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Abstract—Real-time wildfire detection is crucial for enabling
prompt intervention and minimizing environmental and
economic damages; however, deploying high-accuracy detection
models on resource-constrained platforms like unmanned
aerial vehicles (UAVs) presents significant challenges due to
limitations in computational capacity and power availability. In
this paper, we propose LCAM-YOLOX, an enhanced object
detection framework that integrates a Layer-wise Channel
Attention Module (LCAM) into the YOLOX architecture to
improve detection accuracy while maintaining computational
efficiency. The model is optimized for deployment on FPGA
platforms through 8-bit integer quantization, facilitating efficient
inference on devices with limited resources. We implement and
evaluate the LCAM-YOLOX model on the Xilinx Kria KV260
FPGA platform, demonstrating that it achieves a quantized
mean Average Precision (mAP) of 78.11%, outperforming
other state-of-the-art models such as YOLOv3, YOLOv5, and
YOLOX-m. Moreover, the LCAM-YOLOX model processes at
195 frames per second (FPS) using a single DPU core on
the KV260, exceeding real-time processing requirements while
consuming only 10.45 W of power, which translates to the highest
performance per watt ratio among the tested platforms. These
results highlight the suitability of the KV260 FPGA as an optimal
choice for deploying high-performance, energy-efficient wildfire
detection models on UAVs, enabling real-time monitoring in
resource-constrained environments.

Index Terms—Quantized Neural Networks,
Hardware-Software Co-Design, Aerial Robotics, Computer
Vision for Other Robotic Applications, Energy and
Environment-aware Automation, Field Robots, Intelligent
Transportation Systems

I. INTRODUCTION

Wildfires significantly threaten ecosystems, human lives,
and property worldwide. Rapid detection and response are
crucial to mitigate their devastating effects. Unmanned Aerial
Vehicles (UAVs) have emerged as effective tools for real-time
wildfire monitoring due to their flexibility and ability to access
remote areas [1], [2]. However, implementing advanced fire
detection algorithms on UAVs is challenging due to limitations
in computational resources and energy constraints.

Deep learning models, particularly convolutional neural
networks (CNNs), have been widely adopted for wildfire
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detection [3], [4]. Models like YOLOv5 and its variants have
shown high accuracy in detecting fires from aerial images
[5], [6]. Nevertheless, these models are often computationally
intensive, making them unsuitable for real-time applications
on resource-constrained UAVs. The constraints become even
more critical when considering drone communication and
battery limitations [7], [8], as limited battery capacity
restricts flight time and continuous data transmission, directly
impacting the operational efficiency of UAV-based monitoring
systems. Efficient hardware and algorithmic optimizations
are therefore imperative to ensure reliable and uninterrupted
operation during critical wildfire monitoring tasks.

To address these challenges, lightweight models and
optimization techniques have been explored [9], [10].
Quantization and pruning are common methods to reduce
model size and computation without significantly sacrificing
accuracy [5]. Hardware accelerators on Field-Programmable
Gate Arrays (FPGAs) offer customizable architectures that can
be optimized for specific tasks while consuming less power,
making them ideal for UAV applications [10].

In this paper, we propose an FPGA-accelerated wildfire
detection system using a modified YOLOX model enhanced
with a Layer-wise Channel Attention Module (LCAM).
LCAM is a lightweight attention mechanism designed to
improve feature extraction by refining channel-wise feature
maps at multiple network layers. By dynamically emphasizing
important channels while suppressing less relevant ones,
LCAM enhances the model’s ability to detect objects,
especially small and complex features such as wildfires.

The proposed LCAM-YOLOX model is quantized to an
INT8 format for efficient deployment. Quantization refers to
the process of reducing the precision of model weights and
activations from 32-bit floating point (FP32) to 8-bit integer
(INT8), which reduces computational complexity and memory
usage while maintaining near-original accuracy. The quantized
accuracy is measured using mean Average Precision (mAP), a
standard metric that evaluates the precision of object detection
models by computing the average precision across multiple
object classes.

The LCAM-YOLOX model is deployed on the Xilinx Kria
KV260 FPGA platform to achieve high detection accuracy
and real-time performance suitable for UAV-based wildfire
monitoring. The overall system architecture is illustrated in
Fig. 1.

Our major contributions are:
1) We develop the LCAM-YOLOX model by integrating



Fig. 1: Overall system architecture illustrating the end-to-end wildfire detection pipeline: from UAV image acquisition through
FPGA-accelerated processing to fire detection.

a Layer-wise Channel Attention Module into YOLOX,
enhancing detection accuracy in complex wildfire
scenarios.

2) We apply quantization techniques to optimize the
model for FPGA deployment, significantly reducing
computational load and power consumption.

3) We achieve substantial improvements in frames per
second (FPS), enabling real-time wildfire detection on
UAV platforms.

4) We demonstrate the system’s capability to function as a
Flight Companion Computer (FCC) or replace traditional
flight controllers on UAVs.

The rest of the paper is organized as follows: Section
II reviews related works on wildfire detection using deep
learning and hardware accelerators. Section III details our
methodology, including the proposed LCAM-YOLOX model,
quantization techniques, and FPGA deployment process.
Section IV presents the experiments conducted to validate
our approach. Section V discusses the results and analyzes
the performance of our system compared to existing methods.
Finally, Section VI concludes the paper and suggests future
work directions.

II. RELATED WORKS

The application of Unmanned Aerial Vehicles (UAVs) for
wildfire detection has garnered significant research interest
due to their capability to provide real-time monitoring over
extensive and inaccessible terrains. Recent studies have
demonstrated the effectiveness of UAVs equipped with various
sensing technologies and computer vision algorithms for early
fire detection and response [11]–[14]. Concurrently, deploying
machine learning (ML) models on resource-constrained UAV

platforms has led to investigations into hardware acceleration
using Field-Programmable Gate Arrays (FPGAs). This section
reviews related works in these domains.

Several studies have focused on enhancing fire detection
capabilities using UAVs equipped with advanced computer
vision algorithms. The YOLO family of network models have
been widely adopted, with various optimizations proposed for
UAV applications. Zhou et al. [3] and Song et al. [6] developed
lightweight variants of YOLOv5 using MobileNetV3 and
RepVGG respectively, achieving improved computational
efficiency suitable for real-time applications. Jiang et al. [4]
proposed UAV-FDN, incorporating efficient attention modules
and multi-scale fusion to enhance detection accuracy while
reducing false positives and negatives.

Attention mechanisms and multi-modal approaches have
been leveraged to improve detection performance in complex
environments. Yang et al. [15] and Zhang et al. [16] enhanced
detection systems with attention modules, specifically
targeting early-stage and small-scale fire detection. Several
researchers have explored multi-modal sensing approaches,
with Xie et al. [10] utilizing dual-light vision and Choutri
et al. [1] combining YOLO-based models with stereo vision
for improved detection and geo-localization capabilities. The
integration of hardware optimization techniques has been
explored to meet the computational demands of real-time fire
detection on UAVs. Recent work has focused on developing
efficient system architectures and practical implementations
for fire detection and response [2], [5], [9]. Researchers have
also investigated ways to optimize computational resources,
with Fouda et al. [17] and Hussain et al. [18] proposing
adaptive frameworks that balance model complexity with
detection accuracy.

Beyond fire detection, the deployment of ML models on



Fig. 2: Architecture of the LCAM-YOLOX model for wildfire detection. The model integrates Layer-wise Channel Attention
Modules within the backbone to enhance feature extraction.

FPGAs for UAV applications has shown promising results.
Malle et al. [19] and Kolpakov et al. [20] demonstrated the
benefits of FPGA acceleration in various UAV perception
tasks, highlighting improvements in latency and power
consumption. Moreac et al. [21] introduced dynamic partial
FPGA reconfiguration for UAV tasks, while Kaziha et
al. [22] showed significant speedups using FPGA-accelerated
neural networks optimized with genetic algorithms. These
advances in FPGA acceleration, combined with techniques
like map-reduce processing [23], have paved the way for the
efficient implementation of complex vision algorithms on UAV
platforms.

Recent advancements in UAV-based systems for
real-time applications have demonstrated the potential
of integrating advanced machine learning techniques to
enhance performance. Ye et al. [24] propose RTD-Net, a
real-time object detection network combining CNN and
transformer models, leveraging a lightweight backbone
and attention prediction head (APH) to improve detection
speed and accuracy for small objects. Deng et al. [25]
introduce a multi-camera-based indoor testbed for UAVs,
enabling precise 3D tracking and control using smart
cameras and an extended Kalman filter, highlighting its
applications in scientific research and robotics. In dynamic
environments with wind disturbances, Ma et al. [26] employ
a reinforcement learning-based PRSW control method for
UAV tracking, achieving robustness and superior learning
effectiveness. Structural inspections have benefited from
TinyML integration, as demonstrated by Zhang et al. [27],
who utilize MobileNetV1 x0.25 for crack detection in
concrete structures, achieving a high F1-score of 0.76 with
minimal impact on UAV flight time. Similarly, Samanta et al.
[28] propose the TinyAerialNet model for on-device aerial
image classification on the ESP32 CAM board, achieving
88% accuracy on the AIDER dataset with low power

consumption. For small and dense object detection, Ye et al.
[29] present GLF-Net, which combines multiscale feature
fusion and rotated regional proposal networks, achieving
86.52% mAP on the RO-UAV dataset. These works underline
the progress in real-time detection, structural inspection, and
energy-efficient models, aligning with our study’s objectives
in wildfire detection and hardware optimization.

These studies underscore the growing interest in combining
advanced ML algorithms with hardware acceleration to
enhance UAV capabilities for real-time fire detection and
other applications. However, challenges remain in optimizing
deep learning models for deployment on resource-constrained
hardware without compromising detection accuracy.

Our work differentiates itself by developing an optimized
LCAM-YOLOX model tailored for wildfire detection and
deploying it on FPGA platforms, including the Xilinx Kria
KV260, ZCU104, and ZCU102. By integrating a Layer-wise
Channel Attention Module and employing quantization
techniques, we address the computational and power
constraints inherent in UAV platforms. This approach achieves
high detection accuracy and real-time performance, advancing
the state-of-the-art in UAV-based wildfire monitoring.

III. METHODOLOGY

In this section, we present our methodology for
real-time wildfire detection using UAVs equipped with
FPGA-accelerated deep learning models. We introduce the
LCAM-YOLOX model, an enhanced version of YOLOX
incorporating a Layer-wise Channel Attention Module
(LCAM) to improve detection accuracy and robustness in
complex wildfire scenarios. The model is optimized for
deployment on FPGA platforms through quantization and
efficient compilation processes.



A. LCAM-YOLOX Model

The proposed LCAM-YOLOX model integrates a hybrid
domain attention mechanism within the YOLOX architecture
to enhance its capacity for extracting multi-scale features
crucial for wildfire detection. By incorporating LCAM into the
backbone network, the model focuses on important features
across different layers, improving detection capabilities and
reducing false alarms.

An overview of the LCAM-YOLOX architecture is
illustrated in Figure 2. The model processes high-resolution
input images, and extracts features through a series of
convolutional layers, attention modules, and feature pyramids
to detect wildfires accurately.

1) Model Architecture: The LCAM-YOLOX model
consists of the following key components:

1) Input Image: The model accepts a high-resolution input
image of size 640× 640× 3.

2) Backbone Network: The backbone includes several
layers:

• Focus Layer: Reduces the spatial dimensions by
concatenating slices of the input, resulting in a tensor
of size 320× 320× 12.

• Dark Layers (Dark1 to Dark4): A series
of convolutional layers and residual blocks that
progressively downsample the feature maps while
increasing the depth, extracting hierarchical features
at different scales. The output sizes are 160×160×64
(Dark1) down to 20× 20× 512 (Dark4).

• Layer-wise Channel Attention Module (LCAM):
Embedded within the backbone, LCAM enhances
feature representation by applying attention weights
to each channel in a layer-wise manner, allowing the
network to focus on informative features relevant to
wildfire detection.

3) Neck Network: Combines features from different scales
using a Feature Pyramid Network (FPN) and a Path
Aggregation Network (PAN) to improve the detection of
objects of various sizes.

4) Detection Heads: Three detection heads correspond
to different scales (80 × 80, 40 × 40, 20 × 20),
enabling the detection of small, medium, and large
wildfires by processing the aggregated features and
predicting bounding boxes, objectness scores, and class
probabilities.

2) Layer-wise Channel Attention Module (LCAM): The
LCAM enhances the model’s ability to focus on important
features by applying attention mechanisms at each layer.
This approach allows the network to adaptively recalibrate
channel-wise feature responses, emphasizing informative
features and suppressing less useful ones.

For an input feature map F ∈ RC×H×W , where C,
H , and W denote the number of channels, height, and
width, respectively, the LCAM computes channel attention as
follows:

Mc = σ (MLP (AvgPool(F)) + MLP (MaxPool(F))) (1)

where:
• AvgPool(F) and MaxPool(F) are global average and

max pooling operations applied along spatial dimensions,
producing vectors of size RC×1×1.

• MLP is a Multi-Layer Perceptron consisting of a
bottleneck structure with one hidden layer. It reduces
dimensionality to RC/r×1×1 (where r is the reduction
ratio) and then expands back to RC×1×1.

• σ denotes the sigmoid activation function.
The attention weights Mc are applied to the input feature

map F to produce the refined feature map F′:

F′ = Mc ⊗ F (2)

where ⊗ denotes element-wise multiplication broadcasted
across spatial dimensions.

This process enhances the representation of F by focusing
on the most informative channels, thus improving the model’s
ability to detect wildfires in complex backgrounds.

3) Hybrid Domain Attention: The hybrid domain
attention structure in LCAM-YOLOX combines channel
and spatial attention mechanisms to further improve feature
representation. While LCAM focuses on channel-wise
attention, we also incorporate spatial attention to emphasize
relevant regions within the feature maps.

The spatial attention module computes attention weights
Ms ∈ R1×H×W as:

Ms = σ
(
fk×k ([AvgPool(F′),MaxPool(F′)])

)
(3)

where:
• [·, ·] denotes channel-wise concatenation.
• fk×k is a convolution operation with a kernel size of

k × k (typically k = 7).
The final refined feature map F′′ is obtained by applying

spatial attention:

F′′ = Ms ⊗ F′ (4)

This hybrid attention mechanism allows the model to focus
on both the most informative channels and spatial regions,
enhancing its capacity to detect wildfires across multiple scales
and reducing false alarms.

The LCAM-YOLOX model employs a composite loss
function to optimize detection performance. The total loss
Ltotal is:

Ltotal = λlocLCIoU + λconfLconf + λclsLcls (5)

where λloc, λconf, and λcls are weighting factors for the
localization, confidence, and classification losses, respectively.

a) Complete IoU Loss (LCIoU):: Used for bounding box
regression, CIoU loss considers the overlap area, center point
distance, and aspect ratio between the predicted box b and the
ground truth box bgt:

LCIoU = 1− IoU +
ρ2(b,bgt)

c2
+ αv (6)

where:



• IoU is the Intersection over Union between b and bgt.
• ρ(b,bgt) is the Euclidean distance between the centers

of b and bgt.
• c is the diagonal length of the smallest enclosing box

covering both b and bgt.
• v measures the similarity of aspect ratios.
• α is a positive trade-off parameter.

b) Confidence Loss (Lconf):: Focal Loss is used to
address class imbalance by down-weighting easy negatives:

Lconf = −αt(1− pt)
γ log(pt) (7)

where:
• pt is the predicted confidence score.
• αt balances the importance of positive and negative

examples.
• γ is the focusing parameter that adjusts the rate at which

easy examples are down-weighted.
c) Classification Loss (Lcls):: Binary Cross-Entropy

Loss is used for classifying whether an object is a wildfire:

Lcls = −[y log(p) + (1− y) log(1− p)] (8)

where y is the ground truth label and p is the predicted
probability.

Fig. 3: Quantization flow chart illustrating the process of
converting a trained model for deployment on FPGA hardware.

4) Soft Non-Maximum Suppression (Soft-NMS): To handle
multiple overlapping detections and reduce false positives, we
employ Soft Non-Maximum Suppression (Soft-NMS) within
the LCAM-YOLOX model. Unlike traditional NMS, which
discards overlapping boxes outright, Soft-NMS reduces the
confidence scores of neighboring detections based on their
overlap:

si = si ×
N∏
j=1

f(IoUij) (9)

where:
• si is the confidence score of detection i.
• IoUij is the Intersection over Union between detections

i and j.
• f(IoUij) is a decay function, typically f(IoUij) =

e−(IoUij)
2/σ .

By retaining detections with lower confidence in
overlapping regions, Soft-NMS is particularly effective
in scenarios with closely located fire instances, such as
dense wildfire regions. This approach enhances the model’s
reliability by improving recall while maintaining high
precision.

5) Comparison with Other Models: We compared the
LCAM-YOLOX model with YOLOv3, YOLOv5, and
YOLOX-m to evaluate its performance. As shown in Table IV
in Section V the LCAM-YOLOX model demonstrates
improved detection accuracy and reduced false alarms,
validating the effectiveness of the hybrid attention mechanism
and architectural enhancements.

6) Notations and Definitions: The key notations used in
this section are summarized in Table I.

TABLE I: Notations and Definitions

Notation Definition
F Input feature map
C, H , W Number of channels, height, and width of

F
Mc Channel attention weights from LCAM
Ms Spatial attention weights
⊗ Element-wise multiplication
σ Sigmoid activation function
MLP Multi-Layer Perceptron
Ltotal Total loss function
LCIoU Complete IoU loss for localization
Lconf Confidence loss (Focal Loss)
Lcls Classification loss (Binary Cross-Entropy)
IoU Intersection over Union
ρ(b,bgt) Center distance between predicted and

ground truth boxes
c Diagonal length of the smallest enclosing

box
v, α Aspect ratio term and trade-off parameter

in CIoU loss
pt, αt, γ Parameters in Focal Loss
y, p Ground truth label and predicted probability
si, IoUij Confidence score and IoU for Soft-NMS
f(·), σ Decay function and decay rate in Soft-NMS

B. Quantization Process

To optimize the LCAM-YOLOX model for deployment
on FPGA platforms, we employed an 8-bit integer (INT8)
quantization process. Quantization reduces model size



and computational complexity, enabling efficient inference
on resource-constrained hardware while maintaining high
accuracy.

The quantization flow, illustrated in Figure 3, involves the
following steps:

1) Quantization: The trained floating-point model
is converted to INT8 format using post-training
quantization. A calibration dataset is used to determine
optimal scaling factors for weights and activations.

2) Compilation: The quantized model is parsed and
compiled into a hardware-compatible format (.xmodel
file) using tools like Xilinx Intermediate Representation
(XIR) and the Vitis AI compiler.

3) Deployment: The compiled model is loaded onto the
FPGA’s Deep Learning Processing Unit (DPU) for
efficient inference on the target embedded device.

1) Quantization Details: The quantization process maps
floating-point values to integer values using a linear
transformation:

q = round
(
x− β

s

)
(10)

where:
• x is the floating-point value.
• q is the quantized integer value.
• s is the scale factor.
• β is the zero-point offset to handle asymmetric

quantization.
The dequantization reconstructs the approximate

floating-point value:

x̂ = sq + β (11)

By quantizing both weights and activations to INT8, we
achieve significant reductions in model size and computational
load, facilitating real-time inference on FPGA hardware
without substantial loss in accuracy.

C. Compilation Process

The quantized model is transformed into an Intermediate
Representation (IR) suitable for deployment on FPGA
hardware. The IR tool flow comprises of four main libraries:

1) Graph Library: Acts as the central processing
hub, integrating data from subgraph, operator, and
tensor libraries to construct a comprehensive graph
representation.

2) Subgraph Library: Defines manageable parts of the
computational graph by partitioning it into subgraphs,
enabling efficient optimization and execution.

3) Operator Library: Provides a collection of predefined
operations (e.g., convolution, pooling) necessary for
model execution.

4) Tensor Library: Manages data structures (tensors)
that hold the model’s inputs, outputs, and intermediate
computations.

The compilation process involves:

1) Parsing: The quantized model is parsed into the IR
format, eliminating framework-specific differences and
providing a unified representation.

2) Optimization: The computational graph is optimized,
including operator fusion (e.g., combining convolution
and batch normalization).

3) Subgraph Partitioning: The graph is partitioned into
subgraphs based on the capabilities of the target DPU,
ensuring that only supported operations are mapped to
hardware.

4) Instruction Generation: DPU instructions are generated
for the subgraphs and attached to the IR graph.

5) Serialization: The optimized graph is serialized into
a binary file (.xmodel) compatible with the FPGA
hardware.

This process ensures that the model is efficiently converted
into a format optimized for high-performance inference on
the FPGA, enabling real-time wildfire detection on UAV
platforms.

D. Deployment on FPGA Platforms

The final step involves deploying the compiled model onto
FPGA platforms such as the Xilinx Kria KV260, ZCU104,
and ZCU102, which are based on the Zynq UltraScale+
architecture. These platforms provide varying levels of FPGA
fabric logic resources, allowing flexibility in accommodating
different model sizes and computational requirements.

The deployment process includes:
1) Model Loading: The .xmodel file is loaded onto the

FPGA, configuring the DPU for inference.
2) Integration: The model is integrated with the

system’s software stack, including pre-processing
and post-processing pipelines.

3) Inference: Real-time inference is performed on input
images captured by the UAV’s camera, utilizing the
FPGA’s parallel processing capabilities for efficient
computation.

Tools like Netron are used for model inspection,
ensuring compatibility and correctness before deployment.
By leveraging FPGA acceleration, we achieve significant
improvements in inference speed and energy efficiency
compared to traditional GPU-based approaches, making our
system suitable for resource-constrained UAVs.

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION
DETAILS

In this section, we describe the datasets used for training
and testing, the implementation of our system, and the
experimental setup employed to evaluate the performance
of the proposed LCAM-YOLOX model on different FPGA
platforms for real-time wildfire detection.

A. Datasets

We utilized the Foggia dataset [30], a widely recognized
benchmark for fire and smoke detection algorithms. The
dataset comprises 31 videos, with 14 containing fire instances



and 17 featuring red objects and smoke to test false positive
rates. The videos vary in resolution from 320×240 to 400×256
pixels and have frame rates between 9 and 29 FPS, simulating
real-world variability. Each video contains between 80 and
6097 frames, providing a broad temporal scale for robust
training and testing.

To improve the generalization ability of the model and
enhance its robustness across diverse real-world wildfire
scenarios, we supplemented the Foggia dataset with a
custom-generated dataset. This custom dataset was constructed
by incorporating images from three main sources:

• Internet-Sourced Data: Images were collected from
publicly available online repositories [31]–[39] to capture
varied fire conditions, including differences in fire size,
intensity, and backgrounds (e.g., urban vs forest).

• UAV-Based Aerial Imagery: Aerial images were
captured using UAVs equipped with multispectral and
RGB cameras, providing unique perspectives, especially
in large-scale fires and smoke-obscured areas. These
images were collected across varying altitudes and angles.

• Data Augmentation: To further enhance dataset
diversity, we applied augmentation techniques such as
random rotations, cropping, flipping, varying lighting
conditions, and adding synthetic smoke overlays. These
augmentations ensured that the dataset adequately
represented real-world scenarios involving varying
illumination, smoke density, and fire severity.

The combined dataset spans diverse wildfire conditions,
including low-light settings, high smoke density, varied fire
intensities, and occlusions. These scenarios enhance the
model’s robustness and improve its ability to generalize to
unseen environments, reducing false positives and improving
detection accuracy in challenging conditions.

Our proposed model utilizes the custom wildfire dataset for
training and object detection tasks, employing a class-based
approach to categorize fire incidents. The classification ranges
from Class 1 to Class 5, with higher classes representing

Fig. 4: FPGA-based UAV platform for real-time wildfire
detection.

more severe and widespread fires. The model also utilizes
smoke as an auxiliary parameter to determine the fire’s
classification, with the intensity and volume of smoke being
directly correlated to higher fire severity classes. This helps in
segregating the fires based on their severity.

B. Implementation

Our implementation is based on three Xilinx FPGA
platforms: the Kria KV260 System on Module (SOM),
ZCU104, and ZCU102 development boards, all serving as
onboard hardware accelerators for our UAV platform. These
boards integrate key components that facilitate real-time video
processing and model inference, each platform contributing
to optimizing model performance and ensuring robustness
in wildfire detection scenarios. The communication between
UAVs and ground stations is secured using standard
authentication protocols [40]. However, we decide to use
the KV260 as the onboard hardware accelerator due to its
performance-per-watt ratio. It is integrated into several key
components of our UAV platform:

• Insta360 USB Camera: Provides real-time video input
to the KV260 for wildfire detection.

• Pixhawk 2.4.8 Microcontroller Module: Connects to
environmental sensors and controls the UAV’s motion
semi-autonomously through the KV260.

An image of the FPGA-based UAV platform is shown in
Figure 4.

The KV260 functions as the onboard computer, handling
real-time video processing and control tasks. We initially set
up a test bench to validate the integration of the camera and
the LCAM-YOLOX model for fire detection. Subsequently,
we integrated the Pixhawk controller to provide full motion
capabilities for the UAV.

C. Experimental Setup and Configuration

We evaluated the performance of the LCAM-YOLOX
model on the KV260 FPGA platform by setting up a
testbench which involved comparing it with state-of-the-art
object detection models such as YOLOv3, YOLOv5, and
YOLOX-m. The models were trained using the same
configuration parameters as that for LCAM YOLOX listed
in Table II.The codebase, along with detailed documentation
on experimental setups, hardware configurations, and software
dependencies, can be accessed at GitHub Repository
https://github.com/halalboro/fpga-accelerators.git

The experimental setup involves processing input images
instead of the live video input from the USB Camera for
simplicity. The images are passed through the LCAM-YOLOX
model deployed on the KV260’s DPU running on the
Programmable Logic (PL) with the configuration as shown
in Table III. We designed a processing pipeline consisting
of pre-processing, DPU inference, and post-processing stages
in which the pre-processing and post-processing stages were
running on the Processing System (PS) of the KV260 while the
DPU inference ran in the PL. Figure 5 illustrates the pipeline
for processing a batch of three images simultaneously while



TABLE II: Training Configuration Parameters for our
proposed model, LCAM YOLOX

Parameter Value
Model LCAM YOLOX
Batch Size 8
Optimizer SGD
Learning Rate 0.02
Momentum 0.937
Weight Decay 0.0005
Epochs 300

TABLE III: Deep Learning Processing Unit (DPU)
Configuration Parameters

Parameter Configuration
Core Architecture
Component Name DPUCZDX8G
Number of DPU Cores 3
Architecture B4096
RAM Usage Low
Channel Augmentation Enabled
Computational Units
Conv ReLU Type ReLU + LeakyReLU +

ReLU6
ALU Parallel 4
ALU ReLU Type ReLU + ReLU6
ElementWise Multiply Enabled
AveragePool Enabled
Number of SFM cores 1
Implementation Details
S-AXI Clock Mode Independent
DPU 2x Clock Gating Enabled
DSP48 Usage High
DSP48 Max Cascade Length 4
Ultra-RAM Use per DPU 0
Timestamp auto-update Enabled

varying the number of DPU cores allocated—single, dual,
and triple core configurations (E2E_1, E2E_2, and E2E_3,
respectively).
Processing Pipeline:

Pre-processing: This stage, handled sequentially on the
PS of the FPGA, includes resizing and normalization.
Resizing ensures uniform input dimensions of 640 × 640
pixels, necessary for model compatibility and optimized DPU
processing, while retaining critical image features across
diverse resolutions in the custom dataset. Normalization scales
pixel values to [0, 1], reducing variability from lighting
and intensities, improving feature extraction, and enhancing
quantization robustness. These operations standardize the
input format, ensuring consistent pre-processing time across
configurations (Pre_1, Pre_2, Pre_3) and contributing to the
model’s accuracy and efficiency.

DPU Inference: The DPU cores on the Programmable
Logic (PL) of the FPGA process the batch of images.
In DPU_1, a single DPU core is allocated, while DPU_2
and DPU_3 have dual and triple DPU cores, respectively.
Increasing the DPU core count does not change the inference

time per image but improves throughput by processing
multiple images concurrently. Thus, the batch processing time
decreases with more DPU cores due to parallelism.

Post-processing: After inference, each image undergoes
sequential post-processing on the PS. This stage includes
tasks such as decoding, bounding box generation, and
non-maximum suppression. The post-processing time per
image remains consistent across configurations (Post_1,
Post_2, Post_3), similar to pre-processing, as it is handled
independently on the PS.

V. RESULTS AND DISCUSSION

In this section, we present the experimental results of
our proposed LCAM-YOLOX model for real-time wildfire
detection on FPGA-accelerated UAV platforms. We compare
the performance of LCAM-YOLOX with other state-of-the-art
networks, analyze resource utilization and power consumption
across different FPGA devices, and discuss the trade-offs
between performance, cost, and energy efficiency. Our analysis
emphasizes the suitability of the KV260 FPGA platform for
UAV deployment due to its optimal balance of performance,
power consumption, and cost.

A. Model Performance Comparison

We evaluated the performance of LCAM-YOLOX against
a variety of object detection models, including YOLO
series (YOLOv3, YOLOv5, YOLOX-m), lightweight detection
models (MobileNetV2, EfficientDet), and classical detection
algorithms (Faster R-CNN, RetinaNet). The comparison
is presented in terms of Floating Point 32-bit (FP32)
accuracy, Quantized (INT8) accuracy, root mean square error
(RMSE), and frames per second (FPS) performance. Table IV
summarizes the results.
Model Size and Complexity:

YOLOv3, with the largest parameter count (65.2 million)
and smaller input size (416 × 416), achieves the lowest
FP32 accuracy of 62.31% and quantized accuracy of 60.76%.
This demonstrates that a higher parameter count does not
necessarily result in better detection accuracy, especially
when the architecture lacks optimization for efficient feature
extraction.

YOLOv5, despite having significantly fewer parameters (7.2
million) and a larger input size (640 × 640), achieves an
FP32 accuracy of 74.06% and quantized accuracy of 72.77%,
showcasing the effectiveness of its lightweight design and
optimized structure.

MobileNetV2 and EfficientDet, both lightweight detection
models, have parameter counts of 4.3M and 3.9M,
respectively. While they are efficient in terms of size, their
FP32 accuracies (68.23% for MobileNetV2 and 73.42% for
EfficientDet) fall behind YOLOX-m and LCAM-YOLOX.
Additionally, they perform poorly in FPS (13 FPS and
98 FPS), making them unsuitable for real-time UAV-based
applications.

Faster R-CNN and RetinaNet, as classical object detection
models with larger input sizes (800× 800), achieve relatively
higher FP32 accuracies (79.12% and 78.21%, respectively).



Fig. 5: Processing pipeline for a batch of three images with varying DPU core configurations.

TABLE IV: Comparison of Different Models

Network Model Input Size Model Parameters (M)
FP32

Accuracy
(mAP)

Quantized
Accuracy

(mAP)
RMSE FPS

YOLOv3 416 65.2 0.62306 0.6076 0.0842 145
YOLOv5 640 7.2 0.7406 0.7277 0.0651 182

YOLOX-m 640 25.3 0.7845 0.7694 0.0573 185
MobileNetV2 640 4.3 0.6823 0.6645 0.0912 13
EfficientDet 640 3.9 0.7342 0.7156 0.0784 98

Faster R-CNN 800 42.1 0.7912 0.7734 0.0635 12
RetinaNet 800 37.8 0.7821 0.7645 0.0678 16

LCAM YOLOX 640 9.6 0.7989 0.7811 0.0489 195

However, their FPS values are significantly lower (12 FPS for
Faster R-CNN and 16 FPS for RetinaNet), which limits their
feasibility for real-time deployment on resource-constrained
platforms.

LCAM-YOLOX: Our proposed LCAM-YOLOX model
achieves the highest performance with an FP32 accuracy of
79.89% and quantized accuracy of 78.11%. It outperforms
YOLOX-m by 1.45% in FP32 accuracy while maintaining
a moderate parameter count of 9.6M. The RMSE of
LCAM-YOLOX is the lowest at 0.0489, further validating
its precision in detection. With a real-time FPS of 195,
LCAM-YOLOX achieves a strong balance between accuracy,
efficiency, and computational cost, making it ideal for
UAV-based wildfire detection systems.

Impact of Quantization: Quantization and pruning are
critical for optimizing models on resource-constrained
devices such as FPGA. As shown in Table VI, the

LCAM-YOLOX model demonstrates strong resilience to
these optimization techniques. Preprocessing steps, including
resizing and normalization, improve the quantized model’s
robustness, increasing its mAP from 0.7989 to 0.8163.
When quantized from FP32 to INT8 precision, the mAP
slightly reduces to 0.7811, reflecting a retention of 95.7%
accuracy compared to the FP32 baseline. This minimal drop
highlights the robustness of LCAM-YOLOX, attributed to
the Layer-wise Channel Attention Module (LCAM), which
enhances feature representation and mitigates information loss
during quantization. Furthermore, pruning the model by 30%
reduces its weights (from 9.60M to 6.72M) and FLOPS (from
8.45G to 6.31G) while significantly boosting FPS from 76
to 195—a 2.56x improvement. These optimizations maintain
accuracy while enhancing computational efficiency, making
LCAM-YOLOX highly suitable for real-time UAV-based
wildfire detection on FPGA platforms.



TABLE V: Ablation Study of LCAM YOLOX

Model Configuration LCAM
Module

Spatial
Attention

Channel
Attention mAP Parameters

(M)
Baseline YOLOX 0.7645 9.0

YOLOX + Spatial Attention ✓ 0.7723 9.2
YOLOX + Channel Attention ✓ 0.7798 9.3
YOLOX + Both Attentions ✓ ✓ 0.7856 9.4

LCAM YOLOX (Full) ✓ ✓ ✓ 0.7989 9.6

TABLE VI: Effect of Preprocessing, Quantization and Pruning on LCAM YOLOX

LCAM-YOLOX Quantization(FP32 to INT8) and Pruning (30%) ReductionBefore Preprocessing After
Weights [M] 9.60 9.60 6.72 X1.43
FLOPS [G] 8.45 8.45 6.31 X1.34

RMSE 0.0489 0.0472 0.0495 -
mAP 0.7989 0.8163 0.7811 -
FPS 76 76 195 X2.56

Overall Performance: Compared to all tested models,
LCAM-YOLOX emerges as the best-performing model,
balancing high detection accuracy, low RMSE, and real-time
FPS performance. It significantly outperforms lightweight
models (MobileNetV2, EfficientDet) in both accuracy and
speed while surpassing classical models (Faster R-CNN,
RetinaNet) in FPS. These results underscore the suitability
of LCAM-YOLOX for UAV-based wildfire detection, where
real-time performance, accuracy, and energy efficiency are
critical.

B. Ablation Study of LCAM-YOLOX

To evaluate the contribution of the LCAM module to the
overall performance of YOLOX, we conducted an ablation
study, as presented in Table V.

Baseline YOLOX: Starting with the baseline YOLOX
model, we observe an mAP of 0.7645 with 9.0M parameters.

Effect of Spatial and Channel Attention: Adding
spatial attention improves the mAP to 0.7723, while adding
channel attention alone achieves 0.7798. The combination of
both attentions further enhances the performance to 0.7856,
demonstrating their complementary effects.

LCAM (Full Integration): Finally, the full LCAM module
integrates both spatial and channel attention mechanisms in
a layer-wise fashion, resulting in the highest mAP of 0.7989
with a slight increase in parameters to 9.6M. This confirms
the effectiveness of LCAM in enhancing the model’s feature
representation and detection accuracy.

C. FPGA Resource Utilization

We analyzed the resource utilization of the LCAM-YOLOX
model across three FPGA devices—KV260, ZCU104, and
ZCU102—with varying DPU core configurations. Table VII
provides detailed utilization metrics for key resources.
Analysis of Resource Utilization:

On the KV260, LUT and FF utilization reach high levels
even at 1-core configuration, indicating limited scalability

beyond 2 cores. However, the BRAM and DSP utilization
remain moderate, due to the availability of UltraRAM
(URAM) on the device to manage the high memory bandwidth
tasks.

ZCU104 shows a balanced resource utilization with
moderate increases in LUT and FF usage across
configurations. BRAM utilization is high in the 1-core
configuration but decreases in the 2-core setup due to efficient
memory allocation facilitated by enabling the URAM in the
2-core setup. It would otherwise exceed the BRAM size in a
2-core setup.

ZCU102, being the most expensive device due to its
sea of resources, demonstrates lower resource utilization as
expected in 1-core and 2-core configurations but reaches
higher utilization at 3 cores, indicating better scalability for
applications requiring more computational power.
Implications for Deployment:

The KV260’s resource utilization suggests it is well-suited
for applications requiring up to 2 DPU cores, making
it an optimal choice for our UAV platform where size,
weight, and power constraints are critical. Its efficient use of
resources allows for real-time processing without exceeding
the hardware capabilities.

D. Performance and Power Consumption Analysis

We compared the performance of the LCAM-YOLOX
model across FPGA devices, Nvidia Jetson Nano, and
STM32H7A3 using the metrics of frames per second (FPS)
and peak performance in tera operations per second (TOPS).
As shown in Table VIII, the KV260 achieves 195FPS with 1
core and 387FPS with 2 cores at a set DPU frequency of 300
MHz, outperforming Nvidia Jetson Nano (65 FPS, 0.56 TOPS)
and STM32H7A3 (15 FPS, 0.28 TOPS) significantly. While
Jetson Nano and STM32H7A3 offer cost-effective solutions,
their FPS values are insufficient for high-throughput real-time
wildfire detection tasks.
Performance Analysis:



TABLE VII: FPGA Resource Utilization Across Different Boards and Core Configurations

Boards LUT FF BRAM URAM DSP LUTRAM
(Used/Available) (Used/Available) (Used/Available) (Used/Available) (Used/Available) (Used/Available)

ZCU102
1-core 52,161/274,080 98,249/548,160 255/912 – 710/2,520 5,647/144,000

(19.03%) (17.92%) (27.96%) (28.17%) (3.92%)
2-core 107,237/274,080 187,663/548,160 512/912 – 1,451/2,520 12,344/144,000

(39.12%) (34.24%) (56.14%) (57.58%) (8.57%)
3-core 165,111/274,080 302,294/548,160 769/912 – 2,138/2,520 21,662/144,000

(60.24%) (55.15%) (84.32%) (84.84%) (15.04%)
ZCU104
1-core 63,003/230,400 107,833/460,800 259/312 – 718/1,728 –

(27.35%) (23.40%) (83.01%) (41.55%)
2-core 95,724/230,400 188,110/460,800 154/312 96/96 718/1,728 –

(41.55%) (40.82%) (49.36%) (100%) (41.55%)
KV260
1-core 65,139/117,120 108,532/234,240 19/144 42/64 546/1,248 –

(55.62%) (46.33%) (13.19%) (65.62%) (43.75%)
2-core 84,511/117,120 167,544/234,240 57/144 64/64 918/1,248 –

(72.15%) (71.52%) (39.58%) (100%) (73.56%)

TABLE VIII: Performance and Cost Analysis of LCAM-YOLOX Model on Different Boards with Various DPU Configurations

Board Device DPU
Cores

Performance (FPS) Single Core
Power (W)

Peak Performance
(TOPS)

Cost
($)1C 2C 3C 4C

KV260
XCK26

Ultrascale+ Up to 2 195 387 N/A N/A 9.72 1.23 400

ZCU104
ZU7EV

Ultrascale+ Up to 2 193 337 N/A N/A 12.82 2.46 1,200

ZCU102
ZU9

Ultrascale+ Up to 3 185 319 481 N/A 20.53 3.45 3,000

NVIDIA Jetson Nano
Maxwell™
architecture 128 cores 65 FPS 8.61 0.56 200

STM32H7A3
Arm Cortex-M7

Processor 1 core 15 FPS 0.7 0.28 45

At a set DPU frequency of 300MHz, the KV260 achieves
195FPS with 1 core and 387FPS with 2 cores. ZCU104
yields similar performance with 193FPS (1-core) and 337FPS
(2-core). ZCU102, supporting up to 3 cores, achieves a
remarkable 481FPS at 3 cores. In comparison, the Nvidia
Jetson Nano, with its 128-core Maxwell Architecture, achieves
65FPS and a peak performance of 0.56 TOPS, which is
significantly lower than the FPGA platforms in terms of
throughput and energy efficiency.
Power Consumption and Efficiency:

The KV260 consumes 9.72 W for single-core DPU
workloads and 10.45 W at maximum DPU utilization
(measured on OWON P4305 Programmable Lab DC Power
Supply). ZCU104 consumes 13.20 W at maximum load, while
the ZCU102 shows 22.13 W under similar conditions. Notably,
the KV260 exhibits the highest performance per watt under
both single-core and multi-core configurations, making it the
most energy-efficient option among the tested devices.

The power consumption values reported in Table VIII
were derived from actual on-board measurements using
OWON P4305, while Figure 8 provides simulation-based

power breakdowns using Vivado Power Analysis. Minor
discrepancies between these datasets arise due to Vivado’s
conservative estimation approach, which does not account for
real-world factors such as switching spikes and environmental
influences.
Implications for UAV Deployment:

Considering the real-time video feed is typically limited to
60FPS, the KV260’s single-core performance of 195FPS is
sufficient for real-time processing requirements. Its low power
consumption and high energy efficiency make it ideal for UAV
applications where power resources are limited. For scenarios
requiring multiple camera feeds or higher processing demands,
boards like the ZCU102 may be considered despite their higher
power consumption.

E. Scalability and Real-Time Processing

Figure 6 illustrates the performance (FPS) of the FPGA
devices with varying DPU configurations.

The KV260, even in its single-core configuration,
comfortably exceeds the real-time requirement of 60FPS,



Fig. 6: Performance of FPGA devices with varying DPU
configurations.

Fig. 7: Clock cycle analysis across different thread
configurations.

handling real-time video feeds effectively. The ability
to process at 195FPS provides headroom for additional
computational tasks to occur simultaneously or even handle
higher-resolution video inputs. When multiple camera feeds
are necessary, higher-performance boards that support multiple
DPU cores very efficiently, like the ZCU102 or the ZCU104,
can be utilized, although with the added weight of increased
power consumption and cost.

F. Impact of Multi-threading on Processing Time
We analyzed the effect of increasing the number of threads

and DPU cores on the end-to-end (E2E) execution time.
Figure 7 illustrates the processing pipeline for a batch of three
images with varying threads.

The E2E processing time decreases significantly with the
addition of threads and DPU cores due to parallel processing,
particularly during DPU inferencing. However, pre-processing
and post-processing times remain consistent, as they are
handled sequentially on the Processing System (PS) of the

FPGA device. This suggests that optimizing these stages could
provide scope for further enhancement of overall performance.

G. Power Consumption Analysis

KV260: Consumes 10.45 W, with dynamic power
constituting 93% of total consumption. Its high energy
efficiency makes it ideal for UAV applications.

ZCU104: Consumes 13.20 W, balancing performance and
power consumption effectively.

ZCU102: Has the highest power consumption at
22.13 W, making it less suitable for power-constrained
UAV deployments.
Performance per Watt:

The KV260 outperforms the other boards in terms of
performance per watt, achieving up to 37.15 FPS/W with 2
DPU cores under actual measurements. This highlights its
suitability for energy-efficient real-time processing on UAV
platforms.

H. Discussion

The experimental results demonstrate that the proposed
LCAM-YOLOX model achieves superior detection accuracy
while maintaining computational efficiency, making it highly
suitable for deployment on FPGA-accelerated UAV platforms.
Among the tested devices, the KV260 FPGA emerges as the
optimal choice due to the following advantages:

High Performance per Watt: The KV260 delivers
exceptional energy efficiency, achieving up to 37.15FPS/W
while consuming only 10.45W under real-world
measurements. This minimal power consumption is ideal
for energy-constrained UAV missions, where extended
operational time is critical for real-time wildfire detection.

Power Analysis Discrepancies: Power consumption
estimates from Vivado simulations (Fig. 8) are intentionally
conservative, as they do not account for non-ideal conditions,
switching spikes, or external factors. Actual consumption,
as measured with OWON P4305, reflects these real-world
conditions, providing more accurate data for deployment
considerations.Table IX highlights these differences

TABLE IX: Comparison of Power Consumption: Vivado
Simulation vs. Onboard Measurement

FPGA Board
Configuration

Vivado
Simulation

(W)

Onboard
Measurement

(W)

ZCU102
(4 DPU Cores, 300 MHz)

21.64 22.13

ZCU104
(2 DPU Cores, 300 MHz)

13.17 13.20

KV260
(2 DPU Cores, 300 MHz)

10.24 10.45

Sufficient Processing Capability: At a single-core
configuration, the KV260 comfortably exceeds the 60 FPS
threshold required for real-time processing of a single-camera



Fig. 8: Power consumption from vivado power estimator reports at max DPU core configuration.

video feed. This ensures seamless operation with minimal
latency, essential for live wildfire monitoring and detection.

Trade-offs with Higher-Performance Boards: While
the ZCU102 and ZCU104 offer superior computational
throughput—up to 481FPS with 3 cores on ZCU102—they
come with significant trade-offs. The ZCU102, for example,
consumes 22.13 W and costs $3,000, making it less suitable
for power-limited UAV missions. However, these boards are
better suited for specialized applications such as multi-camera
real-time surveillance or tasks requiring extremely high
computational throughput, where accuracy and latency take
precedence over energy efficiency.

Impact of Preprocessing on Accuracy: The pre-processing
pipeline, including resizing and normalization, plays a critical
role in ensuring the model’s robustness and performance.
Resizing aligns the input images (from varied dimensions)
to the model’s required 640 × 640 input size, maintaining
structural integrity and consistency. Normalization further
improves the quantized model’s robustness, enhancing mAP
from 0.7989 to 0.8163, as shown in Table VI. This step
mitigates quantization artifacts and ensures reliable detection
accuracy across diverse environmental conditions.

Practical Applications: The KV260 platform is highly
suitable for single UAV deployments tasked with real-time
wildfire detection, where power efficiency and cost constraints
are critical. For applications demanding higher computational
throughput—such as multi-camera systems in disaster
response coordination or urban surveillance—the ZCU102
and ZCU104 platforms offer significant advantages. Overall,
the LCAM-YOLOX model, when paired with the KV260
FPGA, strikes an optimal balance between accuracy, energy
efficiency, and affordability, making it a competitive solution
for UAV-based wildfire detection in real-world deployment
scenarios.

VI. CONCLUSION

In this paper, we presented the LCAM-YOLOX model,
an enhanced object detection framework incorporating a

Layer-wise Channel Attention Module (LCAM) to improve
wildfire detection accuracy in UAV applications. Our
extensive experiments demonstrated that LCAM-YOLOX
outperforms other state-of-the-art models, achieving the
highest quantized mAP of 78.11% while maintaining a
moderate parameter count of 9.6 million. When deployed
on the Xilinx Kria KV260 FPGA platform, the model
not only exceeded real-time processing requirements with
a single-core performance of 195 FPS but also offered
the highest performance per watt ratio—up to 37.15
FPS/W under real-world measurements—compared to other
tested boards. These findings validate the KV260’s optimal
balance of high detection accuracy, energy efficiency,
and cost-effectiveness, making it an ideal choice for
UAV-based real-time wildfire detection systems, particularly
in resource-constrained environments where power and weight
are critical considerations.

Limitations and Future Work:

While this study optimizes performance for single-camera
input at 640 × 640 resolution, the model remains adaptable
to higher-resolution inputs through preprocessing, ensuring
real-time efficiency. Future work will explore native support
for higher resolutions, analyzing the trade-offs between
computational cost and accuracy. Additionally, we aim to
integrate super-resolution techniques to enhance detection
capabilities for high-resolution UAV-mounted cameras.

To improve scalability, we plan to evaluate multi-camera
setups and extend dataset diversity by incorporating more
complex wildfire scenarios, such as variations in lighting,
smoke density, and fire intensity. Hybrid quantization
strategies and dynamic frequency scaling will be explored to
optimize power management. Furthermore, we will investigate
comparisons against Transformer-based object detection
models and specialized small-target detection algorithms.
Expanding LCAM-YOLOX to alternative edge platforms and
low-power microcontrollers remains a priority to ensure its
versatility across UAV-based real-time detection applications.
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