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Abstract—Intelligent Transportation Systems (ITS) optimize
road network capacity, monitor traffic flow, and enhance overall
road safety by analyzing real-time trajectory data. However,
the utilization of such data raises privacy concerns, enabling
potential attackers to gain insights into users’ real-time activities
and personal information. Furthermore, existing privacy preser-
vation methods have multiple limitations, particularly in low-
traffic density environments. To address these issues, this paper
presents a novel approach for generating realistic trajectories
that evade tracking. Existing trajectory generation mechanisms
are coarse-grained and cannot adequately preserve the quality
of location-based services while safeguarding individual privacy.
To overcome this limitation, we first use differential privacy to
determine a location near the actual destination and employ
a path search algorithm to extract relevant road information.
Subsequently, by leveraging our hybrid reinforcement learning
model, we generate trajectories leading to this fictitious point. The
comparison conducted on real-world maps with other trajectory
generation methods reveals its superior ability to preserve spatio-
temporal features. Finally, we propose two approaches that
use the generated trajectories to protect privacy, ensuring both
individual privacy protection and the utility of data.

Index Terms—VANETs, reinforcement learning, differential
privacy

I. INTRODUCTION

With the development of networks and sensors, the Internet
of Things (IoT) [1] has gained significant momentum in
various industries. In particular, Vehicular Ad-hoc Networks
(VANETs) have enabled Intelligent Transportation Systems
(ITS) to enhance traffic efficiency and road traffic planning.
In such systems, vehicles are equipped with GPS receivers,
sensors, and communication devices, which can collect and
transmit real-time traffic information.

Figure 1 shows the four main players in VANETs: on-board
units (OBUs), roadside units (RSUs), trusted authority (TA),
and service providers (SPs). OBUs are installed in vehicles
to record travel trajectories and share real-time data with
others for safety applications. OBUs generally broadcast safety
messages [2] that contain their trajectory data to neighboring
OBUs and RSUs at regular intervals. RSUs, positioned along
the roadside, serve as access points that verify the source
and authenticity of data before transmitting it to the TA.

Fig. 1: The structure of VANETs.

Meanwhile, OBUs can also access traffic data through RSUs.
The TA serves as the system manager, playing a pivotal role
in ensuring the security of the ITS and acting as the backbone
for establishing and maintaining trust across the network.
Additionally, with powerful computing and communication
ability, the TA integrates and analyses a large volume of real-
time data which leads to the establishment of systems such
as the Expressway Monitoring and Advisory System, Parking
Guidance System, and Green Link Determining System [3].
These systems significantly improve traffic management and
support informed decision-making. Furthermore, the TA may
also enable the release of this data to other location-based
SPs to enhance their services, such as offering real-time
personalized route recommendations.

Privacy loss is a critical issue in VANETs. For instance,
users need to disclose their current location to service
providers to explore nearby parking options effectively. Simi-
larly, for seamless navigation through intersections, users may
have to broadcast real-time speed and location information to
synchronize speeds with other vehicles and determine whether
lane changes are necessary in advance. In both cases, without
privacy preservation techniques, an adversary may listen on to
the messages transmitted by a car and track the route followed
by the car. In order to tackle this issue, extensive research
has been conducted on exploring obfuscation and anonymity
methods. Arif et al. [4] suggest adding noise along with real



ones by generating fake locations. Although obfuscation-based
methods make it difficult to track vehicles by importing noise
into real data, such fake information decreases the quality
of the location-based services. The anonymity-based methods
have received greater attention in the research community
compared to obfuscation. References [5]–[7] propose the use
of fictive identifiers, named pseudonyms, by vehicles when
broadcasting safety messages. Those pseudonyms should be
changed when vehicles enter mix-zones [8]. Furthermore,
the authors of [9], [10] propose that vehicles can actively
change their pseudonyms when they detect multiple vehicles
around them. These methods assume that the attacker cannot
distinguish between adjacent vehicles that change pseudonyms
simultaneously within a small range. Nevertheless, they are not
universally applicable to all scenarios. In low-density traffic
environments, pseudonym-changing methods show unsatisfac-
tory results due to the lack of sufficient neighbors to provide
chances for pseudonym changes. The privacy level is close to
0 when the arrival rate of vehicles is less than 1 [11].

In order to address this challenge, this paper proposes the
utilization of a trajectory generation model to produce real-
istic trajectories, thereby perplexing potential adversaries. To
achieve this objective, we outline the following requirements
for such privacy-preserving strategies. Firstly, it is essential to
ensure that the generated trajectories keep the characteristics
and utility of the overall dataset. Secondly, the model should
be designed to generate appropriate trajectories tailored to
different environmental conditions. Additionally, this method
should balance privacy and service quality according to pri-
vacy requirements. Finally, in order to confuse attackers, the
generated trajectories need to ensure sufficient accuracy and
motion characteristics.

Existing trajectory generation methods include Markov
Chain [12], Recurrent Neural Networks (RNNs) [13], [14],
Long Short-Term Memory (LSTMs) [15], [16] and Gen-
erative Adversarial Networks (GANs) [17]. However, these
models fail to fully meet the aforementioned requirements.
The Markov Chains are trained and tested within the same
scenario, thus requiring retraining when the map changes.
Trajectories generated by RNNs, LSTMs, and GANs exhibit
lower accuracy, and these methods are typically employed for
generating large-scale trajectory datasets and are less suited
for producing trajectories with specific start or endpoints.
Therefore, this paper explores a different approach and pro-
poses a trajectory generation model based on reinforcement
learning and differential privacy. When protecting privacy,
it automatically sets a false destination based on the preset
differential privacy level by using Geo-indistinguishability.
Then, with an agent trained by a hybrid reinforcement learning
framework, it generates a plausible trajectory from the current
location to this destination. Finally, users release this false
trajectory with privacy preservation techniques. This method
enables vehicles to independently protect their privacy in low-
traffic density environments, even without the involvement of
other vehicles. It also ensures that the original real data can
only be accessed by local devices and the TA, thereby avoiding

the risk of leakage and eavesdropping.
The paper makes the following key contributions:
• We develop a new trajectory generation framework that

provides differential privacy and the ability to choose
the destination of the trajectory through the privacy
requirement.

• We develop a customized hybrid reinforcement learning
model, that uses map information and is able to generate
trajectories to any valid position with over 90% success
rate in difficult and complex environments. Compared
to existing methods, the trajectories generated by this
model exhibit higher precision while preserving motion
characteristics.

• We propose two privacy protection methods that use
the generated trajectories: the substitution method and
the pseudonym-changing method. The former allows for
arbitrary destination changes as needed, while the latter
enhances privacy protection coverage by 100% compared
to traditional pseudonym modification methods.

The structure of the rest of this paper is outlined as follows.
The next section discusses some related privacy protection
strategies and trajectory generation methods. In Section III,
we propose our novel reinforcement learning based trajectory
generation framework. The validation tests and the comparison
with other methods of this framework are presented in Section
IV. Additionally, the methods for preserving privacy based on
trajectory generation, as well as the experimental exploration
of these approaches, are discussed in Section V. Finally, we
conclude this paper and present possible future works in
Section VI.

II. RELATED WORK

Various methods for protecting the privacy of vehicle tra-
jectories have been proposed in literature. Encryption [18]
effectively deals with external attacks but may not address
internal eavesdropping. Privacy leaks can occur even from
trusted entities and service providers. This paper discusses
user-centric privacy protection methods and categorizes effec-
tive strategies into two types: obfuscation by adding noise and
anonymity by changing pseudonyms.

A. Obfuscation Strategy

The addition of noise to the real dataset may be used
to protect the privacy of users. Also, there are different
obfuscation methods for preserving trajectory privacy.

(1) Noisy Location. Ardagna et al. [19] proposed that
vehicles can add noise to their location data when broadcasting
safety messages. This method allows vehicles to indicate a
location several dozen meters away from their actual position.
Additionally, Arif et al. [4] suggested that vehicles can gen-
erate dummy locations, making it difficult for adversaries to
identify the real ones, as shown in Fig. 2. We categorize such
simple noise addition methods as the “Noisy Location”.

(2) Differential Privacy (DP) [20]. Differential privacy is a
concept introduced to protect individual privacy and reduce the
impact of noise addition on a dataset. This approach controls



Fig. 2: Dummy locations of vehicles.

the type and magnitude of noise by managing a privacy budget.
By doing so, it ensures that the probability distributions of
query results derived from two neighboring datasets remain
closely aligned. Feng et al. [21] explored the trade-off between
the level of privacy and the quality of the location-based
service.

B. Anonymity Strategy

In contrast to the obfuscation strategy, anonymity methods
employ variable pseudonyms to conceal users’ true identities,
thereby avoiding location data distortion. During vehicular
communication, maintaining a consistent identity makes users
vulnerable to quick identification by attackers. Conversely,
when the pseudonym changes, attackers need to make infer-
ences based on the surrounding context, introducing greater
uncertainty. Figure 3 shows vehicles B and C have changed
their pseudonyms to D and E after ∆t seconds. We have
classified the conditions for triggering pseudonym changes
into the following three categories.

Fig. 3: Pseudonym-changing scenario.

(1) Time-based strategy: Time-based methods require ve-
hicles to change pseudonyms according to a pre-set sched-
ule. The radio silence technique is used before using new
pseudonyms [22]. Based on this concept, Santos et al. [23]
proposed that vehicles should change pseudonyms when there
are malicious vehicles around. Wiedersheim et al. [24] sug-
gested that the time duration of wireless silence should be
randomly set, which can reduce the tracking success rate of
attackers.

(2) Zone-based strategy: Different from time-based strate-
gies, zone-based methods employ RSUs to predefine silence
zones along the roads [8]. When vehicles enter these ar-
eas, they halt external communications and change their
pseudonyms before leaving the zone. These zones are often
strategically placed in high-density vehicle areas, such as inter-
sections, parking lots, and traffic lights [25], [26]. Additionally,
various studies [27], [28] have explored the optimal placement
of these silence zones.

(3)Context-based strategy: In addition to the above two
methods, context-based pseudonym modification strategies
have also gained considerable attention due to their superior

efficiency [9], [29]. Emara et al. [30] proposed that when
a vehicle detects at least k vehicles around it, it will au-
tomatically create a movable silence zone with itself at the
center and a radius of R meters. All vehicles within this
zone will simultaneously modify their pseudonyms. Mdee
et al. [31] provided the fundamentals of the encryption and
authentication process, while Zhang et al. [32] enhanced this
strategy by leveraging the inherent randomness during vehicle
movement.

Regardless of the specific anonymous method used, all
strategies rely on the presence of a sufficient number of
other vehicles in the vicinity and collaboratively modify
pseudonyms. This collective effort is essential to thwart at-
tackers from discovering the correlation between old and
new pseudonyms. Meanwhile, the obfuscation strategies rely
on randomly generated dummy locations lacking inherent
movement patterns. The dummy locations are sometimes po-
sitioned off legal roadways, making them vulnerable to easy
detection by attackers and leading to a decline in privacy
levels. Additionally, as these dummy locations are distributed
around real positions, the absence of other vehicles nearby
can still expose one’s actual trajectory. Therefore, protecting
user privacy in low-density traffic scenarios is an open and
formidable challenge.

C. Trajectory generation

To address the low-density issues, a direct solution is to
generate a set of sufficiently realistic trajectories. Most existing
trajectory generation models, such as Markov chains [33],
[34], are commonly employed for trajectory prediction. These
models represent the map in a grid format, with each grid
point corresponding to a state. By modeling the state transi-
tion function of the current map, they can generate possible
trajectory predictions. In a related approach, Kong et al. [35]
also divide the map into grids, but they introduce a traffic flux-
based trajectory generation framework and utilize a simulation
tool for trajectory generation.

Moreover, there are machine-learning-based trajectory gen-
eration methods [36]. These methods learn from existing
trajectory datasets and achieve high accuracy predictions.
Convolutional Neural Networks (CNNs) [37], [38] can not
only extract road representation but also integrate trajectory
patterns when getting high accuracy predictions. Additionally,
Recurrent Neural Networks (RNNs) [13], [14] and Long Short-
Term Memory networks (LSTMs) [15], [16] are commonly
proposed as generators for trajectory data due to their ability
to preserve mobility features.

In addition, GANs [39] as powerful generative models
have also been utilized for generating trajectories. Kulkarni
et al. [40] compared the performance of GANs and RNN
models for generating traces. Jinmeng et al. [41] proposed
an LSTM-TrajGAN, and replaced the backbone of the GAN
with LSTM cells. Xingrui et al. [42] introduced a two-stage
GAN (TSG) framework to improve the trajectory quality.
They first generate the trajectory in grid form and then refine
it inside each grid with map information. Moreover, Zhang



[43] et al. proposed the DP-TrajGAN, which initializes the
privacy budget before generating the synthetic trajectory to
preserve the trajectory privacy. Gang et al. [44] introduce
a TrajSGAN which utilizes an attention-based generator to
generate trajectories and employs a CNN-based discriminator
in the GAN.

However, the above-mentioned methods have several draw-
backs. Firstly, using discrete grid-based representations for
continuous spatial states leads to a significant loss of accuracy
in generated trajectories and also eliminates the motion char-
acteristics of trajectories, making them easily identifiable by
attackers. Secondly, when the scenario changes, these methods
require the collection of new data, map modifications, and
retraining, increasing the complexity of usage. Additionally,
trajectory generation based on GAN models results in random
distributions that do not align with the user’s current location,
thus rendering them unsuitable for protecting user privacy.

To address the issues present in traditional privacy protec-
tion methods and trajectory generation approaches, this paper
proposes a novel solution. As illustrated in Figure 4, when a
vehicle implements the proposed privacy protection strategy,
it first determines a fictitious destination based on the current
location and privacy settings. Subsequently, the A* algorithm
is employed to plan and extract road information on the
map. Then, utilizing an agent trained through reinforcement
learning, high-quality trajectories are generated in continu-
ous space. Finally, based on the generated trajectories, we
introduce two distinct privacy protection strategies: trajectory
substitution and pseudonym-changing. The details of these
steps are provided in Section III and Subsection III.A, III.B,
and III.C correspond to steps (2), (3), and (4) of Figure 4,
respectively.

III. TRAJECTORY GENERATION FRAMEWORK

Assume that the vehicle with pseudonym i is driving in
a low-density traffic environment and has access to the map
of the area. It broadcasts safety messages to other members
of VANETs in real time until it reaches its destination. The
safety messages include time, location, and pseudonymous
information. Unfortunately, a global attacker can easily obtain
complete trajectory information about vehicle i, represented as
Trai = [p0, p1, p2, ..., pT ], where pT = (xT , yT ). This trajec-
tory indicates that the vehicle arrives at the destination with
coordinates (xT , yT ) at time T . Furthermore, the broadcasting
period of vehicles, using real-world taxi trajectory data as an
example [45], has already reached 15 seconds, and it may
become even shorter in the future.

A. The Privacy Settings of Destination

In order to prevent attackers from knowing the real position
of vehicles, obfuscation methods add statistical noise to each
position. Among these methods, those based on local differ-
ential privacy (LDP) have garnered significant attention. In
the local setting, a random perturbation algorithm is deployed
in each participant and the noise addition is independently
performed to satisfy DP. It is formally defined as:

Definition 1 (Local Differential Privacy): Given input pair
x, x′ ∈ D, a randomized algorithm A(·) satisfies (ϵ, δ)-LDP,
for all O ⊆ Range(A), if and only if

Pr {A (x) ∈ O} ≤ exp(ϵ)× Pr {A (x′) ∈ O}+ δ, (1)

where ϵ ≥ 0 is called the privacy budget, and 0 ≤ δ ≤ 1.
Range(A) is the set of all possible outputs of algorithm A.
The randomized algorithm satisfies strict ϵ-LDP if δ = 0. LDP
ensures that given the output of the privacy algorithm, it is
highly challenging to infer the specific input data point it cor-
responds to, providing plausible deniability for any two values.
Specifically, the Laplace mechanism is most commonly used
in location data to provide LDP with geo-indistinguishability
[46].

Definition 2 (Geo-Indistinguishability): A vehicle in
location pt enjoying ϵr-differential privacy is ϵ-geo-
indistinguishable within radius r. It can be expressed as:

Pr {A (pt) ∈ O}
Pr {A (p′t) ∈ O}

≤ eϵd(pt,p
′
t) ≤ eϵr, (2)

where d(·, ·) is the Euclidean metric. In essence, this definition
ensures that the vehicle’s geographical location information is
safeguarded within the range d(pt, p

′
t) ≤ r with a privacy

level of ϵr. To achieve ϵr-differential privacy, the vehicle
reports a random point p′t, which deviates from the actual
location pt by a multiplicative factor of at most e−ϵd(pt,p

′
t).

To satisfy this requirement, the probability of generating a
point should decrease exponentially as the distance from the
true location pt increases. The Laplace distribution with the
following probability density function (PDF) precisely fulfills
this condition:

Dϵ(p) =
ϵ

2
e−ϵ|pt−p|. (3)

Since the vehicles are positioned in a continuous two-
dimensional plane, we employ polar coordinates to transform
the noise into location data. The resulting PDF of the polar
Laplacian noise is as follows:

Dϵ(pt)(p
′
t) =

ϵ2

2π
e−ϵd(pt,p

′
t). (4)

Because the location p can be replaced by (r, θ) in the polar
coordinate system, the PDF becomes:

Dϵ(r, θ) =
ϵ2

2π
re−ϵr, (5)

where ϵ2

2π is the normalization factor. Since the two random
variables, r and θ, are independent, we can generate random
noise, rϵ and θϵ, from the polar Laplacian noise distribution
by:

rϵ = −1

ϵ
(W−1(

u− 1

e
) + 1), θ ∼ U [0, 2π], (6)

where W−1 is the Lambert W function, and u is uniformly
distributed between [0, 1]. Finally, the randomized algorithm
gives the output: {

p′x = px + rϵ · cos(θ)
p′y = py + rϵ · sin(θ)

. (7)



Fig. 4: The structure of our privacy protection method.

Adding noise to position data is a practical approach to
protect individual location information. Nevertheless, in con-
tinuous trajectory data, attackers can execute denoising tech-
niques using data from adjacent time points, thereby deducing
precise positions. Moreover, the stochastic noise may cause the
generated locations to deviate significantly from the valid road
areas or exhibit considerable disparities of several hundred
meters between consecutive time points, rendering them eas-
ily detectable by adversaries. Consequently, when addressing
privacy protection for trajectory data, careful consideration of
the overall trajectory’s integrity is of paramount importance.

A viable solution involves the direct generation of a false
trajectory that originates from the current location but deviates
from the actual destination. This strategy confounds attackers
and redirects them elsewhere. To ensure that the false destina-
tion appears plausible, Equation (7) can be adapted to facilitate
the random selection of a point p′ from the set of legitimate
positions as:

S = {p′|||p′ − p|| = rϵ}, (8)

p′ = S[i], i ∼ U [1, |S|], (9)

where S denotes the set of all valid positions that are at a
distance of rϵ from the actual destination p, and p′ is one
of these positions. By adopting this methodology, the privacy
of users is effectively protected, while also providing the
advantage of adjusting privacy budgets, thereby mitigating any
potential impact on the trajectory dataset.

B. Path Extraction from Road Map

Following the determination of the false destination, a path-
planning algorithm is required to extract a road segment from
the traffic map database that optimizes navigation from the
current location to the specified endpoint. By integrating both
the depth-first search and Dijkstra’s algorithm concepts, the A*
algorithm [47] demonstrates superior efficiency and optimality
in finding the shortest path from a graph. It employs a heuristic
function denoted as h(k) that provides an estimate of the cost
from any given node to the destination or target node. In our
model, we calculate it as:

h(k) = d1(k) + d2(k), (10)

Algorithm 1 Privacy Setting and Path Extraction
Input: Map M; Current position p0; Destination pt; Privacy

Budget ϵr
Output: The road map Mϵ to a fake destination.
1: Sample rϵ with ϵ-geo-indistinguishability:

rϵ = − 1
ϵ (W−1(

u−1
e ) + 1).

2: Randomly select a fake endpoint p′t with a distance
deviation of rϵ from point pt.

3: Binarize the map and initialize the heuristic value matrix
with:

h(k) = d1(k) + d2(k).
4: closedList = empty set; openList = set containing p0.
5: while p′t not in closedList do
6: currentNode = node in openList with the lowest h.
7: Remove currentNode from openList.
8: Add currentNode to closedList.
9: for each neighborNode of currentNode do

10: if neighborNode not in closedList then
11: if neighborNode not in openList then
12: Add neighborNode to openList
13: Set currentNode as neighborNode’s parent

node
14: Backtrack the parent node of p′t, and find the path.
15: Transfer the path into a map Mϵ.
16: return Mϵ.

where d1(k) is the distance from location k to the start and
d2(k) is the distance to the destination.

Figure 5 presents an example of how to extract the path.
First, we set the inaccessible locations on the map in the
matrices d1 and d2 to infinity. Then, based on the positions
of the starting point and the destination, we obtain complete
matrices d1 and d2. After merging them, we obtain matrix h.
When searching for the shortest path, we start from the starting
point and iteratively choose the adjacent point with the min-
imum h value as the next step until reaching the destination.
Finally, based on the recorded parent-child relationships during
this search process, we extract the shortest path, as illustrated
by the yellow portion in the diagram. Algorithm 1 shows the
details of the privacy setting and path extraction process.



Fig. 5: An example of the shortest path extraction using the A* algorithm.

C. Reinforcement Learning for Trajectory Generation

Reinforcement Learning (RL) [48] is a dynamic learning
paradigm designed to enable intelligent agents to make se-
quential decisions in an environment with the objective of
maximizing cumulative rewards. It finds wide applications in
domains such as robotics, autonomous control, and many other
different fields [49]. The fundamental structure of an RL model
is illustrated in Figure 6, where the agent interacts with the
environment and has the mathematical framework of Markov
Decision Processes (MDPs).

Fig. 6: The structure of reinforcement learning model.

The RL process begins with the agent observing the current
state St of the environment. Based on this observation Ot,
the agent selects an action at according to its current policy.
The action is then executed in the environment, resulting in
a transition to a new state St+1, and the agent receives a
reward Rt based on the outcome of the action. The agent’s
goal is to learn an optimal policy that maximizes the expected
cumulative reward over time.

There are two primary types of algorithms used to train
RL agents: value-based and policy-based methods. Value-
based RL algorithms [50] aim to learn the optimal value
function, typically denoted as Q(s, a), which represents the
expected cumulative reward when taking action a in state s
and following a specific policy thereafter. These algorithms
iteratively update Q-values based on observed rewards and
transitions during exploration. Value-based methods excel in
discrete action spaces and environments where an accurate
representation of the value function is feasible. On the other
hand, policy-based RL algorithms directly learn the optimal

policy, represented as π(s) for each state s, which specifies
the probability distribution over actions. These methods use
gradient-based optimization to update policy parameters, seek-
ing to maximize the expected cumulative reward. Policy-based
approaches, such as Proximal Policy Optimization (PPO) [51]
and trust region policy optimization (TRPO) [52] are suitable
for continuous action spaces and complex environments.

In our application, we model the driver’s behavior patterns
using an agent. The agent generates two action variables
every second, corresponding to the lateral and longitudinal
accelerations. The lateral acceleration represents the steering
wheel state, while the longitudinal acceleration represents
the brake and throttle inputs, mimicking the real driving
process. To mimic real driving behavior, we adopt a continuous
action and state space, building upon the PPO framework,
and designing and training the agent using the Actor-Critic
architecture, which combines the advantages of value-based
and policy-based methods. Figure 7 presents the outline of
our proposed framework.

In the agent, we enable the actor model to produce average
values of two Gaussian distributions with a predefined variance
δ. The actual action for the current acceleration is sampled
from the continuous space to ensure that the generated trajec-
tory appears realistic. In the environment, we introduce two
types of states, st1 and st2. The first type comprises numerical
states composed of variables such as velocity, acceleration, and
others. The second type consists of road conditions displayed
as two-dimensional images centered at the current position,
with a radius of R to depict the surrounding environment.
States:

Prior to training vehicle control agents, selecting appropriate
state variables is crucial. The vehicle’s physical state com-
prises of position (ptx, p

t
y), velocity (vtx, v

t
y), and acceleration

(atx, a
t
y), with position as a scalar and velocity and acceleration

as vectors. However, using position information as sensitive
input during training can cause the model to overfit the specific
training map, leading to potential failure when applied to
different environments. To ensure model effectiveness across
diverse scenarios, we exclude position information from the
training states while retaining velocity and acceleration data.

Additionally, for different trajectory generation tasks, the



Fig. 7: The proposed hybrid reinforcement learning framework.

start and end points are not uniform. Due to the risk of model
overfitting associated with scalar information, we include
distance vectors from the current position to the start and end
points as part of the state variables, which are calculated as:

d⃗t =

[
pTx − ptx
pTy − pty

]
, g⃗t =

[
p0x − ptx
p0y − pty

]
, (11)

where [p0x, p
0
y] is the coordinate of the start point, and [pTx , p

T
y ]

denotes the fake destination.
In addition to the agent’s internal state, the interaction

between the agent and the environment is also crucial in
determining the success of the task. Typically, vehicles travel
in the middle of the road or lane to avoid crossing the road
edges. Therefore, in st1, we also observe the distance between
the vehicle and road edges in eight directions. As illustrated in
Figure 8, the vehicle radar search radius is rs, and its distances
to the road edge in eight directions are denoted as radar states,
which are represented by Dt = [lt0, l

t
1, ..., l

t
7]. Wherein, the

angle between each adjacent pair of directions is 45◦.

Fig. 8: The radar states of eight directions.

Furthermore, as we have the current velocity of the vehicle,
it is easy to predict the location’s coordinates for subsequent
times and get the estimated radar state one second and two
seconds later through the virtual environment. Therefore, we
incorporate the simulation-predicted values of Dt+1 and Dt+2

for the next two seconds into the state St
1. This equips the

agent with predictive capabilities, thereby enhancing learning
efficiency. And State 1 becomes:

st1 = [vtx, v
t
y, a

t
x, a

t
y, d⃗t, g⃗t, D

t, Dt+1, Dt+2]. (12)

Fig. 9: The st2 in different time slices.

State 2, denoted by st2, corresponds to an image depicting
the neighboring view, with dimensions of Rs × Rs. Figure
9 shows the st2 collected in different time slices during the
trajectory generation process, and they are centered around
the virtual agent’s current location (ptx, p

t
y). This image en-

compasses road layout and length details, which are valuable
for the agent’s action determination. Finally, the overall state
is st = {st1, st2}.
Reward Functions:

Throughout the training process, reward functions play a
crucial role by steering the agent towards actions that facilitate
the accomplishment of the ultimate task, while penalizing
unproductive behaviors. Proper distribution of rewards even
determines the success or failure of RL models. We have
summarized the following essential guidelines from real-world
driving scenarios:

1) Vehicle speed should comply with designated speed
limits, avoiding both surpassing the maximum speed
thresholds and excessively slow speeds that lead to
extended travel durations.

2) Vehicles should actively avoid collisions with road
edges, which can promptly lead to task failure.

3) The overarching objective for vehicles is to successfully
reach their designated destinations.

To ensure that the trained agent meets the aforementioned



criteria, we have defined a target speed vtar, a max speed
vmax, and a minimum speed vmin, while simultaneously
initializing the reward Rt as 0. The reward for the speed is:

R1
t =


−b1, vt ≤ vmin

−k1
vt − vmax

vmax
, vmax ≤ vt

0, else

, (13)

where k1 and b1 are scalars, which indicate the penalty
intensity. As collisions are often caused by high velocity, we
stipulate that the penalty intensity is positively correlated with
the current velocity:

R2
t =

{
−b2 − k2v

2
t , Collision
0, No collision

, (14)

where b2 is the basic penalty, and k2v
2
t is the additional

penalty.
Furthermore, the reward function also needs to encourage

vehicles to travel in the middle of the road to enhance the
likelihood of success. Therefore, we first find their relative
position within the road based on the agent’s radar state Dt

and calculate the ratio of opposite-direction radar states as:

L0 =
l0
l4
, L1 =

l1
l5
, L2 =

l2
l6
, L3 =

l3
l7
. (15)

Subsequently, if all ratios above are between 0.25 and 4,
the positional state is determined to be in the middle of the
road, otherwise, there is no reward. Thus, we compute the
third reward as:

R3
t =


k3vt
vmax

, 0.25 < All(L0, L1, L2, L3) < 4

0, else
, (16)

where k3 denotes the strengths of rewards. The reason for
utilizing vt

vmax
is to encourage the current velocity to approach

the target velocity, thereby obtaining more rewards.
The most crucial role of the reward function is to encourage

the agent to reach the destination. As shown in Figure 10(a),
the vehicle travels from point PA through point PB to reach
point PC . During this process, the distance to the destination
gradually decreases. It is reasonable at this point to use the
reduced distance as the basis for the reward function. However,
due to the irregular shape of the map, there might be a
segment where the vehicle moves away from the destination,
as depicted in Figure 10(b). In such a case, the direct distance
from PA to PC might be shorter than the direct distance from
PB to PC . As the vehicle moves from PA to PB , it might be
moving away from point PC . If the reward function is solely
based on the reduced distance, it might cause the vehicle to
stop at point PA.

Hence, while evaluating rewards and penalties for each
action of the agent, the validity of the direction of travel
also needs to be considered. We define that, if at the current
moment compared to the previous moment, the agent reduces

Fig. 10: The valid direction determination.

the distance to the destination or increases the distance to
the starting point, then that direction is considered valid and
receives a reward; otherwise, it incurs a penalty:

R4
t =


k4vt
vmax

, ||d⃗t| < ||d⃗t−1|| or ||⃗gt−1|| < ||⃗gt||

− k5vt
vmax

− b3, else
.

(17)
Lastly, the agent receives the greatest reward b4 upon

successfully reaching the destination:

R5
t =

{
b4, reach destination
0, else

. (18)

Let b5 be the penalty due to the time consumed. The final
reward that the agent obtains from the current state is:

Rc
t = R1

t +R2
t +R3

t +R4
t +R5

t − b5. (19)

In Equations (13) to (19), k1 to k5 represent scaling factors
used in the computation of actual rewards and penalties for
each corresponding behavior. Meanwhile, b1 to b5 are scalars
representing the base rewards and penalties assigned to the cor-
responding behaviors. Notably, b5 serves as the time penalty
parameter, and in each reward calculation, it is subtracted. This
implies that the agent should minimize the time taken to reach
the destination if it seeks to maximize its overall reward. To
determine the value of these scalars, we conducted multiple
experiments and these are publicly available through the code
link we have shared 1.

In addition, there is a point worth noting: the current
actions and states actually impact all future moments. Rewards
pertaining to future states should be considered as constituents
of the present rewards. Consequently, to account for this aspect
of influence, we introduce a discount factor β and calculate
the final reward at the current moment as follows:

Rt = Rc
t +

∑
i=1

βiRt+i. (20)

Actor and Critic:

1https://github.com/zhixiangZHANG/Hybrid-Reinforcement-Learning-
Based-Method-for-Generating-Privacy-Preserving-Trajectories



After the environment, state variables, and reward func-
tions are established, consider a comprehensive state-action
transition from t = 1 to t = T , to be denoted as τ =
[s1, a1, s2, a2, ..., sT , aT ], where st = {st1, st2}. The antici-
pated reward of the whole transition is expressed as:

R̄γ =
∑
τ

R(τ)pγ(τ), (21)

where R(τ) represents the reward associated with the sequence
τ , and γ is the action policy represented by a neural network
with parameters γ. In addition, pγ(τ) is the probability of
occurrence of the sequence τ under the current action policy.
The application of the formula for conditional probability
yields:

pγ(τ) = p(s1)

T∏
t=1

pγ(at|st)p(st+1|st, at). (22)

In Equation (22), pγ(τ) consists of two parts: p(st+1|st, at)
is the probability that the agent transitions from state st to
state st+1 by taking action at, which is determined by the
environment, and pγ(at|st) is the probability that the agent
takes action at based on policy γ. In a simple RL model
with only an actor, the gradient of the reward function can
be estimated through multiple samplings, as illustrated by the
following expression:

∇R̄γ =
∑
τ

R(τ)∇pγ(τ) =
∑
τ

R(τ)pγ(τ)
∇pγ(τ)

pγ(τ)

= Eτ∼pγ(τ)[R(τ)∇logpγ(τ)]

≈ 1

N

N∑
n=1

Tn∑
t=1

R(τn)∇logpγ(a
n
t |snt )

(23)

where N is the batch size, and Tn is the length of the trajectory
for the n-th experiment.

As the rewards obtained by the agent are the cumulative
results of multiple actions, the current action selection will
impact the states at all future time steps. It implies that when
there is a subtle change in our action policy, it could result
in great fluctuations in the reward values. For instance, the
agent’s current acceleration behavior might lead to a collision
with the roadside a few seconds later, causing a sharp drop
in subsequent reward. However, such an outcome would not
occur if no acceleration was applied. Consequently, the entire
training process might become unstable due to the significant
variance in reward values. To facilitate smoother convergence
of the training process, we employ the agent architecture of
A2C (Advantage Actor-Critic).

In the A2C network, the “Actor” component learns the
policy, which is responsible for selecting actions given the cur-
rent state. The “Critic” component learns the value function,
providing estimates of the expected cumulative rewards from
a given state. The key idea is using the advantage function to
replace the original reward function in Equation (23):

∇R̄γ = E(st,at)∼γ [A
γ(st, at)∇logpγ(a

n
t |snt )], (24)

where
Aγ(st, at) = Rt − Vt. (25)

It is calculated as the difference between the estimated value
and the actual rewards, which helps to indicate the quality of
each action with respect to the current state.

Both the actor and the critic engage with the environment
in distinct time intervals and take in two types of inputs:
numerical variables and two-dimensional images. As a result,
the agent’s model is organized into two key components. One
component centers on a Multilayer Perceptron (MLP) architec-
ture, while the other relies on a Convolutional Neural Network
(CNN) architecture. After undergoing separate processing, the
latent variables derived from these inputs are combined and
subsequently fed through fully connected layers to produce
the ultimate output.

Due to the bounded nature of the actor’s output, which
represents the mean acceleration within a limited range, we
apply the hyperbolic tangent (tanh) activation function in
the final layer of the actor’s architecture. Conversely, the
critic’s role entails assessing the evaluative value of the current
state. Also, there are no predetermined upper or lower limits
imposed on the critic’s output. Consequently, the critic’s output
directly utilizes the linear result from the fully connected layer.
The detailed architectural configurations of the actor and critic
models introduced in our study can be observed in Figure 11
and Figure 12, respectively.

Fig. 11: The actor model.

Proximal Policy Optimization (PPO):
Apart from the advantage function, another approach for

stable training involves limiting policy update steps. PPO cen-
ters on constraining update magnitudes and applying clipping
during objective function updates. Additionally, PPO employs
multiple mini-batches from sampled trajectories in each policy
update to reduce variance, thus enhancing training stability.
These strategies have propelled PPO’s excellent performance
across diverse reinforcement learning problems, making it a
popular algorithm.

According to Importance Sampling, if p(x) and q(x) are
two similar distributions, then:



Fig. 12: The critic model.

Ex∼p[u(x)] = Ex∼q[u(x)
p(x)

q(x)
]. (26)

Substituting it in Equation (24), we can get

∇R̄γ = E(st,at)∼γ [A
γ(st, at)∇logpγ(a

n
t |snt )]

= E(st,at)∼γ′ [
pγ(st, at)

pγ′ (st, at)
Aγ

′

∇logpγ(a
n
t |snt )]

≈ E(st,at)∼γ′ [
∇pγ(at|st)
pγ′ (at|st)

Aγ
′

]

(27)

where we denote γ′ as the old policy and γ as the updated one.
As γ cannot be very different from γ′ in importance sampling,
the ‘clip’ operation is used in the target function for PPO:

Jγ′

PPO(γ) =
∑

(st,at)

min
{[ pγ(st, at)

pγ′(st, at)
Aγ′

]
,

[
clip

( pγ(st, at)

pγ′(st, at)
, 1− α, 1 + α

)
Aγ′

]}
,

(28)

where the parameter α represents the upper and lower bounds
of truncation.

Finally, we combine the objective functions of A2C and
PPO to obtain the ultimate objective function as follows:

Jγ
′

t (γ) = Et[J
γ
′

PPOt
(γ)− c1MSE(Vt, Rt) + c2H(γt)],

(29)
where, Jγ

′

PPOt
(γ) represents training the agent using the PPO

method. The term MSE(Vt, Rt) is intended for optimizing the
critic. H(γt) denotes the entropy of the agent, often utilized
to enhance model training efficiency. The weights c1 and c2
are employed to balance these diverse optimization objectives
and their significance throughout the training process.

IV. TRAJECTORY GENERATION EXPERIMENTS

In this section, we present the experiments to evaluate the
proposed hybrid RL-based trajectory generation model.

A. The Training Experiment

The first experiment is conducted to investigate the impact
of different reward components in the agent’s training process.
To establish a controlled environment for our experiments, a
simplified road network was created based on the Manhattan
mobility model, and it serves as the foundation for evaluating
the trajectory generation capabilities of the proposed model.
As shown in Figure 13, this road network has the size of 2
km × 2 km with 3 lanes on each edge.

Fig. 13: The simplified Manhattan mobility model map.

To provide insights into the agent’s ability throughout the
training process, a comprehensive dataset is curated for both
the training and testing phases. The training dataset consists
of 15000 diverse scenarios, each characterized by randomly
selected starting and ending points within the road network,
while the testing set is composed of an additional 200 random
scenarios.
Metrics

To assess the efficacy and the quality of the trajectory
generation, we introduce three metrics for evaluation: Success
Rate, Average Speed, and Average Time-Spent.

• Success Rate: The Success Rate, reflecting the proportion
of successfully completed cases in the test set, serves as a
key indicator of the model’s capabilities; a value closer to
1 signifies a stronger generation capability of the agent.

• Average Speed: Although the spatial range of trajec-
tories has been constrained through path extraction in
Algorithm 1, the distance between each pair of adjacent
points is also a metric for assessing the authenticity
of a trajectory. This distance precisely corresponds to
the velocity generated by the agent. So, we analyze the
Average Speed during testing. In our experimental setup,
vmax = 18 m/s, and this maximum speed serves as the
baseline for comparison in Figures 14 (b) and 15 (b).

• Average Time-Spent: In addition, we should also con-
sider the temporal features of trajectories. For example,
a trajectory that moves in a circular motion at the
target speed and eventually reaches the destination is
not considered reasonable. Similarly, a normal trajectory
does not exhibit forward movement one instant and then
reverse movement the next instant. Furthermore, a normal
driver does not engage in multiple collisions with the
road edges. Directly assessing the frequency of these



behaviors in trajectories can be complex. However, these
actions result in an increase in the time steps required
for the virtual driver to reach the destination. Therefore,
we choose the Average Time-Spent as another metric for
evaluation.

Figures 14 and 15 illustrate the test performances of the
agent when any one of R1 to R5 in Equation (19) is absent.
Their x-labels indicate the number of scenarios that have been
used for training. Figure 14 shows that the absence of R2 or
R3 has minimal impact on the training outcomes. As training
progresses, their results converge to nearly the same position
as the training results from the complete combination (shown
as the red line segment). However, in the case of R1 being
absent, there is a gap in the agent’s success rate. Meanwhile, as
depicted in Figure 14 (b), the absence of R1 causes the agent
to attempt virtual driving at speeds greater than the maximum
velocity during the early stages of training. This is the reason
behind the reduction in training success rate. Notably, R1

corresponds to the limiting strategy we impose on velocity.
Additionally, it is observed that without the constraints of R1,
the final converged velocity value is lower than our designated
maximum velocity. This is attributed to the incorporation
of the reward form vt/vmax that is applied to each reward
function.

From Figure 15 (a) and (c), it can be observed that when
either of the rewards, R4 or R5, is missing, the probability of
the agent successfully completing the test task within the given
three hundred time steps is nearly zero. This highlights the
distinct conditions associated with these two rewards, namely,
direction determination and destination arrival determination,
which play a decisive role in the agent’s training outcome.
This also implies that while setting the weights for rewards,
R4 and R5 should hold a dominant position among all
rewards. Otherwise, the gradient changes of R1, R2, and R3

could overshadow R4 and R5, leading to training failures.
Additionally, in Figure 15 (b), we can find that due to the
presence of R4, the model exhibits better control over velocity
during the early stages of training.

Based on the aforementioned result analysis, in conjunction
with map features, our model, when applied to scenarios
involving straight-line driving and turning at perpendicular
angles, achieves a success rate of over 95% in single test in-
stances after approximately three thousand training iterations.
Ultimately, the success rate even reaches 100%. Furthermore,
the imposed velocity constraints have been effectively man-
aged. This experiment also reveals the importance of priori-
tizing reward allocation to R1, R4, and R5 when designing
the reward structure.

B. Real-world Scenario Experiment

To evaluate the compatibility of the proposed trajectory
generation model across diverse complex scenarios, we utilize
the road map within Portugal for both training and testing
purposes. Comparative experiments are conducted using taxi
trajectory data collected from 01/07/2013 to 30/06/2014 [45].

Additionally, we performed a comparative analysis of trajec-
tory generation with other recent trajectory generation models,
with a specific emphasis on data features.

As shown in Figure 16, the road map which is situated
in a rural area is used for the test experiment. It is col-
lected in the region of latitude: [41.3777, 41.4239], longitude:
[−8.6837,−8.6044]. We export only the road information
from the OpenStreetMap platform.

Figure 17 shows a case of path extraction using Algorithm
1, where the white portions on the right side of the picture
represent roads extracted. It can be observed that influenced
by the geographical environment, the roads in this location
exhibit winding paths with few linear roads. Therefore, the
encountered challenges are also greater.

Figures 18 and 19 display the testing Success Rates and the
Average Time-spent by the agent at various training stages.
When compared with the results in Figure 14 (a) and (c), it
can be observed that, although achieving the same success rate
in complex road shapes demands a greater training cost, the
agent trained through hybrid reinforcement learning can still
proficiently accomplish trajectory generation tasks with over
90% success rate. In addition, due to the fewer straight roads,
the intelligent agent requires a greater number of simulated
time steps to complete driving tasks. Furthermore, Figure 20
indicates that our velocity control strategy has also achieved
success.

To evaluate the quality of the generated outcomes, we em-
ploy the Jensen-Shannon Divergence (JSD) in this paper. JSD
is commonly utilized for quantifying the degree of disparity
between two distributions. The closer the probability distri-
butions are, the smaller the value. Given the two probability
distributions P and Q, it is depicted as:

JSD(P ∥ Q) =
1

2
EP

[
log

P

X

]
+

1

2
EQ

[
log

Q

X

]
(30)

where X = (P+Q)
2 .

When calculating the JSD, the map is divided into multiple
grids of square cells with side length m. Subsequently, from
the real trajectory dataset, we can get the frequency of visits
to each grid cell. Finally, these frequencies are aggregated to
form the probability distribution P , serving as the ground
truth. The probability distribution Q is derived from tra-
jectories generated using other methodologies. We compare
our trajectory generation results with other baseline methods,
including Trajectory Synthesis Intersection Partition (FTS-IP)
[33], LSTM [13], and Two-stage GAN (TSG) [42]. When
generating new trajectories, the FTS-IP method decomposes
crossing trajectories and produces new trajectories by selecting
proper intervals. The LSTM method generates new trajectories
by iteratively taking the current output trajectory as input. The
TSG method first generates a grid-based trajectory and then
refines the trajectory using the GAN. These three approaches
represent three different perspectives used in trajectory gener-
ation. For a fair comparison, in our experiments, we use the
same real taxi trajectory data and set the grid side length to
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Fig. 14: Validation results I.
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Fig. 15: Validation results II.

Fig. 16: The real-world scenario map.

Fig. 17: An example of path extraction.

0.01 in both latitude and longitude. The results are shown in
Table I.

TABLE I: The JSD results comparison

Model FTS-IP LSTM TSG Ours
JSD 0.413 0.633 0.100 0.056
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Fig. 18: Test of Success Rate in the real map.

The results presented in Table I demonstrate that the
trajectories generated using our approach closely resemble
the positional distribution characteristics of actual trajecto-
ries. This is attributed to our method’s ability to seamlessly
align the generated trajectories with the shapes of different
roadways. As shown in Figure 21, the green lines represent
the trajectories we generated, with a sampling rate of up to
1 second. The white dots correspond to the trajectory data
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Fig. 19: Test for Average Time-spent in the real map.
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Fig. 20: Test for Average Speed in the real map.

collected from the real world, with a sampling interval of 15
seconds.

Fig. 21: Trajectory generation in real scenarios.

Moreover, in Figure 22, the yellow parts represent the road,
and the red lines are the paths created. It shows that the
intelligent agent can generate trajectories successfully even in
different complex road layouts.

V. PRIVACY PROTECTION WITH GENERATED
TRAJECTORIES

In VANETs, user privacy faces multiple challenges. Existing
research [53] categorizes attackers along three dimensions

Fig. 22: The generated trajectories in different scenarios.

based on their capabilities and objectives: active/passive, inter-
nal/external, and global/local. Active attackers aim to disrupt
communication and services through network attacks. Con-
versely, passive attackers engage in eavesdropping on commu-
nication or stealing data without affecting the normal operation
of devices and services. The internal/external classification
is determined by whether the attacker is considered part of
the entire location-based service ecosystem; for example, a
service provider is considered internal. Lastly, the global/local
classification depends on the resources the attacker can control.
A global attacker has access to all past and current data within
the network, while a local attacker only possesses data related
to limited vehicles, locations, or time periods. In this study, we
assume a global passive attacker whose objective is to track
target vehicles in real-time.

In Section II, we discussed existing privacy protection meth-
ods and their advantages and disadvantages. A recent study
[11] has also shown that achieving k-anonymity becomes sig-
nificantly challenging in environments with low traffic density,
primarily attributed to the absence of cooperative entities. This
difficulty poses a substantial challenge to privacy protection.
To address this issue, in this section, we propose two methods
to leverage the customizable trajectory generation capabilities
introduced in Section III for privacy protection. The first
is substituting fabricated trajectories for vehicles’ authentic
trajectories when disclosing their own trajectory information.
The second is the joint publication of both generated and real
trajectories, and further, using the fabricated trajectories in
pseudonym-changing strategies to enhance privacy protection.
A. Trajectory substitution strategy

For the trajectory substitution strategy, we propose that each
user independently generates synthetic trajectories using the
intelligent agent based on a preset value ϵ when traveling
halfway, simultaneously concealing their following true tra-
jectories. Unlike traditional trajectory generation methods, our
approach doesn’t rely on the original real trajectory database;
instead, it utilizes only map and maximum speed information



to customize trajectory start and end points, as well as speeds.
This breakthrough allows the trajectory substitution strategy
to operate without geographical constraints, making it widely
applicable across various scenarios, even entirely new ones.

Essentially, as a method introducing noise interference, this
strategy can be used without considering the traffic density,
and the privacy level of this strategy can also be evaluated
by analyzing the error between the fake trajectory destina-
tion and the real one. In our strategy, the setting of ϵ-geo-
indistinguishability determines the discrepancy. Figures 23 and
24 present the distribution and the mean error under various
values of parameter ϵ. These figures allow users to intuitively
perceive the level of privacy protection based on distance.
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Fig. 23: The probability density function of disparity.
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Fig. 24: The privacy level under different ϵ value.
1) Impact on Data Usability: In this section, we consider

the impact of the privacy protection strategy on the usability
of the data. For this evaluation, we consider a scenario in the
Manhattan mobility model map depicted in Figure 13, where
vehicles transmit their locations to a service provider to obtain
the status of surrounding traffic lights. Due to the publication
of synthetic trajectories, there is an impact on the quality of
location-based service and the original database. To investigate

whether reliable location services can be obtained using these
trajectories, we consider the real-time location error between
the actual trajectory and the synthetic trajectory to assess
data usability. Figure 25 illustrates the results where 1000
vehicles were randomly selected to calculate their average
error. Initially, the error increases over time, peaking within the
400−500 meter range. This maximum error is approximately
the distance between adjacent traffic lights which may be
due to the influence of traffic lights causing vehicle stops
at intersections. Subsequently, the error gradually decreases
after reaching its maximum value. Specifically, at the same
time point, when ϵ = 0.05, the error is smaller compared
to when ϵ = 0.01. This reduction in error is attributed to
higher values of ϵ, which lead to lower privacy levels, resulting
in closer distance between the final positions of real and
synthetic trajectories, thus reducing real-time error. Finally,
in this scenario, users seeking real-time information about
the next traffic light should query the status of all traffic
lights within approximately a 500 meter radius centered on
the position indicated by the synthetic trajectory. The results
show that the usability of the data is not compromised by the
privacy protection strategy.
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Fig. 25: The real-time location error to actual trajectories.
2) Impact on Data Statistical Characteristics: In addition

to users utilizing location data to access services, some traf-
fic monitoring systems also adjust current traffic guidance
strategies based on the visitation rates of hotspot locations.
Therefore, in this section, we use JSD to study the impact
of fake trajectories on data statistical characteristics. In this
evaluation, we also use the map depicted in Figure 13. When
calculating JSD, the area, measuring 2 km × 2 km, is
subdivided into numerous small grids, each sized 50 m × 50
m. The actual trajectory’s probability distribution within these
grids is taken as the reference distribution P in Equation (30),
and the output semi-authentic and semi-synthetic trajectory
distributions of the trajectory substitution strategy serve as Q.

Figure 26 shows this comparative outcome through an
error bar plot. As depicted, with an increase in ϵ, the JSD
gradually decreases, accompanied by a reduction in the stan-
dard deviation. This trend is attributed to the diminishing
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Fig. 26: Impact of different ϵ on real trajectory dataset.

privacy requirements (increase in ϵ), which in turn reduces
the error between real and fake destinations, thereby leading
the generated trajectories to progressively resemble the real
trajectories.

Additionally, it can be observed that even when ϵ is set to
0.001, the JSD remains around 0.14. There are two reasons for
this small value. Firstly, our approach ensures that trajectories
are not generated outside the road network. Secondly, half of
the generated trajectories are the same as the real data set. The
lower JSD also denotes that our method can preserve certain
fundamental characteristics of the database, such as analyzing
the frequency of visits to specific locations and the density of
vehicles in particular areas.

B. Pseudonym-changing strategy

In a recent comparison of pseudonym-changing approaches
[11], it was observed that the privacy level remains low in
a low traffic density environment. Different from the pri-
vacy assessment methods employed in trajectory substitution,
researchers utilize entropy to evaluate the level of privacy
protection afforded by pseudonym-changing strategies, which
is calculated as:

MeanPrivacy =
1

N

N∑
i=1

log ni (31)

where N is the number of vehicles in the simulation period
and ni represents the size of the set of vehicles that have
changed pseudonyms together with vehicle i. The larger the
entropy, the higher the level of privacy.

In this section, we propose that users can publish in real-
time the generated fictitious trajectories to protect themselves
from being tracked. Moreover, these trajectories actively con-
tribute to the pseudonym-changing strategy. To assess the
effectiveness of this strategy in improving user privacy, experi-
ments are conducted utilizing the scenario illustrated in Figure
13. Additionally, to acquire high-sampling-rate trajectory data
from vehicles with diverse traffic densities, we employ the
”Simulation of Urban Mobility” (SUMO) tool [54] to gen-

erate vehicle flows and simulate varying traffic densities by
adjusting the arrival rates of vehicles.

When employing the previous context-based pseudonym-
changing strategy [11] in low-density traffic scenarios, we set
the radius of the mix-zone as 30 m. In order to maximize the
privacy levels of all users, the triggering threshold is set as k =
2. This means that each vehicle starts changing pseudonyms
when it detects the presence of at least two vehicles (including
itself) within its mix-zone. In our privacy protection method,
we set that vehicles generate fake trajectories halfway with
ϵ = 0.05. If fake trajectories enter the mix-zone, the other
vehicles regard them as real vehicles, and start the pseudonym-
changing process.
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Fig. 27: The mean privacy with different arrival rates.

Figure 27 illustrates the privacy comparison between our
method and the previous context-based approach under low
arrival rate conditions within a 1000-second simulation period.
It can be observed that as the arrival rate increases, both
methods exhibit a gradual growth in the level of privacy
protection. However, by taking the generated trajectories into
our method, the privacy level of vehicles in low-density traffic
environments has been significantly enhanced, reaching up to
nearly fourfold in the case with an arrival rate of 0.01 /s.
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Fig. 28: The cover rate with different arrival rates.



Additionally, Figure 28 provides an analysis of the effective
privacy protection cover rate for all vehicles. For this criterion,
our method also performs better than the previous method.
Furthermore, due to the generation of fabricated trajectories
for each vehicle, our method achieves a coverage rate of 100%.

1) Impact on Data Usability: The pseudonym-changing
strategy results in vehicles having multiple endpoints. In this
part, we explore how these fictitious endpoints affect the
quality of service when vehicles search for nearby parking
facilities.

Consider the scenario illustrated in Figure 13. Suppose there
are four parking lots located at coordinates Pk1(500, 500),
Pk2(500, 1500), Pk3(1500, 500), and Pk4(1500, 1500). Ini-
tially, users submit their destinations to the service provider.
Subsequently, the service provider responds with a list of
parking lot information arranged by proximity, with the
nearest parking lot listed first. For instance, if a vehicle’s
actual destination is at (500, 600), it would receive a list
[Pk1, Pk2, Pk3, Pk4]. However, due to the publication of fake
trajectories, the fictitious destination might be positioned
at (500, 1200), resulting in the vehicle receiving the list
[Pk2, Pk1, Pk4, Pk3]. To evaluate the quality of service expe-
rienced by users, we employ a custom Cumulative Gain (CG)
metric to score the returned list as follows:

ServiceScore =

4∑
i=1

Scoi × (4− i), (32)

where we define Scoi as the score assigned to the item in
the actual rank i, with values set as [8, 4, 2, 0]. Using the
aforementioned example, the real rank list [Pk1, Pk2, Pk3, Pk4]
corresponds to scores [Pk1 : 8, Pk2 : 4, Pk3 : 2, Pk4 : 0].
It can be calculated that the maximum ServiceScore is
8 × 3 + 4 × 2 + 2 × 1 + 0 × 0 = 34. After deploying the
privacy protection method, the user receives the ranked list
[Pk2, Pk1, Pk4, Pk3], and the ServiceScore becomes 4× 3 +
8× 2 + 0× 1 + 2× 0 = 28. However, if the user receives the
ranked list [Pk4, Pk3, Pk2, Pk1], which is in reverse order com-
pared to the actual rank, the ServiceScore has the minimum
value 0× 3 + 2× 2 + 4× 1 + 8× 0 = 8.

This scoring framework assigns higher scores and weights
to items ranked higher in the actual ranking, which aligns
with our intuitive perception of service quality. Moreover, the
scale ranging from a maximum of 34 points to a minimum
of 8 points widens the gap between the best and worst
scores, making it reasonable to utilize this scoring framework
for evaluating parking recommendation systems. Figure 29
illustrates the impact of privacy setting ϵ on service quality.

Firstly, from the blue line in Figure 29, it can be observed
that as ϵ increases, the distance between the fake destination
and the real destination continuously decreases, leading to an
improvement in service quality, as represented by the orange
line. Secondly, it is noteworthy that reducing the distance
error from 1200 m to approximately 400 m results in a
significant enhancement in service quality. Considering that
the nearest distance between parking lots is 500 m, when the
destination error is less than this distance, it does not affect
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Fig. 29: The impact on service score.

the top-ranked result in the search. These findings indicate
that our privacy protection strategy not only enhances privacy
levels in low-density traffic environments but also achieves
a balance between privacy and service quality across various
applications.
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Fig. 30: The impact on data set with new trajectories added.
2) Impact on Data Statistical Characteristics: In addition,

we use the same setting as Section VI. A. 1 to explore the
influence on data statistical characteristics. Figure 30 shows
the results. We can find that compared with Fig. 26, under the
same ϵ = 0.05 setting, the impact on the database caused by
adding trajectories is smaller than that resulting from replacing
the original trajectories. In addition, as more vehicles appear
in the scenarios, the influence decreases. This is because the
visited locations in the generated trajectories coincide with the
locations of the new actual trajectories. In contrast, when the
original data consists of only a few trajectories, the added fake
trajectories may visit locations that are not present in the real
trajectories.

Finally, as our privacy protection method involves two
phases, namely virtual trajectory generation and real-time
publishing, we assess the efficiency of each phase separately.
The following data are the test results conducted on the



platform with an RTX 3080 (10G) GPU and an Intel(R)
Xeon(R) Platinum 8255C CPU @ 2.50GHz, using Python 3.8:
Generating 100 trajectories with an average length of 465s
and an average speed of 16.33m/s takes approximately 113.3s.
This implies that the GPU+CPU combination can perform
over 400 pairs of environment updates and agent decisions
in one second. This efficiency is attributed to our lightweight
reinforcement learning model, resulting in a relatively light
workload on the GPU. As for the trajectory publication phase,
apart from adding the trajectory to be published, whose
complexity is O(1), and no other settings need to be altered.

VI. CONCLUSION AND FUTURE WORK

Due to the mechanisms of location broadcasting and shar-
ing, safeguarding users’ privacy in vehicular networks be-
comes a crucial challenge. Traditional user-centric privacy
protection methods, such as pseudonym-changing, ensure data
accuracy but prove inadequate in preserving privacy, especially
in low-density traffic conditions. To address this challenge,
this paper introduces a novel approach that utilizes virtual
trajectories generated by a hybrid reinforcement learning agent
to enhance privacy protection.

Initially, we apply ϵ-geo-indistinguishability and the A*
algorithm to extract a path leading to a fictional endpoint from
the map. Following this, we employ an agent trained by a
hybrid reinforcement learning model for trajectory generation.
This model not only achieves a success rate exceeding 90%
in complex trajectory generation tasks but also enables the
customization of trajectory speed to accommodate varied
requirements in diverse settings. Leveraging generated trajec-
tories, we propose two methods to protect privacy: trajectory
substitution and pseudonym-changing strategy. Experimental
results demonstrate that the implementation of these methods
not only effectively addresses privacy concerns in low-density
traffic environments but also manages the impact on the
original database.

In future work, our method can be refined in the following
aspects. Firstly, due to the multiple parameter combinations
and reward functions, there remains the potential for further
optimization within our hybrid reinforcement learning model.
Secondly, this paper only discusses two methods that inte-
grate generated trajectories for privacy protection. In reality,
many other methods can be combined with them. Lastly,
it’s important to consider the potential impact of malicious
attackers exploiting this mechanism to disseminate a large
volume of fabricated trajectories. Such actions could also
disrupt communication within VANETs and impact the utility
of the database. Therefore, careful consideration is necessary
on how to mitigate this issue effectively.
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