink. Then at node;:

and A characterize$p_ 4 and its pdf is given by Ry, = pu, Ry H Po;

1 —%<(I+“2A_‘;B)2> v; ESPy,

fop_a(x) = = 7atop (112) , . .
21(0% + 0%) Wherevj. are all nodes on node’s max-min path to the' sink,
The probability that the follower from the non max-min paﬂ?nd P, 1S the re-advertisement probability of nodg. Since
reaches the tagged node first is then pv; < 1,for anyv;
P[error] = P[AA—B<5B—A,AA—B >0} we have
+P[Aa_p>0p-a,Aa_p <0 (12) N li)rn PI’O[C(RW =0)=1

From [27] the average 802.11 MAC layer access delays and it

: : - Pswereh(vi) is nodev;’s hop count to the sink ankl(v;) — oo
variance is about a millisecond when a node competes wit . T ,
whenC(G) — co. The equation above indicates that a node’s
10-15 nodes for the channel. Thus we may wse= 1ms

and o2 — 1ms® for our example numerical evaluation. Theadverusement intensity goes to 0 as its distance from thie si

evaluation of Eqn. (12) requires knowledge of the distiiut Increases. Thus, following equation is proved:

of the residual power levels at each node and to the best of lim Prob(L — o0) =0 (14)
our knowledge, such distributions are not known. Howewver, a C(G)—o0
indication of the low probability of error due to MAC layer [ ]

delays can be seen from the fact that even if the difference inThis scalability claim does not apply to SIMPLE without

the timer values of the two paths is 20ms, with = 20 and constrained flooding. Eqn. (14) indicates that the “adsefti

N = 25, the probability of error is less than 0.0001. ment scope” is bounded even when the sensor network’s size
The requirement of large timer values as compared to tgeows larger. Thus as nodes get further away from the sink,

expected MAC layer delays at a node does not adversely affdwir gradient might not be updated often. In Section V-E we



address the problem of how nodes far away from the sinkWe now formulate the minimum swarm agent frequency
and thus with possibly outdated location information ccilse problem as a rate distortion problem. Our analysis is based
deliver their data to the sink. on extending the results of [28] which considers the problem

of protocol overhead in location based routing. We denote by

N > N
D. Protocol Overhead Z;" and Z;" the vectors

Swarm agents are sent out by the sink occasionally to keep ZY = {Z)(1}), Z;(T7),- -, Z;(T])}
the other nodes abreast of its location. In this section, we ZN = A{Z;(T})), Z;(T?), - . Z;(T))}

obtain an information theoretic bound on the overhead ieclr . - S
due to the transmission of the swarm agents. We obtain t"ﬁ%d denote byPy (¢) the family of joint probability distribu-

: N 7N i kY _
minimum rate at which swarm agents must be sent, so tign functions ofZi% and Z* such thatP[E;(T}) = 0] >

the probability that each node has the correct gradienteo th € 77 € N andl < k < co. We also denote by?y (c) the

.. i kY
sink when it has data to send, is greater than an arbitrangva/Minimum swarm agent rate such thatz; (777) = 0] and as
1—e. Here we consider SIMPLE without constrained floodin§€" the discussion on rate distortion in [29], it is given by
in order to estimate the worst case overhead. . 1 N. SN
Ve Ry (e) = —1Ip,(ZN; Z! 18
We formulate the problem of obtaining the protocol over- N (e PNE%IJ\II(G) Py (255 25) (18)

head as a rate distortion problem. For each node, the pr(\%vq{erele(ZjV;ZA;-V) is the mutual information betweerN

ability that it perceives the sink as its neighbor when it is 2N The min is th .
not, is used as the distortion measure. We assume that&{Z; - The minimum swarm agent raté(e), is then given

arbitrary number,n, of nodes are randomly and uniformly y L .
distributed on a two dimensional plane. The set of all nodes i R(e) = Jim_min Rn(e) (19)

denoted byV. In addition to these nodes which are assum&fle now obtain a bound faR (¢) and consequentlyk(e) by
to be static, a mobile sink continuously moves around tl’é‘?/aluating a bound fofp (ZN-ZN)
N 77y

network. The movement of the sink is governed by a two ¢|5im 3: The minimum swarm agent rat8(c) is greater

dimensional random walk in continuous time. The positiof,, or equal taR, (e)

of node j at time ¢ is denoted byx;(t),y;(t) and the

distance between two nodeésand j at time ¢ is given by R(e) > Ri(e) (20)

Aij(t) = /(wit) — 2;()* + (:(t) — y;(1))*. All nodes Proof: To prove the equation above, we first show that

and the sink are assumed to have a transmission range ofy,o mutual information betwee@™ and 2V satisfies the
Each node determines whether it is a neighbor of the sink Riationship / !

not, and also the route to the sink, based on the swarm agents R

it receives. We denote by, (t) = {j : Ay;(t) < r,j € N} PNé%fN(e) Ipy(Z)Y; Z)) > NR(e) (21)

the set of nodes that are actually neighbors of the sink a tim o

+ and byN(t) the set of nodes that perceive themselves P show E_qn. (21)_ hold_s, we note that the standard definition

be the sink’s neighbor. A node may perceive itself to be tff mutual information gives us

sink’s neighbor when it is not, or vice versa, due to use of IPN(ZJN;ZJJ»V) - H(ZJN) _ H(ZJN | ZJN) (22)

outdated swarm agent information. We also define

From Eqn. (B3) of [30]

1 if j € Ng(t 5 1 if j e Ng(t . -
Zit) = { ) otrerice A4 Z(1)= { ) atberics H(zZY | Z)) < H(Z(T)| Z;(T}) +
(15) Y k k—1 k—1 A k
as variables to indicate whether noflactually is or perceives Y H(Z;(T}) = Z;(Tf ™) | Z;(TF 1), Z;(T})) (23)
to be the sink’s neighbor or not. The difference k=2
We define the random variable

_ _ _ X =Z)(T)) - Z;(TF ). (24)
denotes the accuracy of the information about the sink’s
position available at nodg It is desired thatZ;(t) = 0 at all 1 hen from Eqgns. (B5) and (B6) of [30] we have
times for allj so that accurate forwarding information may bQ{(Zj(Tf) - Z; (Tjkfl) ‘ Zj(Tffl), Zj (Tf)) < H(Z (Tf)
used by the nodes while transferring packets to the sink. We

Ej(t) = Z;(t) = Z;(1) (16)

k—1 k
now state the minimum swarm agent rate problem in terms of —Zi(T3) IXY) (25)
Ej(t). R . N
Minimum swarm agent frequency probleMhat is the H(Z) | Z)) < H(Z;(T}) | Z;(T})+Y  H(Z;(T})—-Z;(TF ) | x*)
minimum rate at which the sink must transmit swarm agents k=2 (26)

such that Now, Zj(T]k) and Zj(Tffl) are independent of each other.

PIE;(TF)=0>1-¢, VjeN, 1<k<oo (17) Thus we also have

k i ‘ i —
yvhereTj is the instance when n(_)dﬁgenerates or receives H(ZJN) = H(Z,(T})) + ZH(Zj(Tk) _ Zj(Tf YY) (27)
its k-th packet to be sent to the sink. P



Substituting Egns. (26) and (27) in Eqn. (22) we have Proof: From the definition of mutual information
Ipy (2] 2)) = 1(Z;(T}): Z,(T})) Ip (Z,(T}); Z,(T})) == H(Z;(T})) — H(E;(T})) (37)

N A
+§ :I(Zj (T%) = Z;(TF1): y*128) SinceZ;(T}) and Z;(T}') take on a value of either 0 or 1, its
2 ! ! probability mass function can be written in terms of sopie

Now, the difference in the actual and perceived neighbatho82 andp3 as

information at timeT is —1 w.p.pl
. . N E(TH=<{ 0 wp.p2 (38)

DF = Z,(Tf) - Z,(TH) = X~ (Z(Tf) - Z,(TE ) AT
We denote the expected value &f* by d*, i.e, d* = whereP[E;(T}) =0] =p2>1—candpl+p2+p3 = 1.

E[D*]. ConsiderZ;(T}): Z;(T}) has the same distribution asThus we havepl + p3 < e. The entropy ofE;(T}) is then
Zj(Tf) - Zj(Tffl) and also satisfies Eqn. (29). Then frongiven by H(Ej(le)) = —pllogpl — p2logp2 — p3log p3
the definition of the rate distortion function which is maximized whem2 = 1 — ¢ andpl = p3 = ¢/2.
i 1 B This maximum entropy is given by
Ri(d*) = min = I(Z;(T}) — Z;(T}); x*)

PiePi(@) 1 H(E,(T})) = ~clog () ~ (1 - )log(1 =) (39)

< I(Z(TF) - Z(TF "), k=2 (30)

Now H(Z;(T})) depends on the position of nogeat t = 0
and the swarm agent rate should account for the initial iogat
fhat results in the maximum entropy. Substituting Eqn. (89)
Eqgn. (37) we then have

N N
. 1 A
In (ZY:2)) 2 Ri(d) + Y Ra(d) = NR, (N S jdk) In(Z(T) 2,0 = max H(Z,(T))
k=2 k=1 J Y5 J

Defined! = E[Z;(T})—Z;(T})]. Then substituting Eqn. (30)
in Egn. (28) and using the convexity of the rate distortio
function we have

(31) € B B
Now, if Py € Py (), we have +elog (2) + (1 —€)log(l —¢)
1 N 1 N 1 N ™
—N"dF = —NTEZ;TH) - Z2;TH) < =Y e = € To obtain H(Z;(T})) we note that ifP[Z;(T}) = 1] = §
N ;;1 N kzz:l ’ ’ N ; thenH (Z;(T1)) = —8log 6—(1—5) log(1—4). We now obtain

. . _ _ . o the probability P[Z;(T}) = 1] by obtaining P[Z;(T}) =1 |
Since R; is a non-increasing function, combining Eqns. (31Asj(0) - le = 7]'with I < r and then unconditioning
and (32) gives us on 7. Since the sink follows a two dimensional random walk

IPN(Z]N;ZAJN) > NR;(e) (33) With variancec, unconditioning the result of Appendix case

} ) 1, Eqn. (48), on packet interarrival times (which have a pdf
which proves that Eqn. (21) holds. To prove the claim we no%(ﬂ), we have

that the definition of the rate distortion function gives us

oo pr—I 2 .2
A~ 1\ - o _ 22
Ry(e) = min l[PN(Z]N;ZJN) > Ri(e) (34) P[Z;(T;) = 1| Ag;(0) =1] _/ / —e o fr(r)dadr
PnePn(e) N 02 2 2
and thUS [e%) r41 2COS_1 (%) 2
+/ / xe” o7 fr(r)dxdr
R(e) = Nlim min Ry (€) > Ri(e) (35) o Jr_i ToT

Mote thatH((Zj(le)) = —dlogd — (1 — §)log(l — 9) is
maximized atd = 0.5 and we denote the maximum value of
H((Z;(T})) for this case (i.e. wher&;(0) = 1), achieved at

I =1* (say), byH,(Z;(T})). We then have

which proves that Eqn. (20) holds and thus proves the clai

As the next step, we find a bound &3 (¢) in order to bound
R(€). Here we consider two caseld) Z;(0) = 1: nodej is
initially in the neighborhood of the sink an@) Z;(0) = 0:
nodej is not in the sink’s neighborhood initially?; (¢) is then
bounded by the maximum of the rate distortion functions for L . N
these two cases. Case 2:Denote byL’; the region in space of possible positions
Case 1:Denote byL; the region in space of possible positiond®’ nodej at time? = 0 such thatZ;(0) = 0, i.e. L} =
for nodej at time¢ = 0 such thatZ;(0) = 1, i.e. L; = {2,y : V/(@s(0) —a3)? + (ys(0) = y;)* > 7}

{z;,95 : /(@(0) — ;)% + (ys(0) — ;)2 < r}. ~ Claim 5: The rate distortion function in this cask; ¢ (e)

Claim 4: The rate distortion function in this casg; ¢ (¢) 1S bounded by

is bounded by 1 €
R > m H(Z(TH))+elog (=) +(1—€)log(1—
1,02(€) I e (Z;(T}))+e Og(z) (1—€)log(1—¢)

> (T1 € _ _
Rice)> | max  H(Z(T))+elog () +(1-¢) log(1—) 1)
(36) Proof: The proof is identical to that for Case 1. =

Ruc1(€) = H2y(2,(T})) + €log () + (1 = ) log(1 — )
(40)
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catchup with the sink. As an example, for a 512B data packet
sent at 1Mbps, the transmission and channel access time woul
typically be less than 10ms. If the average distance trdvele
towards the sink between two successive hops is considered
to be a very small 10m, the packet progresses towards the
sink at a speed of 2000m/s which is much higher than typical
maximum sink speeds of 35-45m/s (130-160km/hr or 80-
100mph). Thus, the information delivery path is rectified on
the fly and the protocol is robust.

=
o
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o
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o
»

02 The above discussion also suggests that even if swarm
: : ‘ ‘ ‘ ‘ agents are not advertised by the sink at the rate determined

00 %0 s 4 s & 10 8 w0 1 in Section V-D, packets are still delivered correctly. This
Variance of Brownian Motion ¢) observation may be exploited to reduce the frequency of

swarm agent advertisements and the associated overhead.
Fig. 4. Bound on swarm agent rate= 0.01.

F. Operation under Multiple Sinks

Using the results of the Appendix Case 2, Eqn. (50), For operation in the presence of multiple sinks, filiéower
H(Z;j(T}) | Ay;(0) = 1) with I > r in this case is given packet contains a fieldl},,.., that contains the largest timer
by ‘ value that thefollower has experienced in the path. The sink
- initializes its value to zero and at each node, the value én th
r+1 2cos™! (W) recejvedfollower is compared with the node’s own timer. The
fefger b (hl4fd values is stamped in tfelower sent out
(42) by the node. With multiple sinks, each sink asynchronously
For this case, the maximuii (Z;(7})) is achieved wheh— sends out its swarm agents. Each node compared;fhe

r and we denote this entropy WEQ(ZJ'(T}))- We then have Value for the swarm agents of each sink that it receives and
selects the sink with the smalle&t, .. so as to pick the

Ry ca(e) > ng(Zj(le)) + elog (g) + (1 —¢)log(l —€) path with the highest residual energy. In addition, gradien
(43) for other sinks may be stored as backup paths in case the
The lower bound on the swarm agent rate is then neighbor with the max-min path becomes unavailable. Rinall
to provide resilience against sinks that may leave the mitwo
R(e) > Ri(e) > max{Ri,01(¢), Ric2(¢))}  (44) o Jose connectivity, each node may maintain a keep-alive
Figure 4 compares the bound on the swarm agen'[ ratetiﬁger for each sink. If a swarm agent is not received from
obtained from Eqn. (44) for different variances of the Browa Sink before its keep-alive timer expires, the sink may be
nian motion and packet arrival rates. The packet interarrivconsidered unavailable and the best route among the rergaini
time is assumed to follow an exponential distribution. sinks is chosen.

Pz =11 8,0 -1 [ [

r TOT

E. Robustness of SIMPLE G. SIMPLE’s Overhead Message Complexity

We now consider the forwarding of data in scenarios where Th€ algorithms presented in [10] are mainly designed for
the gradient at a node is outdated due to the movementSgEnarios with static sinks where data could be exchanged

the sink. For this discussion, we assume that the sink moyidween any arbitrary pair of nodes. These algorithms“ syn-
at speedv and sends out swarm agents at rateConsider chronize the residual energy of nodes within the same “local

a nodei whose max-min path gradient is out of date angroadcast area”._From an individual node’s point of .viev'ps th
still leads to the sink's old positiond. At time ¢ node i makes the algorithm’s message overhead complexity .(IEB. th
sends a packet to the sink, which has now moved to positBHMPer of messages transmitted by a node for an instance
B. If the gradients of the nodes on the pathAohave not Of route setup)O(n) , wheren > 1 is the number of nodes
been updated yet, the packet moves towasdsnd in the within the “local l_Jroadcast areq”. Ip addltlon,_ it is hard to
worst case, reached where it is unable to reach the sink 2dapt these algorithms for mobile sink scenarios. The TTDD
The gradient at4 is updated after at most a period eque@rotocol in. [14] is even more complicated since _each podénti
to the interval between swarm agent advertisemefifs and source builds a grid structure of |t§ own spanning the whole
the MAC layer delays and maximum timer value associat@§tWork. The message complexity is actudllyN), whereN

with the follower on the max-min path to the sink. Once thdS e number of sources in the network. On the other hand,
gradient is updated at, the packet is now forwarded towardsS/MPLE has an overhead message complexity) since each
the current location. This precess may be repeated a numBgfeé may forward a swarm agent from the sink only once.
of times at different locations before the packet finallyctess )

the destination. However, as long as the distance travdrgedH- Miscellaneous Issues

the sink between two updates is smaller than the distante thal) Heterogeneity of Node BatteriedNode batteries are
the packet traverses in this interval, the packet is guaeeahto allowed to be heterogeneous in terms of their capacities
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and energy consumption rates. In SIMPLE a node’s battelry our simulations, MREP performs broadcast searching for
capacity is normalized in terms of the maximum number @butes to each node from a moving sink. The percentage
messages it can forward. thresholdsperc for each route discovery process are set to

2) Detecting Node FailureswWhen node forwards a mes- 20%, 10% and 0%, respectively. We tested SIMPLE with
sage to the sink via its downstream neighboit can detect and without swarm agent suppression, denoted by SIMPLE-S
node j's failure by listening for the expected transmissioand SIMPLE in the figures, respectively. All SIMPLE-S tests
from j. If no transmission is detected from nogewithin a use the same parameter set while calculating re-advegisem
reasonable amount of time, nodean assume nodgis dead probability according to Algorithm 1 withh = G = 0.4,
and retransmit the message via another downstream neighbot 0.2 and~ = 0.1.

3) Static Sink: When a sink stays static, it may still In this set of experiments, 200 nodes were uniformly dis-
advertise the swarm agent after it receives a given amourbuted in al00 x 100m? network area. Each node’s transmis-
of data in order to avoid the use of static routes. sion range was set to eithers35t0 simulate a dense network

4) Energy Saving by Sleepin@IMPLE allows nodes to go (high connectivity) or 25 to simulate a sparse network (low
into the sleep mode. A node can start or stop advertising tbennectivity). The precursor and follower packets were 32
swarm agent to switch between sleep and awake states. bytes each and the report message was 320 bytes. Each node

had 500 units of initial energy.
VI. SIMULATION RESULTS 1) Network Lifetime vs. Sink Speeth Figures 5 and 8

In this section we present the simulation results to verifyye compare the lifetime of the four protocols for variousksin
SIMPLE’s performance and evaluate the effect of various epPpeeds in dense and sparse networks, respectively. Fa& thes
vironmental factors. We used a custom built simulator, temit results, data or reports are generated at each node with rate
in MATLAB to generate the results. We compare SIMPLEA = 0.3 messages per second and the sink’s speed is varied
with both the minimum hop count routing algorithm ([4], [5])ffom 2m/s to 10m/s. The swarm agent advertisement rates
and the MREP protocol [15] and all three protocols wer&ere kept at 0.2, 0.4, 0.6, 0.8 and 1.0 agents per second for
implemented in our simulator. The route discovery proces§eeds of 2, 4, 6, 8 and 10m/s, respectively. These values are
for the minimum hop routing is similar to that for SIMPLEgreater than the corresponding lower bounds obtained from
except for the fact that only one packet is sent and no timéhg¢ analysis in Section V-D for = 0.01. As the sink’s speed
are required. The frequency of routing updates was kept thgreases, SIMPLE and SIMPLE-S consume more energy with
same in all the protocols. frequent path updates. However, the lifetime increaseaussc

In the simulations, the sink's movement follows a randorthe energy depletion rates of nodes is more balanced ati@ss t
walk and data packets or messages are generated at each RgBgork. The sink’s mobility actually helps to avoid draigi
according to either a Poisson process or at constant ifservéhe energy of the same set of nodes. This is also verified by
For each setting, the simulation was repeated with 15 randdpg results of MREP and min-hop routing. The reason why
seeds and the results were averaged. The 95% confideBdPLE and SIMPLE-S outperform the other two protocols
interval in the worst case was found to be approximatel§ that they not only try to minimize each data report’s egerg
20% of the mean. In the simulations for SIMPLE, the timegonsumption, they also take energy balance into considarat
values for thefollower were chosen in the rangg0, 100jms. We also note that the swarm agent suppression technique
Following the 1st order radio model of [31], the energymproves SIMPLE’s performance.
consumption costs for transmissiofi, (k, d)) and reception ~ 2) Network Lifetime vs. Report Intensitfigures 6 and 9
(Er, (k,d)) of a k-bit message transmitted over a distaace compares the performance of the four protocols when mes-
is assumed to be: sages are generated at the nodes at different rates aggtodin
. a Poisson distribution with the sink speed kept at 2m/s. Bwar
Br,(k.d) = kBeec + eamphd agents were generated at a rate of 0.5 agents per second for
Eg,(k,d) = kFEec (45) these simulations. When the reporting intensity is moderate

where E.... — 62.5/bit is the energy dissipated to run theSIMPLE and SIMPLE-S perform much better than MREP and

transmitter or receiver circuitry and,., = 100p.J/bit/m? is min—hqp rout'ing. Their advantage tapers off slightly whiea t
for the transmitter amplifier. For our results, we normaltize report intensity becomes very high. Figures 7 and 10 compare

energy consumed for receiving a packet to 1. The ratio of tﬁée four protocols when messages are generated at the nodes

transmission and reception energy given by the equationeab t a constant rate. Th? re‘?ﬁltf g:('\aﬂ\l:/)(la_ré/,gmllar to thosd;mr tf't
is then taken to obtain the normalized transmission energy.d oISson case suggesting tha S performance benetits

0 not depend on the underlying traffic model.

A. Comparison with MREP and Minimum Hop Routing Algo-
rithms B. Effect of Environmental Factors

We first compare SIMPLE with the MREP [15] and min- In this section we observe the effect of various environ-
imum hop count routing algorithms. MREP was chosen beiental factors on SIMPLE'’s energy consumption and lifetime
cause it was shown to perform better than existing protocatarting with the sink’s speed. In this section’s simulasip
including those in [22] and tries to address exactly the samedes are uniformly distributed in 80 x 100m? network
max-min residual energy problem as defined in Section lll-Brea. The transmission range is 25m and nodes’ initial gnerg
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is 500 units. Data reports are generated at each node with rat3) Effect of Swarm Agent Suppressidn:this section, we
investigate the effect of the swarm agent suppression igeén

0.05 messages per second.

1) Effect of Sink Speed and Length of Swarm AgEigure
11 shows the effect of the sink’s speed and the ratio of d
and swarm agent size on the energy consumption induced
the swarm agent (without suppression) for a network of 2
nodes. Swarm agents were generated for these results at ataf,
of 0.1v wherew is the sink speed. These values were greater
than the minimum swarm agent rates obtained from Sectig
V-D for ¢ = 0.01. It can be seen that for different length

ratios, energy consumption induced

increases slightly as the sink moves faster. This is in adnc
with the results in Figures 5 and 8. When the swarm agent s
much smaller than the data, the energy consumption induc[ﬁg
by the swarm agent can be as low as 1%-5%.

by the swarm agent o

ork’s lifetime.

Figure 13 presents the network’s lifetime (y axis) for vasgo

arm agent suppression degrees (x axis). The degree of

suppression is represented by the percentage of node energy
t is consumed by swarm agents. To show the trend, a fitted

urve drawn using 10th degree exponential curve fitting with

proposed in Section IV-B on the protocol’s performance. For

these results, we consider a network of 200 nodes, swarm
ent rate of 0.5 agents per second and increase the ratio of

(% swarm agent and data size to 2:5 to enable a more effective
servation of the tradeoff between protocol overhead hed t

lifetimes. Going left to right, the two extremes in the figure

2) Effect of Node Density:ln Figure 12 we plot the are elaborated as follows:

swarm agent’'s (without suppression) energy consumption as
a function of the node density for data and swarm agent size
ratios of 10:1 and 50:1 with swarm agents generated at a rate
of 0.5 agents per second. When the swarm agent’s lengths is
small compared to the data, the energy consumption can drop
to as low as 5% when the node density reaches 0.08 nades/
When node density increases, the burden of relaying data
becomes less on each node. According to the constrained
advertisement model in Section IV-B, nodes relaying leta da
will have a lower advertisement probabilipy Thus, energy
consumption induced by the swarm agent also decreases. Thie
indirectly verifies that SIMPLE’s probability model guataas

the protocol’s scalability with the node density.

No suppression, dynamic:Protocols in this category
try to continuously update the whole network with the
sink’'s latest location. The max-min path chosen will
thus be optimal and the network’s residual energy is
optimally balanced, which prolongs the network’s life-
time. Although [2] is not energy aware, it does belong
to this category as does SIMPLE without suppression.
However, even though protocols in this category can find
the energy-wise optimal path, the significant overhead
decreases the network’s lifetime.

Full suppression, static: Paths to the sink are updated
as infrequently as possible. Most nodes are unaware of
the sink’s movement and information is delivered through
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stale and usually sub-optimal and longer routes. Howevenunteract node failures. Figure 16 shows that with only two
energy is conserved in the sense that protocol overheadbé&ckup paths the protocol’s resilience against node t8lis
trivial compared to the previous case. In addition, energyeatly improved.
of nodes on the static paths may get depleted very quickly,
which shortens the network lifetime. VIl CONCLUSIONS
This paper presents an energy aware data acquisition pro-
) ) ] ] o tocol for networks with mobile sinks. The protocol design is
_In this section we investigate the energy depletion in multhased on techniques of swarm intelligence, energy-wise max
sink scenarios. When multiple sinks are present in a sma{{y path and a probabilistic model for dynamically updating
scale network, swarm agents from all sinks can traverse & max-min paths. The swarm intelligence approach maxi-
whole network so that nodes can find the closest sink to deliygjzes individual node’s lifetime since it greatly simplifiéhe
their information. A large scale network can be subdivideghge's operations, keeping requirements in line with acipi
into small scale ones and sinks, with their associated swagghsor or node’s limited computational capabilities, rietstd
agents, will be confined in their respective subareas. Singgrage and limited energy. The protocol tries to maximiee t
the subareas in a large scale network are equivalent to smaltwork's lifetime by dynamically choosing energy effidien
scale networks, simulations in this section focus on theggne paths and balancing the residual energy at each node. SIMPLE

depletion in a small scale network with multiple sinks.  gcales with multiple sinks and is robust against node fediur
In this simulation, 400 nodes, with 25m as their transmissio

range and 500 units of initial energy, are present in a nétwor
of 200 x 200m? area. The speed of the sinks is kept at VIII. A PPENDIX
10m/s, data is generated at each node with kate0.05 and cgge 1:Whenz;(0),y;(0) € L;, Z;(T}) = 1 andZ;(0) = 1

. . * Y 1 ] 1
the swarm agent (without suppression) rate was kept at @ sink is initially within a circular region of radiuscentered
agents per second. Figure 14 shows that for a given reportig;: (0),y,(0). Then the probability?[Z;(T}) = 1] depends
intensity, as the number of sinks increases from 1 to 4, 18§ the likelihood that the sink is still within the circular
time it takes for the average residual energy at a node fgyion at timet = T}. This probability can be evaluated
drop from 500 to 150 becomes longer instead of shorter. Th§ integrating the pdf of the position of the sink over the
reason is that although multiple sinks introduce greater®n circular region. Figure 17 shows such a scenario where node
consumption due to more swarm agents, it also helps decreggenosition is marked by A and the sink’s initial position is
the average hop count between nodes and their corresponGifigked by B. The probability that the sink stays in nge
sinks, as shown in Figure 15. The energy saved by traversiigighborhood can be obtained by first integrating the pdf of
a smaller number of hops outweighs the increased enegg sink's motion over the circle of radius— I centered at

C. Multi-sink Scenarios

consumption due to more swarm agents. B and then over arcs subtending an angl@of- 20 at B as
the radius sweeps over the range- | < = < r + [. Using
D. Protocol Resilience Against Node Failures elementary trigonometry
In this section we verify SIMPLE’s resilience against node I L
failures. Initially, 200 nodes, with initial energy of 50Mits  =m—-f = m—cos (211, ) (46)

and transmission range 25m, are distributed iM@&x 100m?

area. One mobile sink is present in the network, with a speE@r two dimensional Brownian motion with variance the
of 10m/s and the swarm agent (without suppression) ratedigtancez and angles of the sink at timer is with respect
0.5 agents per second. Report events are generated at é@dis origin at time O is given by

node with a rate 0f.05 messages per second. In addition to

T L2
the max-min path, nodes also record multiple backup paths @z, ) = rart 0<¢p<2m, 0<zx<o0 (47)
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PIZ;(T}) = 1] Ay(0) =1, T;:T]:/O /0

r41 27w —260 T 2
+ — e ardfdx
r—1 Jo QT

Case 2:Whenz;(0),y;(0) € L}, Z;(T}) = 1 and Z;(0) =

0, the sink is initially outside the circular region of radius
centered at nodeg’s location but moves inside the circle at
time T}. Figure 18 shows such a scenario using the sa
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Multiple paths improve the protocol’'s
resilience against node failures

arcs subtending an ang®® as x varies froml — r to [ + r.
The anglef is given by

2 g2 2
f = cos! <r —;lla: e ) (49)

and thus the probability that the sink, starting at a distanfc
I, 1> r, from nodej att = 0 becomes its neighbor at= le

is given by
26 2
/ &0 d
0 TaT

(50)

r+l
PIZ;(T})=1|Ag(0) =1, T} =7] = /l

—r
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