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Abstract— Unmanned aerial vehicles (UAVs) have a great
potential for assigning search and rescue operations in emer-
gency scenarios. However, emergency scenarios are complex and
unknown, regarding UAVs to reschedule to effectively adapt to
the changing environment, and existing literature addressing this
challenge is limited. To address this open problem, we consider
a task rescheduling problem with uncertainties such as task
insertion, edge computing node (ECN) destruction, and parame-
ter fluctuation in UAV-assisted emergency networks. The goal is
to minimize the fine-grained makespan, defined as the ratio of
makespan to ECNs idle time, that simultaneously characterizes
the optimization of rescheduling efficiency and ECNs utilization.
To address the problem, we propose an asynchronous shuffled
frog-leaping with feasible Jaya (ASFJ) algorithm. In ASFJ,
an asynchronous shuffled frog-leaping method independently
evolves memeplexes, thereby avoiding forced information cov-
erage. Two feasible local search operators promote the search
capability and feasibility of the algorithm. Finally, we verify the
advantages of the ASFJ in terms of makespan, effectiveness, and
fine-grained makespan. ASFJ can save 3.83ms makespan and
outperform 11.2% fine-grain makespan in insertion rescheduling.
The effectiveness of destruction rescheduling is improved by at
least 16%.

Index Terms— UAV emergency network, uncertain, task
rescheduling, fine-grained makespan.

I. INTRODUCTION

TASK scheduling plays an important role in ensuring the
efficiency and effectiveness of unmanned aerial vehicle

(UAV) communication. It characterizes the process of assign-
ing tasks to suitable edge computing nodes (ECNs), including
UAVs or ground devices, and the purpose is to minimize com-
munication costs [1], makespan [2], scheduling costs [3], etc.
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Scheduling can be divided into static and dynamic. In static
scheduling, all tasks are executed sequentially on the assigned
ECNs [4], [5]. Dynamic scheduling is not only a response to
uncertain events but also a repair to the original scheduling
that was adjusted passively.

The complex and unpredictable emergency rescue scenario
is a typical application of dynamic scheduling. Rescuers
cannot enter the disaster area, which makes task scheduling
invisible, intangible, and uncertain. Due to the advantages
such as flexible deployment and mobility, UAVs are regarded
as relay loads to deliver supplies [6]. In addition, UAVs
and ground devices are also regarded as edge servers to
provide computing, data analysis, and decision-making ser-
vices for delay-sensitive and resource-intensive tasks such
as image recognition, environmental monitoring, and dis-
aster investigation. However, it has to be considered that
computing ability and battery life are constrained by pro-
duction costs. Therefore, in an uncertain environment, how
to reschedule tasks dynamically to respond to requests,
while making full use of limited resources still needs to be
solved.

Most of the research on task rescheduling focuses on
the field of industrial manufacturing(IM-F) [7]. However,
in the considered UAV-assisted emergency network, task
rescheduling faces more complex, unknown, and uncontrol-
lable challenges, which are quite different from the IM-F as
follows:

1) Lower workable time tolerance: In IM-F, considering
the actual demand of maximizing output, the supply
of energy is generally unconstrained, so that workable
time of machines is unlimited. On the contrary, the
restricted power of the ECNs constrains the workable
time. Rescheduling needs to control energy consumption
and improve the utilization of ECN as much as possible.

2) Higher processing node compatibility: In IM-F, to main-
tain production, the degraded operation will be carried
out in case of machine breakdown, which will reduce
productivity [8]. In the UAV emergency network, the
ECNs are regarded as edge servers with fundamental
hardware and software configurations, which can adapt
to almost all tasks.
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3) Different evaluation indicators: Stability is the main
optimization indicator for rescheduling problems in
IM-F. It is expressed as the deviation between reschedul-
ing and original scheduling with the assumption that the
original scheduling is optimal [9]. On the contrary, the
emergency environment changes in real-time, and more
attention should be paid to rescue efficiencies, such as
task makespan and resource utilization.

Therefore, we study a task rescheduling problem tailored
to the specific demands and characteristics of UAV-assisted
emergency networks. We propose a metric called fine-grained
makespan (Fgm) to evaluate rescue efficiency, capturing task
execution efficiency and accounting for resource limitations at
the ECNs. Fgm is modeled as the ratio of makespan to ECNs’
idle time.

In the limited existing literature, Yan et al. [10] estimated
uncertain user status and determined the UAV scheduling
strategy, which allows UAVs to move across regions to shorten
the communication gap. Taking into account the imperfect
knowledge of the angle of departure caused by UAV jitter-
ing, user location uncertainty, wind speed uncertainty, and
polygonal no-fly zones, Xu et al. [11] employed monotonic
optimization theory and semidefinite programming relaxation
to solve the proposed nonconvex problem. These efforts focus
on characterizing uncertainty with a data-driven approach, and
naturally, it is assumed that the original scheduling decision
will not change once formed, which is not always justified.
As a matter of fact, it is necessary to adjust the decision to
adapt to the real-time conditions in the emergency network.
Therefore, an event-driven rescheduling solution is imperative
requirements to respond to uncertain factors and repair the
impact on the original scheduling decision.

In UAV-assisted emergency networks, event-driven
rescheduling includes but is not limited to task insertion and
ECN destruction. Chen et al. [12] characterized the uncertainty
of the space-air-ground integrated network as the variability
of environment and actual demand, and the amount of arriving
tasks. Under the incomplete information regarding users’
random arrivals and private service valuations, Wang et al.
[13] proposed an optimal dynamic pricing scheme to balance
hover time and service capacity. However, these efforts do
not consider the possibility of ECNs disappearing or being
subject to emergency recall in a hostile environment. This
can lead to the failure of pending subtask execution on the
broken-down ECNs, as well as potential delays in executing
subtasks that depend on the failed subtasks. In addition,
they overlook the real-time observation status of tasks and
only consider the original input features. As a result, driven
by uncertainty, low-competition tasks may be continuously
delayed or even exceed their deadlines. Therefore, according
to the state of the task in the whole rescheduling process,
we establish task insertion and ECN destruction rescheduling
models to analyze the impact of uncertain events on task
scheduling performance. Furthermore, we design a state phase
function to improve task execution satisfaction.

The task rescheduling problem has been proven to be an
NP-hard problem [14]. To achieve solutions within a
reasonable computational time, heuristic or metaheuristic

optimization algorithms have emerged as a trend in
recent years, such as genetic algorithm (GA) [15], ant
colony algorithm [16], and Differential Evolution (DE)
algorithm [17], which exhibit great capabilities in searching
for the optimal solution. The shuffled frog-leaping algorithm
(SFLA) is a meta-heuristic with the advantages of GA and
social behavior-based particle swarm optimization (PSO) [18].
Its main benefits include fast convergence speed and effec-
tive algorithm structures containing local search and global
information exchanges. However, in SFLA, the sizes and
local search counts of all memeplexes always remain equal,
and shuffling is enforced synchronously at a fixed frequency.
This may cause the information of some memeplexes to be
overwritten. Hence, to allow memeplexes that do not meet the
local search termination conditions to continue to search for
high-quality solutions, or escape from poorer solutions, SFLA
needs to be optimized.

The Jaya algorithm is a novel meta-heuristic algorithm
proposed by Rao in 2016 [19]. Its key idea is to search in
the direction of the best solution and stay away from the
worst solution. The Jaya algorithm does not have specific
parameters, which can reduce parameter tuning effort. Jaya has
only one search operator. The research on using Jaya to solve
the rescheduling problem mainly focuses on the flexible job
shop problem (FJSP). Reference [20] proposed a self-learning
discrete Jaya to address the new job insertion. Reference [21]
designed a local search operator and an initializing rule for
machine recovery to improve the performance of Jaya. The
goal is to minimize the instability and makespan caused by
uncertainty. Besides, Jaya has been widely applied to solve
various engineering problems, such as electrical discharge
machining drilling of MoSi2-SiC composites [22], automotive
turbocharger systems [23]. In addition, Rao [24] verified the
superiority of Jaya over heuristic algorithms such as GA.
Hence, the simple and effective Jaya algorithm is easier to
deploy to solve real-life optimization problems [25]. However,
when the scale of the problem becomes larger, the Jaya
algorithm has the disadvantages of premature convergence and
insufficient exploration ability.

Therefore, the properties of SFLA and Jaya motivate us to
propose the ASFJ algorithm, in which Jaya searches for the
local optimal solution of each memeplex, and the stagnation
threshold assists the memeplex to shuffle asynchronously.
The advantages of the proposed ASFJ formation include:
i) As a local search operator for each memeplex rather than
the entire population in SFLA, Jaya can cleverly avoid the
limitation of low capability in larger search spaces; ii) The
simplicity and efficiency of Jaya reduce the complexity of
ASFJ and increase the local search ability of SFLA. In all,
ASFJ effectively overcomes the shortcomings of the basic
algorithms and enhances their advantages.

The main contributions of this article are as follows.
1) We develop an uncertainty-aware task rescheduling strat-

egy with stochastic tasks insertion, ECNs destruction,
and parameter fluctuation in a UAV- assisted emergency
network. To evaluate the rescue efficiency of considered
emergency scenarios more appropriately, we define a
parameter that combines “task execution efficiency”



and “resource utilization of ECNs”, which is called
fine-grained makespan (Fgm). Among the designed
parameter, a state phase function (SPF) is proposed to
avoid high-competitive tasks being prioritized continu-
ously. Our goal is to minimize the Fgm.

2) We propose an asynchronous shuffled frog-leaping with
a feasible Jaya algorithm (ASFJ), which includes three
components: (i) a heuristic population initialization
method guided by energy consumption and execution
time to obtain high-quality initial solutions; (ii) an asyn-
chronous shuffled frog-leaping method that enhances the
global and local search capabilities through an iterative
process alternating between information exchange and
asynchronous evolution; (iii) two feasible local search
operators that not only enable the algorithm to escape
local optima but also ensure the feasibility.

3) Extensive experiments on deterministic and uncertain
scenarios are conducted to verify the efficiency of the
proposed ASFJ. The performance of the ASFJ in terms
of makespan, effectiveness, and fine-grained makespan
to resist the influence of uncertainty are tested. Simula-
tion results show that ASFJ outperforms the benchmark
algorithms.

The rest of this article is organized as follows. Section II
reviews relevant work. Section III mainly describes the sys-
tem modeling and problem formulation in detail. Section IV
presents the proposed ASFJ algorithm. Section V verifies the
performance and discusses the main advantages of the ASFJ.
Finally, Section VI concludes this article.

II. LITERATURE REVIEW

Task rescheduling is characterized by the fact that the
original scheduling decision must be modified due to the
disturbance of real-time uncertain factors. In the field of
industrial manufacturing, there have been many studies on
task rescheduling. Sun et al. [26] presented a novel partial
repair rescheduling solution that consists of a criterion and a
scheduler. Milica et al. [27] proposed a multi-objective grey
wolf optimizer methodology to efficiently schedule material
transport systems based on an intelligent single mobile robot.
An et al. [28] focused on a flexible job-shop rescheduling
problem for new job insertion and machine preventive main-
tenance. However, there is limited work on task rescheduling
in the UAV emergency scenario, in most cases, there is more
complexity and greater unknown challenges.

For the existing research on uncertainty-aware task
rescheduling in emergency scenarios, uncertain factors are
divided into inherent parameter uncertainty and scenario-based
uncertainty. The inherent parameter uncertainty is attributed to
the influence of external uncontrollable environmental factors
such as airflow, which causes the execution time of the ECNs
fluctuate. The ECNs are equipped with multiple functional
sensors, which makes it difficult to obtain accurate execution
time, because the functions affect each other when an ECN
plays many roles at the same time, such as communication,
computing, perception, and control. To bring the theoretical
knowledge of task rescheduling closer to reality, it is nec-
essary to represent the uncertain ECN parameters as fuzzy

variables. There have been many related studies in this area.
Fan et al. [29] mapped the channel assignment problem
into a fuzzy-logic space, and employed a triangular fuzzy
number (TFN) to describe the uncertain channel power gains.
Li et al. [30] designed a nonlinear exponential function to inte-
grate multiple heterogeneous conflicting criteria such as fuzzy
time.

The scenario-based uncertainty of task scheduling in UAV
emergency communication is that the original schedule has
to be updated after being corrupted by unpredictable factors,
such as the arrival of tasks and the destruction of ECNs.
Wang et al. [31] modeled the task rescheduling problem as
a dynamic matching problem in an environment where UAVs
and tasks arrive stochastically. A multiple-waitlist-based task
assignment was proposed to ensure dynamic stability. Consid-
ering the uncertain distribution of the transmission numbers
and generated data, Chen et al. [32] formulated a robust
two-stage stochastic optimization problem for delay minimiza-
tion. Ngoenriang et al. [33] discussed UAV placement and data
delivery schemes under uncertainties of inspection requests,
the urgency of reports, and the availability of communica-
tion channels. However, the optimization objectives of these
literatures tend to focus on scheduling performance, rather
than maximizing the rescue efficiency of emergency scenarios.
Hence, how to optimize the task rescheduling performance
under uncertainty in the UAV emergency network is a signif-
icant topic and remains semi-open.

III. MODELING AND PROBLEM FORMULATION

This article studies the task rescheduling problem in
uncertainty-aware UAV emergency networks. We consider two
uncertainties: inherent parameter uncertainty and scenario-
based uncertainty, where the latter includes task insertion and
ECN destruction. This section first introduces the research
motivation from the scenario requirements, then models uncer-
tain rescheduling problems. Finally, the optimization problem
is formulated. Notations used in this paper are given in
Table I.

A. Motivation Scenario
We consider a post-disaster (earthquake, fire, etc.) rescue

scenario, where obstacles such as mountains prevent rescue
equipment from easily approaching the disaster area. The
infrastructure is paralyzed without power and backup battery,
and the service requests from those trapped cannot be fulfilled.
UAVs become an effective means of assisting rescue, and the
set of available UAVs is denoted as U = {u1, u2, · · · , uU }.
To ensure that the trapped users communicate with the work-
able infrastructure outside the disaster area, the UAVs can be
used as mobile aerial base stations to establish a temporary
communication connection, and transmit the rescue request
and the monitored information to the emergency command
center for better arrangements. In addition, ECNs can be
regarded as edge servers, not only performing computing
requests, but more importantly, analyzing the load-aware
disaster situation. Assume that there are L ground devices
(including those held by trapped humans and sensing devices),
denoted as L = {l1, l2, · · · , lL}. Suppose the number of ECNs



TABLE I
LIST OF KEY NOTATIONS

is M = U + L , denoted as M = {m1, m2, · · · , mM } .N =

{N 1, N 2, · · · , N |N |
} is the set of |N | tasks and N i

={
ni

1, ni
2, · · · , ni

|N i |

}
, where N i

∈ N represents the set of

subtasks of the i-th task.
Figure 1(a) shows an example of the original scheduling

process of 4 tasks (including 8 subtasks n1
1-n4

4). The original
task list contains the task N 1

− N 4, where the tasks N 3

and N 4 consist of dependent subtasks. The subtask n1
1 is

assigned to ECN m3. The subtask n2
1 is assigned to ECN

m2. The dependent subtasks n3
1 and n3

2 are computed by m4
and m5, respectively. The subtask n3

2 can only be executed
when m5 receives the computing result from m4, which is the
dependency constraint [34].

Fig. 1. The system model of the UAV emergency network.

Figure 1(b) and Figure 1(c) show the process of task
rescheduling when the original scheduling is interfered with
task insertion and ECN destruction, respectively. n̄i

j indicates
that the subtask ni

j is being processed but not completed when
the rescheduling is triggered (the moment called rescheduling
time Rr). In Fig. 1(b), due to real-time changes in the actual
demands, the task N 5 (including the subtask n5

1), is inserted
at Rr and assigned to ECN m3. The subtasks n4

3 and n4
4 that

have not been started yet in the original scheduling need to
be rescheduled, and the subtasks n̄2

1, n̄3
2 and n̄4

2 continue to be
executed on the originally assigned ECNs. In Fig. 1(c), ECN
m2 breaks down as a result of insufficient power or external
factors, and the uncompleted subtasks n2

1 and n4
4 on m2 need

to be reassigned. The subtasks n̄3
2 and n̄4

2 on unaffected ECNs
m1 and m5 continue to be executed.

B. Task Rescheduling Model With Fuzzy Number

Task rescheduling is a response to uncertainty, including
inherent parameter uncertainty and scenario-based uncertainty.
The former is characterized by the fluctuation of state param-
eters, and we model the fluctuant parameters as TFNs to
enhance the robustness and applicability. The latter is char-
acterized by the tasks being inserted and the ECNs being
destroyed at any time. We discuss scenario-based uncertain
rescheduling models from the rescheduling time, tasks list,
and ECNs list.

1) Fuzzy Scheduling Model: In the original scheduling,
the start time T si

j is represented by TFN as T̃ si
j =(

min
T si

j ,
most
T si

j ,
max
T si

j

)
of the subtask ni

j , where
min
T si

j ,
most
T si

j ,
max
T si

j are

the best, probable, and worst start time, respectively. Similarly,
the execution time T ei

j,mk
and the finish time T f i

j are fuzzed
with TFN.

Suppose there are two subtasks ni
1 and ni

2, and their finish

times are represented by TFN as T̃ f i
1 =

(
min
T f i

1 ,
most
T f i

1 ,
max
T f i

1

)

and T̃ f i
2 =

(
min
T f i

2 ,
most
T f i

2 ,
max
T f i

2

)
, respectively. The operations



to be used are addition, subtraction, division, maximum, and
ranking. These can be defined as follows [35]:

T̃ f i
1 + T̃ f i

2 = (

min
T f i

1 +

min
T f i

2 ,

most
T f i

1 +

most
T f i

2 ,

max
T f i

1 +

max
T f i

2 ),

(1)

T̃ f i
1 − T̃ f i

2 = (

min
T f i

1 −

max
T f i

2 ,

most
T f i

1 −

most
T f i

2 ,

max
T f i

1 −

min
T f i

2 ),

(2)

T̃ f i
1 ÷ T̃ f i

2 = (

min
T f i

1 ÷

max
T f i

2 ,

most
T f i

1 ÷

most
T f i

2 ,

max
T f i

1 ÷

min
T f i

2 ),

(3)

max{T̃ f i
1 + T̃ f i

2 } = (max{

min
T f i

1 ,

min
T f i

2 }, max{

most
T f i

1 ,

most
T f i

2 },

max{

max
T f i

1 ,

max
T f i

2 }). (4)

In addition, the defuzzification operation can be expressed
as

T f i
1 =

(
min
T f i

1 +2 ×

most
T f i

1 +

max
T f i

1

)
/4. (5)

Let T f i
1 and T f i

2 be the defuzzification of T̃ f i
1 and T̃ f i

2
according to (5). The ranking operation of T̃ f i

1 and T̃ f i
2 is as

follows:
Rule 1: If T f i

1 > T f i
2 , then T̃ f i

1 ∨ T̃ f i
2 = T̃ f i

1 ; else if

T f i
1 < T f i

2 , then T̃ f i
1 ∨ T̃ f i

2 = T̃ f i
2 .

Rule 2: When T f i
1 = T f i

2 , If
most
T f i

1 >
most
T f i

2 , then T̃ f i
1 ∨T̃ f i

2 =

T̃ f i
1 ; else if

most
T f i

1 <
most
T f i

2 , then T̃ f i
1 ∨ T̃ f i

2 = T̃ f i
2 .

Rule 3: When
most
T f i

1 =

most
T f i

2 , if

(
max
T f i

1 −

min
T f i

1

)
>(

max
T f i

2 −

min
T f i

2

)
, then T̃ f i

1 ∨ T̃ f i
2 = T̃ f i

1 ; else T̃ f i
1 ∨ T̃ f i

2 =

T̃ f i
2 .

In the above operation, if the previous rules do not yield a
conclusion, the latter rule continues to check until Rule 3.

2) Task Insertion Rescheduling Model: In the UAV emer-
gency network where the demand changes in real-time, the
original scheduling decision may update when tasks are
inserted. We define the time of task insertion as fuzzy
rescheduling time R̃r . In the rescheduling process, the fuzzy
start time, the fuzzy execution time, and the fuzzy finish
time of subtask ni

j are expressed as R̃si
j , R̃ei

j,mk
, and R̃ f i

j ,
respectively. If subtask ni

j is scheduled to ECN mk , then the
scheduling decision vector ai, j,mk = 1, else ai, j,mk = 0.

According to the principle of whether the subtask starts to
be executed or completed at R̃r , the state of subtasks can
be divided into four cases as below. It should be noted that,
to provide a clearer explanation of the rescheduling model,
we assume that all tasks will be offloaded.

Case 1: The subtasks that have been completed. These are
not considered in our work since they do not contribute to the
rescheduling process.

Case 2: The set of subtasks that has started to be executed
but not finished is defined as NJI. The subtask ni

j ∈ NJI,

1 ≤ j ≤ |N JI |, satisfies the constraint as:

T̃ si
j + T̃ ei

j,mk
≥ R̃r, ∀ni

j ∈ NJI, mk ∈ M, (6)

where |N JI | denotes the number of subtasks being executed.
During the rescheduling process, ni

j ∈ NJI will not change
the assigned ECN mk , which can be formalized as:

T̃ si
j ≤ R̃r, ∀ai, j,mk = 1, ni

j ∈ NJI, .mk ∈ M. (7)

Case 3: The set of subtasks that has not been executed is
defined as NHI. The subtask ni

h ∈ NHI, 1 ≤ h ≤ |N HI |

satisfies the constraint as:

T̃ si
h ≥ R̃r, ∀ni

h ∈ NHI, (8)

where |N HI | is the number of subtasks that have not yet
started when the rescheduling is triggered. The scheduling
results for ni

h may change or remain unchanged. (9) models
the process of decision changing from mk to mk′ .{

ai,h,mk = 1|T̃ si
h ≥ R̃r

ai,h,mk′ = 1|R̃si
h ≥ R̃r

, ∀ni
h ∈ NHI, {mk, mk′}

∈ M, mk ̸= mk′ . (9)

Case 4: The set of subtasks to be inserted is defined as NGI.
The subtask ni

g ∈ NGI, 1 ≤ g ≤ |N G I | satisfies the constraint
as:

R̃si
g ≥ R̃r, ∀ni

g ∈ NGI, (10)

where |N G I | is the number of inserted subtasks.
If subtask ni

g is assigned to ECN mk , whose task queue con-
tains the uncompleted subtask ni

j from the original scheduling,
then subtask ni

g must wait until ni
j is finished before it can

start, which can be expressed as:

ai, j,mk = 1, ai,g,mk = 1|R̃si
g ≥ T̃ f i

j , ∀ni
j ∈ NJI, ni

g ∈ NGI.

(11)

(11) also indicates that the execution of tasks on an ECN is
sequential.

3) ECN Destruction Rescheduling Model: In a dynamic
emergency network, interruptions or unpredictable events are
inevitable. The representative uncertain event is that ECNs
are destroyed, which leads to the disruption of the original
optimal plan, and even becomes unfeasible. Therefore, it is
necessary to adjust the original scheduling strategy to respond
to uncertain events, so as to shorten the reduction of rescue
efficiency caused by the failed ECNs. We assume that the
number of failed ECNs is |D|, and the set of failed ECNs
is expressed as D. Thus, the set of M − |D| workable ECNs
can be expressed as M\D. We analyze the status of the task
according to the principle of whether the ECNs are destroyed
as follows:

Case 1: The set of subtasks assigned to D in the original
scheduling is denoted as NJD , which contains |N JD| subtasks.
If ni

j ∈ NJD, 1 ≤ j ≤ |N JD| is assigned to mk , as long as
ni

j is not completed, it must be reassigned to a workable ECN
mk′ , which can be formulated as (12) and (13). The subtask
ni

j in (12) has been executed but not completed in the original



Fig. 2. The stage phase function.

scheduling. The subtask ni
h in (13) has not been executed until

R̃r .

ai, j,mk = 1, ai, j,mk′

= 1|T̃ f i
j ≥ R̃r, ∀ni

j ∈ NJD, mk ∈ D, mk′ ∈ {M\D} ,

(12)
ai,h,mk = 1, ai,h,mk′

= 1|R̃si
h ≥ R̃r, ∀ni

h ∈ NJD, mk ∈ D, mk′ ∈ {M\D} ,

(13)

where mk and mk′ satisfy 1 ≤ k ≤ |D| and 1 ≤ k′
≤ M −|D|,

respectively.
Case 2: The set of subtasks assigned to workable ECNs

M\D can be denoted as NGD , which contains |N G D| sub-
tasks. At R̃r as shown in (14), if ni

h ∈ NGD, 1 ≤ h ≤ |N G D|

has started to be executed but is not completed, then it will
continue to execute without changing the ECN. If ni

g ∈ NGD,
1 ≤ g ≤ |N G D| has not started to be executed, its ECN
mk , ∀1 ≤ k ≤ |D| may be replaced by another ECN mk′ ,
∀1 ≤ k′

≤ M − |D|, which is formulated as (15):

ai,g,mk = 1, ∀T̃ si
g ≤ R̃r, T̃ f i

g ≥ R̃r, ni
g ∈ NGD, mk ∈ {M\D},

(14){
ai,g,mk = 1|T̃ si

h ≥ R̃r
ai,g,mk′ = 1|R̃si

h ≥ R̃r
, ∀ni

g ∈NGD, mk ∈{M\D},

mk′ ∈ {M\D\mk} . (15)

In the above task rescheduling model, the index of subtasks
ni

j , ni
h, ni

g satisfy 1 ≤ i ≤ |N |.

C. Problem Formulation

This section first describes the definition of fine-grained
makespan, and then formulates an uncertainty-aware subtask
rescheduling problem.

1) Fine-Grained Makespan: The original priority of sub-
tasks represents different competitiveness, and the subtasks
with weaker competitiveness will always be delayed, even
beyond the deadline. Therefore, we design a SPF that charac-
terizes the real-time state of the subtask ni

j , which considers
the incoming requests and observed states. The former is
determined by the size of input data ai

j , the number of required
CPU cycles ci

j , the released time T̃ bi
j , and the tolerable

maximum time �i
j . The latter is determined by the waiting

time T̃ wi
j , and the assigned ECN mk . The change of SPF

from released time to deadline is described in Figure 2, where
T̃ si

max j represents the latest start time. SPT can be formalized

as:

yi
j =

T̃ si
j − R̃r

�i
j − T̃ ei

j,mk
− R̃r

,

∀1 ≤ i ≤ |N | , 1 ≤ j ≤

∣∣∣N i
∣∣∣ , 1 ≤ k ≤ M, (16)

where the execution time T̃ ei
j,mk

of the subtask ni
j in mk

is calculated by T̃ ei
j,mk

= ci
j

/
ρk , and ρk represents the

computing capability of ECN mk .
In order to optimize the task rescheduling performance

while guaranteeing the utilization of ECNs, we define an
evaluation indicator, called fine-grained makespan (F̃gmi

j ),
which can be calculated as follows:

F̃gmi
j =

yi
j ∗ T̃ f i

j

T̃ si
j − T̃ f i

h

, ∀1 ≤ i ≤ |N | , 1 ≤ j, h ≤

∣∣∣N i
∣∣∣ (17)

where yi
j ∗ T̃ f i

j indicates the degree of satisfaction with

subtasks. Suppose that subtasks ni
j and ni

h are continuously

executed on ECN mk . Then T̃ si
j −T̃ f i

h is the gap time between
two subtasks, and meets the following constraints:

T̃ si
j > T̃ f i

h , ∀ai, j,mk = 1, ai,h,mk = 1,
{

ni
j , ni

h

}
∈ N,

1 ≤ i ≤ |N | , 1 ≤ j, h ≤

∣∣∣N i
∣∣∣ , 1 ≤ k ≤ M. (18)

(18) means that the predecessor subtask of ni
j is ni

h in the
subtask queue of mk .

2) Objective Function: Uncertainty-aware task reschedul-
ing problem is the process of integrating uncertain factors into
assigning |N | tasks to M ECNs. The uncertain factors include
task insertion, ECN destruction, and parameter fluctuation.
The goal of rescheduling is to minimize the fine-grained
makespan, which maps the optimization of makespan and
ECNs’ utilization. The mathematical model is formulated as
follows:

min
|N |∑
i=1

∣∣N i
∣∣∑

j=1

F̃gmi
j ,

Subject to: C1 : (6) − (15),

C2 :

M∑
k=1

ai, j,mk ≤ 1,

∀mk ∈ M, 1 ≤ i ≤ |N | , 1 ≤ j ≤

∣∣∣N i
∣∣∣ ,

C3 :

|N |∑
i=1

∣∣N i
∣∣∑

j=1

ai, j,mk ≤ 1,

∀Ni
∈ N, ni

j ∈ Ni , 1 ≤ k ≤ M,

C4 : ai, j,mk ∈ [0, 1] ,

∀Ni
∈ N, ni

j ∈ Ni , mk ∈ M,

1 ≤ i ≤ |N | , 1 ≤ j ≤

∣∣∣N i
∣∣∣ , 1 ≤ k ≤ M

C5 :

M∑
k=1

T ei
j,mk

≤ T̃ max, ∀ni
j ∈ Ni , mk ∈ M,

1 ≤ i ≤ |N | , 1 ≤ j ≤

∣∣∣N i
∣∣∣ , 1 ≤ k ≤ M, (19)



where C1 are constraints when uncertain events occur.
C2 indicates that each subtask can only be executed by one
ECN. C3 ensures that each ECN can only execute one subtask
at the same time. C4 is the binary constraint of decision vector
ai, j,mk .C5 indicates that the service time of the ECN cannot
exceed the maximum workable time T̃ max.

IV. PROPOSED ALGORITHM FOR TASK RESCHEDULING

In this section, for an uncertain UAV emergency com-
munication system, we develop an asynchronous shuffled
frog-leaping with feasible Jaya algorithm to solve the task
rescheduling problem, aiming to minimize the fine-grained
makespan. The ASFJ integrates the simplicity and efficiency
of the Jaya algorithm into the asynchronous shuffled frog-
leaping algorithm. In this section, two preliminary algorithms
are presented first. Then the ASFJ is introduced.

A. Preliminaries
1) Jaya Algorithm: Jaya algorithm is a new meta-heuristic

algorithm. First of all, Jaya algorithm forms the initial popu-
lation randomly, then evolves in the principle of being close
to the optimal individual and away from the worst individual.
Moreover, the involved parameters are only population size
and the number of iterations, who are not specific to the
performance of the Jaya algorithm. Hence, the Jaya algorithm
is a simple, effective optimization tool, and the new solution
can be updated as follows [36]:

o′

i = oi + r1 ∗ (oB − |oi |) − r2 ∗ (oW − |oi |), (20)

where oi and o′

i represent the current solution and the new
solution of the i-th individual, respectively. oB and oW are the
best and worst solutions. r1 and r2 are random values in the
range of [0, 1], respectively. The term oB − |oi | indicates that
the candidate solution is closer to oB and the term −(oW −|oi |)

indicates that it is farther away from oW .

2) The Shuffled Frog-Leaping Algorithm: SFLA is a novel
bionic swarm intelligence algorithm, that imitates the coop-
erative behavior of frogs in finding the locations with the
most food. It combines the advantages of the genetic-based
meme algorithm and the social behavior-based PSO algorithm.
Through the information interaction between different indi-
viduals (solutions) and different subgroups (memeplexes), the
global search performance can be improved, which can be
divided into the following four stages:

a) Initializing the population stage: Generate a pop-
ulation PO∗Q consisting of O solutions (frogs). Q is the
dimension of the solution, and each solution oi is expressed
as oi =

{
oi,1, oi,2 · · · , oi,Q

}
.

b) Sorting and grouping stage: Calculate the fitness
values of the O solutions and arrange them in ascending order.
Divide the population PO∗Q into S memeplexes, where each
memeplex contains O/S solutions. In the process of grouping,
the first solution is divided into the 1st memeplex, the S-th
solution is divided into the S-th memeplex, and the S+1-th
solution is also divided into the 1st memeplex. Therefore, the
division rule of memeplexes is:

s = o%S, ∀o = 1, 2, · · · , O , (21)

where s is the index of the s-th memeplex.

c) Local search stage: First, the global optimal solution
oG , the local optimal solution oB and the worst solution oW
are obtained. Second, at each iteration of the memeplex s, the
same method as PSO is used to improve the quality of the
worst solution oW . That is to say, according to (22), oW is
calculated to obtain the updated solution o′

W , and if o′

W is
smaller than oW , then oW will be replaced by o′

W ; otherwise,
oB in (22) will be replaced by the global optimal solution oG
and then continue to calculate and compare in the same way.
If the worst solution oW is still not improved, a new worst
solution o′

W will be randomly generated in the search space.

o′

W = oW + rand(0, 1) ∗ (oB − oW ). (22)

d) Global information interaction stage: All solutions
are reshuffled and reordered according to step b) when meme-
plexes evolve to a certain degree. Then, the new population
is re-divided into multiple new memeplexes, which enables
a global exchange of local information between memeplexes.
The local search stage and the global information interaction
stage are run repeatedly until the convergence condition is
satisfied.

All in all, although Jaya algorithm is simple and efficient,
it has the problems of premature convergence and insufficient
search ability when the population size is larger. Besides,
even if the SFLA has good convergence, the fixed size of
memeplexes makes the algorithm easy to fall into the local
optimum, and it is difficult to obtain an accurate solution in the
local search stage. Therefore, we propose an ASFJ algorithm,
which is a discrete optimization algorithm with: 1) a heuristic
population initialization method; 2) an asynchronous shuffled
frog-leaping method; 3) two feasible local search operators.

B. The Asynchronous Shuffled Frog-Leaping With Feasible
Jaya Algorithm

To solve the task rescheduling problem effectively in a UAV
emergency network, we develop the ASFJ algorithm. Firstly,
the heuristic population initialization method (Algorithm 1)
is presented, as well as the energy consumption and execu-
tion time guide to develop a subtask sequence vector and
an ECN assignment vector. Then, the asynchronous shuffled
frog-leaping method (Algorithm 2) divides the population into
multiple memeplexes that evolve independently. The number
of memeplex stagnations is an indicator for judging whether to
process local search or information interaction through fusion
memeplexes. This asynchronous manner enables the evolution
of memeplexes to avoid the information overlap caused by
the forced shuffling of the benchmark SFLA. Finally, for
the local search of each memeplex, the feasible Jaya-based
local search operator and the absorbing and swapping operator
are designed, and the global optimal solution, local optimal
solution, and local worst solution are utilized to improve the
quality of the solution and ensure that the formed solution
is feasible. On one hand, the advantages of simplicity and
efficiency of Jaya make the proposed ASFJ improve the local
search ability while controlling the complexity. On the other
hand, as a local search operator, it can appropriately alleviate
the limitations of the Jaya in large-scale instances. Figure 3
shows a flowchart of the ASFJ.



Algorithm 1 The heuristic population initialization method

Input: the population size O , the set of tasks N with |N | ∗

∣∣∣N i
∣∣∣

subtasks, and the set of available ECNs M.
Output:initial population PO∗Q
1. %Encoding representation
2. generating subtask sequence vector S R and ECN

assignment vector C A
3. for o = 1 : O do
4. % Initialize S R
5. for i = 1 : |N | do
6. for j = 1 :

∣∣∣N i
∣∣∣ do

7. S R(1, j) = i
8. end for
9. end for
10. shuffling S R
11. % Initialize C A
12. if 0 < o ≤ 0.2 ∗ O %Rule 1
13. for j = 0.5 ∗ Q + 1 : Q, ∀ j ∈ S R do
14. mk = arg min

mk∈M
T ei

j,m

15. end for
16. end if
17. if 0.2 ∗ O < o ≤ 0.4 ∗ O %Rule 2
18. for j = 0.5 ∗ Q + 1 : Q, ∀ j ∈ S R do
19. mk = arg min

mk∈M
W i

j,m

20. end for
21. end if
22. if 0.4 ∗ O < o ≤ O %Rule 3
23. for j = 0.5 ∗ Q + 1 : Q, ∀ j ∈ S R do
24. mk = random(mk ∈ M)
25. end for
26. end if
27. end for

Fig. 3. The flowchart of ASFJ.

1) Encoding, Decoding and Initialization:
a) The encoding and decoding scheme: The purpose of

the encoding and decoding scheme of the task rescheduling
problem is to optimize the subtask sequence vector and ECN
assignment vector. The subtask sequence vector represents
the execution order of all subtasks, and its length denotes
the number of subtasks. We express the sequence vector of
|N | tasks as S R =

{
1, · · · , i j , · · · , |N ||N |∗|N i |

}
, where i =

1, · · · , |N | expresses |N | tasks, j = 1, · · · ,
∣∣N i

∣∣ expresses

Algorithm 2 The asynchronous shuffled frog-leaping method
Input: the population PO∗Q , the number of population iterations T,
the number of memeplex iterations K , stagnation detection period
stperiod .
Initialization:|S| = O

/
2, stnum = 0, O_me = 2, stperiod =

K
/

O_me.
Output:the optimal solution ooptimal with S R and C A
1. while t ≤ T
2. % Global Exploration
3. for o = 1 : O do
4. compute fine-grained makespan F̃gmi

j as (17)
5. end for
6. sort all solutions in ascending order of F̃gmi

j , and divide
them into S memeplexes as (21)

7. find the global optimum oG with min(F̃gmi
j )

8. % Local exploitation parallelly
9. for s = 1 : S do
10. for k = 1 : K do
11. perform a local search as Section IV-B-III, find the local

best solution oB and worst solution oW
12. if k = stperiod and stnum ≥ O_me

/
2

13. merge s ∈ s_st
14. end if
15. end for
16. end for
17. end while

Fig. 4. Example for encoding and decoding scheme.

the number of occurrences of the task Ni and also the subtask
ni

j . The ECN assignment vector represents the index of ECNs
that executes each subtask sequentially, which is denoted as
C A = {1, · · · , m, · · · , M} .

Figure 4(a) shows the two encoding vectors of the 5
ECNs and 4 tasks in Fig. 1(a). S R = {4, 3, 2, 4, 4, 1, 3, 4}

represents that the execution sequence of the subtask is n4
1 →

n3
1 → n2

1 → n4
2 → n4

3 → n1
1 → n3

2 → n4
4. C A =

{3, 2, 4, 5, 1, 1, 1, 2} denotes that the subtask n1
1 is executed

at ECN m3, the subtask n2
1 is assigned to ECN m2, and so

on.
This paper utilizes an active decoding scheme to minimize

the maximum fine-grained makespan, which has been proven
to be feasible [37]. The scheduling decision of the subtask to



be executed on the ECN with the earliest fine-grained start
time is made by comparing two parameters, which are the
fine-grained makespan of the dependent predecessor and the
predecessor assigned to the same ECN. The decoding result
is shown using a Gantt chart in Fig. 4(b). The TFNs below
and above the line denote the start time and completed time,
respectively.

b) The heuristic population initialization method: The
makespan of all tasks is expressed as the time gap between
the start time of the first subtask and the completed time of
the last subtask, and the execution time of each subtask is an
important factor affecting the makespan. Energy consumption
determines the utilization of ECNs. Therefore, the generation
of initial solutions is guided by the principles of minimizing
the execution time and energy consumption. To ensure the
diversity of solutions, it is necessary to generate feasible initial
solutions randomly.

To sum up, we propose a heuristic population initialization
method guided by energy consumption and execution time to
allocate ECNs initially. The details are given in Algorithm 1.
The rules are described as follows:

Rule 1: For each subtask ni
j , globally search for the ECN

mk with the shortest execution time T ei
j,mk

.

Rule 2: For each subtask ni
j , globally search for the ECN

mk with the lowest energy consumption W i
j,mk

.

Rule 3: Randomly assign subtasks to available ECNs.
The population is formed according to the proportion of

20% for each of rule 1 and rule 2, and the proportion of 60%
for rule 3, which ensures that the solution has a high quality,
and also guarantees the diversity of the population, preventing
similar individuals from reducing the search efficiency of the
algorithm.

2) The Asynchronous Shuffled Frog-Leaping Method: The
main idea of ASFJ is that the feasible Jaya algorithm
asynchronously evolves the memeplexes of the shuffled frog-
leaping method. In the initial evolution stage, according to the
quality of the fitness (fine-grained makespan), the population
is divided into multiple memeplexes, which accelerates the
global search ability and diversity. As the number of iterations
increases, the memeplexes satisfying the stagnation threshold
of the local optimal solution are adaptively shuffled, which
makes the information interaction more frequent, representing
the transition from global exploration to local exploitation. The
pseudocode is shown in Algorithm 2.

The details of the asynchronous shuffled frog-leaping
method are as follows:

Step 1: For the O solutions of the population PO∗Q gener-
ated in Section IV-B-I, we calculate the fine-grained makespan
according to (17), and sort in ascending order.

Step 2: According to the rule of (21), divide PO∗Q into S
memeplexes. In the first iteration, we set the initial number of
memeplexes |S| to be O

/
2 to make the global search more

diverse.
Step 3: For the memeplex s ∈ s_st, where s_st ⊆ S is the

set of stagnant memeplexes, the current local optimal solution
has been found according to Section IV-B-III. If the number
of stagnations stnum is greater than O_me/2, then merge

Fig. 5. Two local search operators (a) the feasible Jaya-based local search
operator; (b) the absorbing and swapping operator.

memeplexes s_st until the number of memeplexes |S| = 1,

where O_me is the number of solutions in the memeplex s;
Otherwise, continue the local search. In general, the period
of stagnation detection stperiod is set as the ratio of the
number of local iterations to the number of solutions within
the memeplex.

Step 4: Continue to run step 1-step 3 until the size of S is
equal to O, that is, all memeplexes are merged into one.

Following step 1-step 4, the adaptive scale of memeplexes
avoids the assimilation of solutions. On the one hand, the
solution evolves towards the local optimal solution of the
memeplex. On the other hand, the solution is guided by
the global optimal solution. Therefore, both global and local
search capabilities are confirmed.

3) Two Feasible Local Search Operators: For memeplex
s ∈ S, as the number of iterations increases, the popula-
tion quality becomes higher and the local optimum tends
to stagnate. In order to get a better local optimal solution,
we design two feasible local search operators, including the
feasible Jaya-based local search operator and the absorbing
and swapping operator.

The feasible Jaya-based local search operator is pro-
posed for the subtask sequence vector, and it draws on
the advantages of the Jaya algorithm that are close to the
global optimal solution and far from the local worst solution,
and takes advantage of the local optimal solution to make
the candidate solutions feasible. The optimization process is
illustrated with an example in Figure 5(a). The details are as:

Step1: Obtain the global optimal solution oG . For the
memeplex s where the candidate solution oC is located, obtain
the local optimal solution oB and the local worst solution oW .

Step 2: Compare the candidate solution oC with the local
worst solution oW and remove memes at the same position.

Step 3: Map the global optimal solution oG to the empty
position to form the new solution o′

N .

Step 4: Evaluate the feasibility of the new solution o′

N , for
example, whether the dependency constraint is satisfied. For
infeasible memes, the local optimal solution oB is used to
amend it to the feasible solution oN . In Fig. 5(a), it is assumed
that subtask n3

2 and subtask n4
4 are dependent, that is, n3

2 must
obtain the computing result of n4

4 before it can be executed.
Hence, oN is not feasible, and must be adjusted.

Therefore, the solution obtained from Fig. 5(a) is oN =

[4, 3, 4, 4, 2, 1, 3, 4]. The proposed operator avoids the same
information as the worst solution, inherits the information



 

of the global optimal solution, and effectively repairs the
infeasible solution with the local optimal solution.

We present the absorbing and swapping operator for the
ECN assignment vector, which is inspired by the principle of
head-on collision [38]. After the collision, object 1 and object
2 may change their running direction based on their respective
masses and speeds: i) Faster objects will continue to move
in the original direction; ii) When the speed is similar, it is
reflected in the opposite direction or static movement patterns.

We map the collision scenario described above to the
task rescheduling problem, where candidate solution oC is
equivalent to object 1, local optimal solution oB is equivalent
to object 2, and the execution time of each meme in a solution
is equivalent to mass. (17) and (5) calculate the Fgmi

j of each
meme, which is equivalent to speed. The following two cases
may occur after the two solutions collide:

Case 1 (absorbing operator): If Fgm1 > Fgm2, indicating
that the speed of meme oC,i in candidate solution oC , is greater
than that of meme oB,i in local optimal solution oB, then
keep moving in the original direction and move away from
oC . Subsequently, the vacant position absorbs meme oB,i to
bring oC closer to oB . As shown in Fig.5 (b), in the collision
crossover between oC and oB, task is assigned to ECNs m4
and m1, resulting in Fgm of 2.71 and 1.56, respectively.
Consequently, the meme “4” with a larger Fgm moves away
from oC , and the vacant position absorbs meme “1” from the
same position in the oB . When Fgm1 < Fgm2, a similar
approach is applied as in Case 1.

Case 2 (swapping operator): If Fgm1 ≈ Fgm2, indicating
that the meme oC,i and the meme oB,i have similar speeds,
then they are reflected or become stationary, which indicates
that the assignment decision is efficient and close to a local
optimum. Furthermore, to escape the local optimum, we swap
the meme oG,i at the same position as the global optimum with
the meme oC,i , which ensures that the global optimal solution
oG does not degenerate over iterations. In Fig. 5 (b), memes
“2” and “4” exhibit similar speeds. We guide the evolution of
the oC by swapping meme “3” from the same position in the
global optimal solution oG with meme “2” in the oC .

Therefore, the solution obtained from Fig. 5(b) is oN =

[3, 2, 1, 5, 1, 4, 1, 3]. In addition, feasibility detection is per-
formed for the above two cases, and the infeasible meme
is swapped by the randomly selected one from the list of
workable ECNs.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the efficiency and effectiveness
of the proposed ASFJ algorithm in deterministic and uncertain
UAV emergency networks. All algorithms are coded in Python
3.8.8 and run on a 1.6-GHz Intel Core i5 processor with
16 GB RAM.

We assume that, with the help of the disaster command
center, the current network status and task information are
known at the beginning [34]. In the UAV emergency res-
cue scenario, UAVs and ground devices provide computing
services in an area of 400 × 400 m2, and the ratio of the
number is 1:4. Each task has 4 dependent subtasks. The
average time between the arrivals of two consecutive tasks

TABLE II
PARAMETER SETTING

follows an exponential distribution, with an average of 5 to
25 units of time. All subtasks are potentially processed by
workable ECNs if the constraints are satisfied. UAVs serve as
edge servers and have higher computing capacity than ground
devices, which are 3.6∗109Hz and 1∗109Hz, respectively. The
size of input data u j is generated randomly within [2], [8]
Mbit. We assume orthogonal frequency division multiplexing
access is used. In the process of data transmission, the channel
is orthogonal and there is no co-channel interference. For
uncertainty, we consider two kinds of uncertain events, task
insertion and ECN destruction. Assume that the number of
inserted tasks is an integer randomly generated from [1, |N |]
[39]. Similarly, the times at which ECNs are destroyed obey
an exponential distribution, and the number of failed ECNs
is an integer randomly generated from [1,1/5∗M], where M
is the number of ECNs. The parameter settings are listed in
Table II.

To verify the performance of ASFJ, we quantitatively com-
pare ASFJ with three benchmark algorithms, which are briefly
described as follows:

1) GA: GA is a classic evolutionary algorithm. Its encoding
and decoding representation and population initialization
method are the same as those in Section IV-B-I. The
crossover and mutation rate are 0.9 and 0.5.

2) CF [3]: CF models the heterogeneous task allocation as
a potential game between players and agents, and adopts
a greedy strategy to search for a solution that maximizes
the benefit within the limited budget. In order to ensure
that ECN is available, we set the budget to 90% of the
workable time of each ECN.

3) SFDE: SFDE is a discrete self-adaptive differential
evolution algorithm with a shuffled frog-leaping strat-
egy [17], which uses DE as the local search operator
to perform unique mutation, crossover, and selection
operations for each solution in different memeplexes.
This experiment follows the same parameter setting as
ASFJ.



Fig. 6. The Gantt chart of (a) original scheduling; (b) insertion rescheduling; (c) destruction rescheduling.

TABLE III
FGM VALUES AND MAKESPAN GAP BETWEEN PROPOSED ASFJ AND SFDE

The evaluation metrics include makespan, effectiveness, and
fine-grained makespan, which can be described as:

1) Makespan represents the time gap from the beginning
of the first subtask being executed to the end of the last
one, which is the most intuitive and common evaluation
index for task scheduling performance.

2) To evaluate the adaptability to uncertain events,
we employ an evaluation metric that characterizes the
repair ability of the algorithm, called effectiveness,
which is calculated as:

e f f =

M∑
mk ,m′

k=1

Rm′

k − T mk

T mk
, ∀ {mk, mk′} ∈ M. (23)

where Rm′

k − T mk denotes the gap between the
rescheduling makespan Rm′

k and the original scheduling
makespan T mk on ECN mk . The larger e f f represents
the greater proportion of the makespan gap to the orig-
inal makespan, indicating that the algorithm has made
greater efforts to repair the uncertainty and has greater
repair ability.

3) As shown in (17), the fine-grained makespan is deter-
mined by the real-time status of the task, the makespan,
and the ECNs’ idle time. It is the fitness in the popula-
tion iteration process.

Therefore, we evaluate the performance of AFSJ in deter-
ministic original scheduling and uncertain rescheduling when
the number of ECNs and tasks are fixed and varied. We set the
number of individuals to be 100, the maximum global gener-
ation number T is 1000, and the maximum local generation
number K is 500.

A. Performance With a Fixed Number of Tasks and ECNs

We evaluate the performance of the ASFJ with 10 ECNs
and 8 tasks (including 32 subtasks). Figure 6(a)-(c) visualize
the results of the original scheduling, insertion and destruction
rescheduling, respectively. The horizontal axis is time, and
the vertical axis is ECN. The same color represents different
subtasks of the same task. ni_ j denotes the j-th subtask of
the i-th task. The area below the line represents the fuzzy start
time of the subtask, and the area above represents the fuzzy
finish time. Figure 6(b) exhibits rescheduling decisions after
inserting tasks n9 and n10 (including 8 subtasks n9_1-n10_4)

at rescheduling time Rr. It can be seen that the subtasks that
have already started execution are not affected, e.g., subtask
n3_2. However, unstarted subtasks may be reassigned, e.g.
the subtask n1_4. Fig. 6(c) demonstrates the repair of the
original scheduling after ECNs m2 and m8 were destroyed.
In Fig. 6(c), all unfinished subtasks on the subtask queue of
the damaged ECNs need to be reassigned, e.g., subtask n6_2.
Subtasks queued on non-destroyed ECNs are scheduled the
same as insertion rescheduling.

Table III compares the minimum and average values of
the fine-grained makespan (“best/avg”) and the makespan gap
(“gap”) between rescheduling and original scheduling of ASFJ
and SFDE for different problem instances. The problem sizes
are the combination k∗4∗m of k tasks, and each task has
4 subtasks, m ECNs, e.g., 8 ∗4∗10. We can see that the
performance of ASFJ is better than SFDE in all the instances
since the local search operator of ASFJ has the advantage
of simplicity and efficiency, while SFDE involves multiple
parameters and it is difficult to obtain appropriate values.

Figure 7 evaluates the generation process of the proposed
ASFJ under the original scheduling, insertion and destruction
rescheduling. ASFJ reaches a basic convergence when the
population evolves to 500 generations. This indicates that the



Fig. 7. ASFJ convergence performance.

Fig. 8. Insertion rescheduling performance.

Fig. 9. Destruction rescheduling performance.

ASFJ achieves a stable state and searches for a relatively
optimal solution within this number of generations.

Figure 8 and Figure 9 depict the makespan and effectiveness
under insertion and destruction rescheduling. Figure 8(a) and
Figure 9(a) show the makespan as the number of loops
changes. In each loop, the population has evolved the optimal
rescheduling solution as shown in Fig.7. The purpose of
Fig. 8 (a) and Fig. 9 (a) is to evaluate the performance of the
ASFJ algorithm when the number of ECNs and the number
of tasks are fixed, while demonstrating stability. It is obvious
that ASFJ is superior to other benchmark algorithms. ASFJ
is able to save makespan by 10.2% and 20.9% on average
than SFDE, respectively. The main reason is that the two
local search operators of AFSJ search jump out of the local
optimum, while SFDE converges prematurely.

Figure 8(b) and Fig. 9(b) demonstrate the effectiveness with
box plots. It can be seen that the InterQuartile Range of AFSJ
and SFDE is smaller, indicating that their effectiveness is
more stable than the others. In Fig. 8(b), the median of CF is
about 8.4% higher than AFSJ. This is because in small- scale

Fig. 10. Makespan of original.

instances, CF can iteratively obtain task-scheduling coalition
pairs that minimize fine-grained makespan. However, the
search space in ASFJ is smaller, which is more susceptible to
the influence of local optimal solutions and ignores the wider
search space. Therefore, Fig. 8 (b) shows the performance
boundary of ASFJ in small-scale instances, and also provides
guidance for further optimization of the scalability of ASFJ.
The median of CF is about 3.5% lower than AFSJ in Fig. 9(b).
The goal of CF is to allocate tasks in the process of balancing
cost and benefit, but the budget will be reduced after the
ECNs fail, which hinders the generation of better alliance pairs
and dilutes the benefits. GA searches for the optimal solution
randomly, and the effectiveness and stability are also the worst.

B. Performance When the Number of ECNs Changes

We evaluate the trend of the makespan, the effectiveness,
and the fine-grained makespan versus the number of ECNs.
The original number of tasks |N | is set to 20 (including
80 subtasks). In order to intuitively compare the performance
of rescheduling, the makespan of the original scheduling is
depicted in Figure 10, and it can be seen that the makespan
of all algorithms shows a downward trend. The reason is that
more ECNs provide more resources, which can respond to
requests more quickly. In particular, compared with bench-
marks, ASFJ is able to save makespan by about 18% on
average, which confirms the advantage of ASFJs’ original
scheduling. GA has the maximum makespan, and the differ-
ence between GA and ASFJ is at least 19.2% from 10 ECNs
to 50 ECNs, which can be explained by the lack of local
search ability of GA, which often obtains the suboptimal
solution rather than the optimal solution. The makespan of
ASFJ can save up to 35.2% compared with CF. It can be
concluded that the constraints of CF are static, but the task
scheduling strategy is the result of the dynamic coupling of
the tasks and the ECNs’ state. The core of the exploitation
process of SFDE is DE, and the information differentiation
among solutions of the DE becomes weaker as the number
of iterations increases, which reduces the exploitation ability.
Therefore, the makespan of SFDE is about 8.84% higher on
average than ASFJ.

Figure 11(a) and Figure 11(b) consider uncertainties of task
insertion and ECN destruction. To quantify the impact of
uncertainty, the number of inserted tasks list in Fig. 11(a) is
set to [3], [5], [8], [10], [13], [18], [20], [23], and [25] from



Fig. 11. Makespan of rescheduling.

10 ECNs to 50 ECNs, and the number of destroyed ECNs list
in Fig. 11(b) is set to [2], [3], [5], [7], [8], [10], [12], [13],
and [15]. Figure 11(a) and Fig. 11(b) show that the makespan
decreases as the number of ECNs increases. Compared with
Fig. 10, the makespan of ASFJ, GA, CF, and SFDE in
Fig. 11(a) increased on average by 3.55ms, 2.29ms, 3.83ms,
and 3.57ms, respectively. The makespan of GA is the largest
in Fig. 11(a), but the gap between original and insertion is
the smallest because the result is obtained by sacrificing some
tasks, whose finished time exceeds maximum tolerable time
in suboptimal solutions. The makespan increment of ASFJ
is smaller than CF and SFDE, which can be explained by
the fact that our proposed insertion rescheduling policy can
adjust the assigning strategy of the affected original tasks in
a timely manner, and adapt to the arrived tasks. Furthermore,
the makespan gap between original scheduling and insertion
rescheduling of ASFJ is reduced by 2.1% between 10 ECNs
and 50 ECNs, at least 4.6% smoother than benchmarks.
Especially, the makespan gap of CF is reduced by 19.8%
between 10 ECNs and 50 ECNs, which is the largest. The per-
formance gain of ASFJ over CF decreases from 40.9% with 10
ECNs to 3.7% with 50 ECNs in Fig. 11(a). This is because the
cost of each task-ECN pair in CF is fixed, and inserted tasks
will increase the execution cost of the original tasks, resulting
in the distance from the optimal solution. ASFJ outperforms
SFDE by 7.3% on average, which demonstrates that the two
feasible local search operators can make the algorithm jump
out of the local optimum. When the number of ECNs is 10 and
15, the average gap between the makespan in Fig. 11(b) and
the makespan in Fig. 10 is about 8.56ms and 5.53ms, respec-
tively. In addition, the makespan of ASFJ is the smallest and
decreases by 3.77ms from 10 ECNs to 50 ECNs, which reflects
that ASFJ has better robustness when the system fluctuates.

Figure 12 compares the effectiveness versus the number of
ECNs. As shown in (23), effectiveness is defined as the sum of
the ratios of the makespan gap to the original makespan on all
ECNs. A larger effectiveness represents a greater change in the
finish time of the last task on each ECN during rescheduling,
which reflects the algorithm’s effort in responding to uncer-
tain factors, i.e., repair ability. In Fig.12, the effectiveness
decreases as the number of ECNs increases, indicating that this
is due to the fact that the original scheduling is less affected
when more ECNs are proficient in dealing with fluctuations
caused by uncertainty.

Fig. 12. Effectiveness of original.

Figure 12(a) illustrates the effectiveness of insertion
rescheduling. ASFJ has greater effectiveness than others. Com-
bined with the results of the minimum insertion rescheduling
and original makespan in Fig. 10 and Fig. 11(a) for ASFJ,
we can infer that larger effectiveness implies that ASFJ more
actively adjusts the execution decisions on each ECN to
respond to the inserted tasks to minimize the fine-grained
makespan. The average effectiveness difference between ASFJ
and CF is nearly 11.8 %. This is because the increase in
the number of tasks represents a higher requirement for the
capacity of the alliance. However, in order to greedily search
for the optimal task-ECN pairs under constraints, some tasks
of CF cannot be assigned to any coalition.

Figure 12(b) plots the effect of the number of ECNs
on effectiveness under destruction rescheduling. The slope
becomes smaller as the number of ECNs increases, which
can be explained by the fact that when the number of tasks
is constant and more ECNs provide rescue services, ECNs’
failure has less impact on the original scheduling with effective
rescheduling, and the remedial effect on the original schedul-
ing is smaller. As we expected, the effectiveness of ASFJ
was on average about 38.4%, 21.2% and 16% higher than
GA, CF, and SFDE, respectively. For SFDE, the imbalance
between exploration and exploitation reduces the effectiveness.
The performance difference between SFDE and CF increases
from 2.2% at 10 ECNs to 27.6% at 50 ECNs, which proves
the scalability of CF and it is more beneficial in large-scale
applications. Effectiveness of GA is almost always the lowest,
showing that GA is weaker than others in adapting to system
changes.

In Fig. 13, the fine-grained makespan decreases as the
number of ECNs increases, which implies that more resources
are allocated to support task rescheduling, to ensure higher
ECNs’ utilization and lower makespan. ASFJ is able to
decrease fine-grained makespan by 3.5%, 11.2% and 3.46%
than SFDE in the original, insertion, and destruction sce-
narios, respectively, which indicates that the proposed two
Jaya-based feasible local search operators are superior to the
DE algorithm. For the original scheduling, when the number
of ECNs is greater than 35, almost all tasks are effectively
dispatched, and as a result, the fine-grained makespan tends
to be stable. The performance gap of insertion rescheduling
is the largest. This is because the increase in the number of
tasks maps the increase in the population. The concise and



Fig. 13. Fine-grained makespan of original and rescheduling.

Fig. 14. Makespan under original.

fast advantages of Jaya make ASFJ efficiently search for high-
quality solutions. Besides, the reason for the large fine-grained
makespan of SFDE in destruction rescheduling is that it does
not repair the infeasible solution, while ASFJ guarantees the
generation of feasible solutions through the global optimal
solution and local optimal solution.

C. Performance When the Number of Tasks Changes

Considering deterministic and uncertain emergency scenar-
ios, we evaluate the effect of the number of tasks on makespan,
effectiveness, and fine-grained makespan when the original
number of ECNs is 10. For insertion rescheduling, the number
of tasks arriving from 10 tasks to 50 tasks is 3, 5, 8, 10,
13, 18, 20, 23, and 25, respectively. The number of failed
ECNs is 5 in destruction rescheduling. Similarly, the original
makespan of the four algorithms is specified in Figure 14.
It can be seen that the makespan becomes larger as the number
of tasks increases. This is because the next subtask can only be
executed after the successive predecessor subtask is released,
and more tasks make the waiting time longer. ASFJ saves
at least 4.2% on average compared with other algorithms,
reflecting the scheduling benefits of ASFJ.

Figure 15 evaluates the makespan of task insertion and
ECN destruction rescheduling based on the optimal original
scheduling shown in Fig. 14. We can see that the makespan
becomes larger as the number of tasks increases. In Fig. 15(a),
the smallest makespan is achieved by ASFJ compared to the
other approaches, i.e., around 16%, 7.5% and 6.4% lower
than GA, CF and SFDE when the number of tasks is 50,
respectively, reflecting the ability to quickly respond to uncer-
tain factors. As shown in Fig. 15(b), the makespan of the

Fig. 15. Makespan under rescheduling.

Fig. 16. Effectiveness under original.

four algorithms increases by at least 72.4% from 10 tasks to
50 tasks, because dependency constraints and resource com-
petition expand the waiting time. When the number of tasks
is 10, the makespan of the destruction rescheduling increases
by 3.64ms on average compared with the original scheduling,
which exhibits the service capability gap between 10 ECNs
and 5 ECNs.

Figure 16(a) shows the change in the effectiveness of
insertion rescheduling under different task numbers. The effec-
tiveness of ASFJ and SFDE increases when the number of
tasks increases, indicating that the increase in the proportion
of the makespan gap to the original makespan, and the rate
of increase in the makespan gap is greater than the rate of
increase in the original makespan. ASFJ has the greatest
effectiveness because it actively adjusts the scheduling strategy
to respond to the inserted tasks while satisfying the constraints
in the rescheduling process, rather than simply deploying
the tasks on idle ECNs to maintain the original scheduling
decision. However, the effectiveness of GA and CF is reduced,
indicating that either the ECNs are always occupied, there are
no free ECNs to provide services for other subtasks, or the
order of subtasks does not perfectly adapt to constraints such
as dependencies. It is worth noting that after the number of
tasks is greater than 40, the performance of the four algorithms
converges, which can be explained by the fact that each ECN
is saturated to process the arrived tasks. In particular, when
the number of tasks is equal to 50, the effectiveness of the
proposed ASFJ reaches 0.59 and exceeds other algorithms
by 21.5%.

Figure 16(b) analyzes the results on the effectiveness of
destruction rescheduling when the number of tasks changes.



Fig. 17. Fine-grained makespan of original and rescheduling.

It can be seen that ASFJ maintains maximum effectiveness
because when the number of ECNs is less, the diversity of
the ECN assignment vector in the solution is reduced, while
ASFJ ensures the diversity of solutions through the proposed
population initialization and dynamic division and fusion of
memeplexes. Therefore, a more effective solution not only
makes full use of the remaining workable ECNs but also
obtains beneficial task-ECN pairs to repair the impact of
the destroyed ECNs on the original scheduling. The shuffled
frog-leaping prevents the solution of SFDE from being assim-
ilated due to the reduction of the number of ECNs, and the
advantage is more obvious when the number of tasks increases.
Therefore, as the number of tasks ranges from 10 to 50, the
effectiveness gap between ASFJ and SFDE decreases from
0.34 to 0.08.

Figure 17 shows the fine-grained makespan under uncertain
rescheduling and original scheduling. The performance of
destruction rescheduling is the worst, which is due to the
conflict between the larger number of tasks and the limited
computing resources. The fine-grained makespan of ASFJ
hardly fluctuates with the number of tasks, that is to say, the
ratio of the makespan based on the task status value to the
ECNs’ idle time is basically stable. This can be explained
by the fact that when the number of tasks increases, ASFJ
maximizes the utilization of ECNs, taking into account the
original priority and observation priority of the task at the
same time to try to let the task be released when the state
value is low.

VI. CONCLUSION

In this article, we considered an uncertainty-aware UAV
emergency network, in which several new tasks arrive, some
ECNs fail unpredictably, or ECNs’ state parameters fluctuate.
To improve rescue response efficiency, we formulated the task
rescheduling problem to minimize the fine-grained makespan,
which is designed to simultaneously characterize makespan
and ECN utilization. To solve the optimization problem,
we proposed the ASFJ algorithm. Firstly, we designed the
heuristic population initialization method, in which energy
consumption and execution time lead to high-quality initial
solutions. Secondly, we presented the asynchronous shuffled
frog-leaping method to divide the population into multiple
memeplexes that evolve independently. Finally, to balance
the exploration and exploitation process, we designed the
feasible Jaya-based local search operator and the absorbing

and swapping operator. Through a large number of simula-
tion experiments under deterministic and uncertain scenarios,
we evaluated the performance of ASFJ. Compared with
other algorithms, ASFJ has better performance in terms of
makespan, effectiveness, and fine-grained makespan. In future
work, we will further investigate the task rescheduling scheme
driven by the coupling relationship between energy consump-
tion, execution time, and stability in uncertainty-aware UAV
emergency networks, to improve the adaptability to different
scale problems.
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