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Abstract—Given the growing significance of data-driven ap-
proaches in analysis and decision-making in smart grid, the
availability of diverse and representative datasets is paramount.
However, challenges such as privacy concerns, data size limitations,
and data quality issues have constrained the usage of real-world
data. In this paper, we introduce the 3D Autoencoder Generative
Adversarial Network (3DAE GAN) as a solution to generate
high-resolution and multivariate synthetic time-series data capable
of representing various real power consumption patterns across
different households and driving data for Electric Vehicles (EVs).
Beyond the conventional GAN structure, the incorporation of both
the Autoencoder and 3D-convolution processes enables a more
comprehensive extraction of patterns in data, thereby addressing
limitations present in existing data generation methods. Evaluation
results using the Pecan Street and Emobpy simulated EV dataset
demonstrate that the proposed method generates synthetic data
with higher similarity scores compared to existing approaches.
Furthermore, downstream prediction tasks are conducted to es-
tablish the comparability between using the original data and the
synthetic data, revealing no significant differences. Moreover, the
risk of possible information leakage from synthetic data about
original data is evaluated by performing membership inference
attacks and population attacks on the prediction models that are
trained with synthetic data. The robustness of the synthetic data
are examined when facing FGSM attacks.

Index Terms—Power Grid Data, Synthetic Data, Time Series
Generation, Deep Learning, GANs, 3D Convolution

I. INTRODUCTION

The evolution of smart grids has led to a new era of efficiency,
reliability and sustainability in power systems. Central to the
success of smart grids is the availability of high-quality data,
particularly in tasks such as power consumption analysis. Unfor-
tunately, data scarcity, breaches, and privacy concerns present
significant challenges in acquiring and utilizing diverse real-
world data. Synthetic data offers the advantage of preserving
the underlying patterns and characteristics of the original, real
data. The release of synthetic data mitigates privacy concerns,
as the confidentiality of the original sensitive data remains
safeguarded. Even in the event of a data breach involving
synthetic data, the private information of users is not disclosed.

Existing synthetic data generation methods exhibit limited
attention to the time-series characteristics of prolonged data
durations. Some approaches primarily focus on short-term peri-
ods, resulting in inadequate capture of information and intercon-
nections among data distributed over larger time intervals [1].
Consequently, the synthetic data fails to entirely encapsulate
the inherent characteristics of the original data. Moreover, the
generated synthetic data tend to be univariate, representing only
a singular type of data (e.g., one house or one appliance) [2], [3].
The models are only able to handle a single feature. Therefore,
repeated running of the same model are needed to generate
various desired data.

To address these limitations, this paper proposes the 3D
Autoencoder Generative Adversarial Network (3DAE GAN) to
generate multivariate time-series data with a high resolution
(i.e., per-minute granularity) without prior analysis on the data.
This is achieved by implementing a 3D convolutional process
to effectively handle multivariate data along the third temporal
axis. Initially, the multivariate data is transformed into a 2D
matrix, capturing the correlation between features. These 2D
matrices are then stacked along the temporal axis (timestamps)
to form a 3D structure, preparing the data for the subsequent
3D convolutional processing in the model to learn complex and
underlying patterns. Based on the learnt patterns, synthetic data
are generated. The synthetic data generated from the proposed
method holds potential for applications in subsequent tasks
such as power consumption analysis and prediction tasks. The
proposed method integrates the conventional GAN with an
Autoencoder. Additionally, the 3D convolution process aids in
examining and storing time-series features by treating time as
the third axis. To demonstrate its performance, random Gaussian
noise is input to the model to produce synthetic data that
encompasses the power consumption profiles for distinct houses.
In addition, the privacy analysis is conducted to the synthetic
data by performing membership inference attacks (MIA) on the
prediction models trained with synthetic data. This is to examine
whether an attacker can determine if a data record was used for
the model training or not.

The primary contributions of this paper are:
� We introduce 3DAE GAN, incorporating time-series and

multivariate factors to generate synthetic data, addressing
challenges of data scarcity and privacy in power grid data.

� Compared to existing methods, our model generates syn-
thetic data that more closely resembles the original data.

� We analyze the synthetic data’s effectiveness for prediction
tasks and find that its accuracy is comparable to the results
obtained when utilizing the original data.

� We examine the privacy risk in the generated synthetic data
by checking if the synthetic data can cause any information
leakage in itself or in the original dataset.

� We evaluate the robustness of the synthetic against adver-
sarial attacks.

The subsequent sections of the paper are as follows. Section
II provides the literature review of related works. Section III
describes the proposed model in detail. Section IV presents the
evaluation results. Finally, Section V concludes our work.

II. RELATED WORKS

Traditionally, statistical methods have been used to analyze
linear correlations among data and model these interconnections



through mathematical equations. In [4], a bottom-up model
is adopted for analyzing occupant behavior to simulate en-
ergy consumption in residential buildings, while [5] integrates
Markov Chains with non-intrusive load decomposition to repli-
cate home energy consumption. In [6], the Markov Chain
method is applied to generate synthetic data for monitoring
the health of electric vehicle (EV) batteries. The synthetic data
generator in [7] is based on temporal modeling of EV sessions
with Gaussian mixture models. Additionally, [8] introduces
a data generation method involving the simulation of power
system operation based on geographical correlations and actual
operational characteristics. While they provide straightforward
extrapolation within linear space, these models frequently over-
look the complexity and diversity inherent in various data types.

Compared to statistical models, neural network-based ap-
proaches are better at capturing complex and non-linear cor-
relations within datasets. Notably, GANs have found extensive
application in synthetic data generation tasks, such as generating
load patterns and energy consumption data [9], [10]. Similarly,
[11], [12] modified GANs for data augmentation in industrial
piston and wind turbine data. In [13], GANs are employed
to generate wind and photovoltaic power profiles. While these
networks can explore and discern underlying patterns and char-
acteristics without prior statistical analysis, challenges related to
training instability and model collapse persist. The self-attention
mechanism to acquire knowledge of internal time-series prop-
erties is implemented in GANs [3], facilitating the generation
of data. However, it only considers data with a single feature
and it cannot support more features from multivariate data. The
Wasserstein GAN (WGAN) can improve training convergence
and generate diverse data, utilizing the Wasserstein distance
[14]. Furthermore, [15] improved model training stability and
enhanced generation diversity by using added gradient penalty.
In [16], WGAN-GP is used to generate synthetic attack data for
Intrusion Detection Systems and demonstrate the advantages in
training stability and generating diverse data. However, there is
a trade-off as a WGAN-GP model may unintentionally compro-
mise the fidelity of the generated data in terms of its similarity
to the original dataset. For smart home data, [17] proposed
VAE-GAN that integrates Variational Autoencoder (VAE) with
GAN for generating electrical load data. However, the VAE
compresses the input sequence into a Gaussian distribution, a
condition that is not universally valid and may result in the loss
of essential information within the data.

The contributions of similar existing work that use WGAN
and VAE GAN are summarized in Table I. While these methods
offer alternatives for generating synthetic data, they exhibit
limitations in handling multivariate features and producing long-
duration time-series data. Typically, the data is processed in a
1D manner, focusing solely on values along the temporal axis,
without accounting for the correlation between features or the
evolution of these correlations over time. This paper addresses
these gaps by proposing a novel 3D Convolutional approach
to effectively capture underlying patterns in multivariate time-
series data, such as power consumption. Unlike prior work,
which has not explored 3D convolution for time-series data,
the proposed method leverages this technique to model feature

TABLE I
CAPABILITIES OF EXISTING SIMILAR METHODS

Method Multi-variant Long duration
[3] ✗ ✗
[9] ✓ ✗
[10] ✓ ✗
[11] ✗ NA
[13] ✗ ✓
[16] ✓ NA
[17] ✗ ✓

correlations and their temporal dynamics. Furthermore, the
proposed method also incorporates privacy assessments and
robustness evaluations against adversarial attacks.

III. METHODOLOGY

A. Dataset

The datasets used in this paper are individual house’s daily
energy consumption from Pecan Street [18] and the electric
vehicle (EV) driving data from Emobpy simulation tool. For
Pecan Street datasets, two different datasets are used: Pecan-A
and Pecan-B. Pecan-A contains the electricity usages of random
households from different cities within the time duration from
July 1, 2022 to October 30, 2022. The total number of data
points is 175680 with a training part of 150000 and a testing
part 25680. Pecan-B only contains households consumptions
from New York within the time duration from June 24, 2019 to
October 31, 2019. The total number of data points is 264960
with a training part of 210000 and a testing part 54960. Both
Pecan-A and Pecan-B have the granularity of one minute. For
illustration purpose, the utilization of 16 households’ power
consumption serves as a demonstration of the proposed model’s
ability to effectively manage diverse features concurrently. The
EV dataset, originally simulated using Emobpy, incorporates a
range of driver categories and travel habits to accurately model
driving behaviors for individual journeys. Driving activity data
are then collected at a resolution of one second, ensuring a
high level of temporal granularity. The dataset encompasses
35 features, each intricately associated with specific driving
conditions, including instantaneous power consumption, road
type, vehicle speed, and passenger count. The total number of
data points is 180000 with a training part of 162000 and a
testing part 18000. For Pecan Street dataset the input feature
size is 16, and the input feature size of EV data is 35. Thus,
the proposed method’s generalizability can be verified, demon-
strating its capability to effectively manage varying dimensions
of multivariate data.

B. Data Transformation

This step is to transform the original data into 3D time-
series structure for further 3D Convolutional processing. Nor-
malization of data is done by min-max scaling for each feature.
This scaling method helps to maintain consistency across fea-
tures and to provide model training stability. Building on the
methodology outlined in [19], Gramian Angular Fields (GAF)
are employed to transform 1D feature data into images, with
the aim of enhancing inter-feature correlations. GAF encodes
the relationships between features at a specific timestamp by



mapping them into a matrix that captures their magnitude and
angular direction within a normalized range. By converting
time-series into 2D images, GAF enables the application of
image-based analysis techniques, improving both computational
efficiency and the model’s ability to detect subtle inter-feature
dependencies.

Consider a time-series data with n features with single scaled
data vector X = [x1; x2; :::xn]. It can be encoded into polar
coordinates by using the angular cosine and time stamp:(

� = arccos(xi); �1 � xi � 1; xi 2 X

r = si
T ; si 2 T

(1)

where si is the time step position of each feature and T is
the defined radial distance for the polar coordinates. Then, the
GAF matrix is obtained by considering the trigonometric sum
between points to identify the temporal correlations:

GAF = [cos(�i + �j)] = X 0 �X �
p
I �X2

0

�
p
I �X2 (2)

where the I is an unit vector. For Pecan Street datasets, the
result of the GAF encoding is a square matrix of size 16� 16.
This matrix captures the time-series relationships among the
chosen features, offering a thorough depiction of their dynamic
interactions. Subsequently, the GAF square matrices from 60-
minute intervals span among the third dimension to form the
3D matrix. This 3D representation facilitates 3D convolution
operations, enabling the model to assimilate correlations be-
tween features and time concurrently. Therefore, the training
dataset (150000 � 16) is divided into individual 3D matrices
with a shape of 60� 16� 16 for model training. As for the EV
dataset, each data block is structured into shape of 60�35�35.

The subsequent 3D convolutional process can effectively
capture the spatial and temporal interconnections within the
data. This approach allows the model to extract meaningful fea-
tures by convolving across multiple dimensions, such as height,
width, and depth (time). The 3D convolutional layers leverage
these multi-dimensional structures to learn complex patterns that
are not evident in normal 2D representations. In the context of
time-series data, the 3D convolutional process enables the model
to understand relationships across sequential time frames or
layered data points, thereby enhancing its capacity to recognize
subtle interactions and dependencies, to handle the temporal
relationships and the interconnections between various features.

C. Model Structure

The structure of the proposed 3DAE GAN to generate
synthetic data is illustrated in Figure 1. The architecture com-
prises of four primary components: encoder (E), decoder (D),
generator (G), and discriminator (Di). The encoder transforms
input data x into a latent representation h, while the decoder
utilizes the latent representation h to reconstruct the original
data as x0. The generator takes Gaussian noise z as input and
transforms it into a latent representation h0 that ideally mirrors
samples from h. The discriminator assesses the authenticity of
a given data point by classifying the input representations h
and h0 as real or fake. This training process is indicated by the
black arrow. During synthetic data generation, random noise is
fed into the generator, and the decoder processes the output

Fig. 1. 3DAE-GAN model structure. Black arrow: training flow; Red arrow:
generating flow.

from the generator to produce synthetic data. This process is
illustrated by the red arrow. Unlike the VAE-GAN [17], the
latent representation in our method is defined as a vector of
length 1024 instead of just mean and variance. This length
is chosen because it is a power of 2 and is the nearest to
(60� 16) = 960. This is intended to ensure the comprehensive
retention of data knowledge without any tolerance for loss for
the data block of 16 features along 60 minutes. Although the
EV dataset used in this paper has 35 features, the same length of
1024 is applied for the hidden representation layer. Evaluation
results indicate that this value serves as an effective default
setting. Nevertheless, it remains adaptable and can be adjusted
to suit varying circumstances when necessary.

Autoencoder is used because it is a powerful tool for learn-
ing efficient, low-dimensional latent representations of high-
dimensional data. At the same time, GANs are highly effec-
tive at generating data that closely resembles the real-world
distribution by leveraging a generator-discriminator framework.
The generator creates synthetic samples, while the discriminator
evaluates their realism. This adversarial training pushes the gen-
erator to produce highly realistic data with natural variability,
enhancing the quality of synthetic samples.

Furthermore, this paper introduces a novel approach to
synthetic data generation. Unlike existing VAE-GAN method,
which use Gaussian noise as input to the generator to replicate
the distribution of learned patterns and produce synthetic data,
this approach mitigates potential privacy risks. Specifically,
the reliance on Gaussian noise in traditional methods can
inadvertently link the generated synthetic data to the original
data, raising concerns about data confidentiality and privacy.
Thus, to reduce the privacy concerns, we use the generator
to produce the intermediate hidden representation and let the
decoder reconstruct the data. This approach limits the direct
link between the synthetic data and the original data. The
generator now works on abstract, intermediate representations
rather than directly on raw data, reducing the likelihood of
revealing sensitive information that could be traced back to the
original dataset.

The detailed layers of each component in the proposed 3DAE
GAN are shown in Table II. Both encoder and decoder use 3D
convolutional layers because the data has been transformed into
3D representations. Both generator and discriminator use MLP
denser layers because they only need to process 1D data.



TABLE II
LAYERS OF EACH COMPONENT IN 3DAE GAN

Encoder Decoder Generator Discriminator
Cov3D(64) Dense(1920) Dense(128) Dense(512)
Cov3D(32) Reshape Dense(128) Dense(256)
Cov3D(16) Conv3DTranspose(16) Dense(1024) Dense(128)
Cov3D(8) Conv3DTranspose(32) Dense(2048) Dense(128)

Flatten Conv3DTranspose(64) Dense(1024) Dense(1)
Dense(1024) Cov3D(1) - -

D. Training Losses
The custom losses based on the function of each part of the

model structure are defined below for the training process.
1) Reconstruction: The input x is fed into the encoder, where

it undergoes complex learning to generate hidden representa-
tions. These hidden representations are then passed through the
decoder to reconstruct x as x0. The reconstruction loss Lr is
obtained by checking the distance between the reconstructed
x0 from decoder output and input x of encoder. It allows the
encoder and decoder to converge to an optimal point where the
reconstructed x0 is the same as input x. The loss is the mean
squared error:

Lr = kx� x0k
2
: (3)

This is the loss to be led back to the encoder and the de-
coder to ensure that both of them cooperate to learn hidden
representations and to reconstruct the output x0 that is close
to input x. Similarly, when there is input z into the generator
to produce fake hidden representation h0, the distance between
the real latent feature h from real input x and the generated h0

is the divergence loss Ld. This loss prompts the generator to
produce the same latent representation as the real input. This
loss is also the squared mean error:

Ld = kh� h0k
2
: (4)

This loss helps the encoder and generator to move toward a
space where both of real and fake hidden representations are
similar to each other.

2) GAN classification: Besides computing the losses above,
the ideal generator generates fake h0 from input z and this h0

should be classified as a real sequence by the discriminator. The
classification of predicted real sequence is “1” and predicted
false sequence is “0”. The generator should produce outputs
that minimize the Ls. The objective is to let the discriminator
think that the generated h0 actually comes from the real data x.
Hence, we have the synthetic loss using binary cross-entropy
loss that prompts the optimizing of the generator:

Ls = Eh[log(Di(h
0))]: (5)

The ideal discriminator needs to classify the real input sequence
h from x as real and thus has real prediction loss Lreal. At the
same time, it should classify the fake sequence h0 from z as
fake and thus has fake loss Lfake. The two losses also use
binary cross-entropy loss. The discriminator should minimize
both the real loss and fake loss. Those two losses prompt the
discriminator to converge:

Lreal = Eh[log(Di(h))]; (6)

Lfake = Eh0 [1� log(Di(h
0))]: (7)

TABLE III
MODEL COMPLEXITY OF DIFFERENT METHODS

Method WGAN-GP VAE GAN 3DAE GAN
Generator X X X

Discriminator X X X

Encoder - X X

Decoder - - X

Training complexity O(n � L �H2) O(n � L �H2) O(n � L �H2)

3) Simultaneous Training: All four components are con-
nected with other and thus they are updated at the same time.
Each loss plays a critical role during training. As described in
the previous section, in the training phase, there are two types
of inputs to models: the real input data x and the random noise
z. Real input data x goes into the encoder to get real hidden h.
Random noise z goes into the generator to produce fake hidden
h0. Thus the Ld is obtained. At the same time, the decoder
reconstructs x0 from the real hidden h. Thus, the reconstruction
loss Lr is computed. Then, for the produced real hidden h and
fake hidden h0, the loss Ls for generator, Lreal and Lfake for
discriminator are obtained. When all the losses are ready in a
single round, backpropagation is initiated to update the model
parameters.

The crucial objective is to ensure the active involvement
of both the encoder and generator in the divergence loss Ld.
Consequently, the following are the losses assigned to each
component during the backpropagation process:

E loss = � � Ld + Lr; (8)
D loss = Lr; (9)
G loss = � � Ld + Ls; (10)
Di loss = Lreal + Lfake: (11)

The variables � and � serve as factors to regulate the signifi-
cance of aligning the latent representations for the generator and
the encoder. In this paper, both � and � are set to 0.1. At the
same time, the decoder and the discriminator should work to-
gether to reconstruct data and to classify hidden representations
to provide real time feedback to the encoder and the generator.
Thus, all the four parts are trained at the same time to allow the
dynamic training and interactions among all of them. After all
the losses are computed, the optimizer updates each component
at the same time to achieve simultaneous training

E. Model Complexity

It is noted that the proposed framework is more complex
than the WGAN-GP [15] and VAE-GAN [17]. The details are
listed in Table III. The proposed 3DAE-GAN has the most
number of parts: encoder, decoder, generator and discriminator.
Although the training complexity of neural networks are not
straightforward to obtain, it can be represented by a general
big-O notation O(L � H2) where L represents the number of
layers and H represents the number hidden neurons in a layer.
For a simple comparison, let the number of layers and neurons
be the same for all the encoders, decoders, generators and
discriminators. The overall training complexity of the proposed
method is O(n �L �H2), where n is the number of components.



TABLE IV
HYPERPARAMETERS EXPLORATION PRELIMINARY RESULTS

Hyperparameters Cosine Similarity Duration
Default h = 1024 0.8722 93s

h = 512 0.8714 93s
h = 2048 0.8710 94s

Default no. of neurons 0.8722 93s
halved neurons 0.8670 92s

doubled neurons 0.8714 95s
Default no. of layers 0.8722 93s

Reduced layers 0.8704 87s
Increased layers 0.8729 102s

F. Hyperparameters

Before conducting the final evaluation of each method, sev-
eral settings were explored to determine the optimal configu-
ration. The most critical hyperparameters include the size of
the hidden latent representation (h), the number of neurons per
layer, and the total number of layers. Preliminary experiments
were performed to evaluate the impact of each hyperparameter
individually while keeping all other factors constant at their
default values. These initial results were used to guide the
selection of the final values for the hyperparameters. All default
settings are shown in Table II.

The default number of the latent representation h is selected
to be 1024. We also check the results when the value is
halved and doubled. The number of neurons in each layer of
all components is also halved and doubled to examine the
influences in this exploration. For the number of layers in
each component, the layers are reduced by one and increased
by one, respectively. The overall findings are shown in Table
IV. The cosine similarity of synthetic data to original data
and the time needed for each epoch is recorded during the
experiments. From the comparison, we note that the choice
of the hyperparameters does not hugely affect the results. The
cosine similarity for all cases are around 0.87. It is noted that by
decreasing the neurons in each layer and the number of layers,
the performance decreases, but with the benefits of less training
time. The best cosine similarity is obtained when the network
layers are increased. However, the training time increases to 102
seconds. Therefore, for the remaining evaluations, the default
settings are used. It does not cause any appreciable decrease in
cosine similarity and keeps the training time to be acceptable.
These settings may be adapted for future tasks and datasets as
needed. For training the proposed 3DAE GAN, the batch-size
is 4 and the optimizer is Adam with learning rate of 0.0001.

IV. RESULTS

The performance of the proposed 3DAE GAN model is
evaluated using both similarity metrics and functionality checks.
The proposed method is compared with existing WGAN-GP
and VAEGAN to illustrate its advantages. Furthermore, privacy
analysis and adversarial robustness of the generated synthetic
data are evaluated to provide more comprehensive understand-
ing. All experiments were run on a NVIDIA A100-SXM4-80GB
with CUDA version of 12.2 and cuDNN version 8. Programs
and scripts are using TensorFlow version of 2.13.0.

The similarity scores used are cosine similarity, Jensen-
Shannon distance, and Euclidean distance. Cosine similarity

TABLE V
LSTM PREDICTION MODEL LAYERS

Layer Details
1 LSTM(64)
2 LSTM(128)
3 LSTM(64)
4 Dropout(0.2)
5 Dense(1)

evaluates the alignment between points by measuring the angle
between them, determining if they are oriented in the same
direction. In contrast, Jensen-Shannon distance treats each point
as a distinct distribution, enabling an evaluation of their resem-
blance in a symmetric way. Euclidean distance quantifies the
shortest distance between two points, assessing their proximity.
The cosine similarity and Euclidean distance are given by:

Cosine Similarity(P;Q) =
Q �Q

kPkkQk
; (12)

Euclidean distance(P;Q) =

"
nX
i=1

(Qi � Pi)
2

#1=2
: (13)

The Jensen-Shannon distance between the original data P and
synthetic data Q is given by:

Divergence(PkQ) =
1

2
(KLD(PkM) + KLD(QkM)); (14)

Jensen-Shannon distance(P;Q) =
p

Divergence(PkQ); (15)

where KLD() represents the Kullback-Leibler divergence and
M = (P +Q)=2.

For the functional assessment, we test how well the real
and synthetic datasets perform in downstream tasks. For Pecan
Street datasets, we perform the consumption prediction using
a typical LSTM model. The original and synthetic power
consumption (generated from our method and existing methods)
of House ID 1 for the both Pecan-A and Pecan-B datasets are
used. A sliding window of 30 minutes is used to predict the
next consumption. LSTM is chosen because it is a popular
deep learning model that has proven to be effective in capturing
temporal dependencies and making accurate predictions [20].
The structure of the LSTM model used is shown in Table
V. As the EV dataset is a type of time-series data with
multiple features, we adopt a different prediction approach.
The instantaneous power consumption feature is selected as the
prediction target, while the remaining 33 features, such as EV
speed, road conditions, and acceleration, serve as inputs. The
prediction model is a 3D convolutional model from Alex-net as
shown in Table VI.

The same prediction model settings are used for all the four
datasets (original, 3DAE-GAN generated, WGAN-GP generated
and VAE-GAN generated). Thus, there are 4 unique prediction
models after training. Subsequently, these models are validated
on the same test dataset (original data) prepared before synthetic
data generation. The Mean Absolute Percentage Error (MAPE)
of each method is used to compare the prediction performance:

MAPE =
100%

N

N�1X
i=0

yi � y0i
yi

; (16)



TABLE VI
3D CONVOLUTIONAL PREDICTION MODEL LAYERS

Layer Details
1 Cov3D(256)
2 Cov3D(384)
3 Cov3D(384)
4 Cov3D(256)
5 Flatten()
6 Dense(6220)
7 Dropout(0.5)
8 Dense(1)

TABLE VII
SETTINGS TO PERFORM MEMBERSHIP INFERENCE ATTACK

Settings S1 S2 S3
Target model dataset Original Synthetic Synthetic

Shadow model dataset Original Synthetic Synthetic
No. of shadow models 10 10 10

Training (Member) data size 10000 10000 10000
Testing (Non-member) data size 10000 10000 10000

Evaluation dataset Original Synthetic Original

where y is the true value and y0 is the predicted value.
To evaluate the level of privacy protection provided by the

generated synthetic data, we perform the membership inference
attack (MIA) and population attack by using the open-source
tool Privacy Meter [21]–[24]. For both membership inference
attack and population attack evaluation, the target models are
the prediction models using the same setting as described in
Table V and Table VI. For membership inference attack, the
known data records that are used in model training are member
data and any other data records are non-member data. When an
attacker can use the knowledge gained from shadow models
to correctly classify the member data in the target model’s
training dataset, we define that the shadow dataset has the risk
of information leakage. In this evaluation, three types of checks
are designed: original data self-leakage (S1), synthetic data self-
leakage (S2) and cross-leakage (S3). In S1, both the target
and shadow models use the original dataset, and the evaluation
dataset is also from original dataset. In S2, both the target and
shadow models use the synthetic dataset, and the evaluation
dataset is also from synthetic dataset. In S3, both the target
and shadow models use the synthetic dataset, but the evaluation
dataset is from original dataset. This cross-leakage (S3) check
is to examine the extent of privacy leakage when attackers can
use information about synthetic data to identify any obtained
original data to be member or non-member. The settings of the
checks are summarized in Table VII. The member set and the
non-member set of each target and shadow model are randomly
selected from the respective datasets and are disjoint. The equal
numbers of member and non-member make the inference attack
to have no bias. The target model data and the shadow model
data have no overlap. The data used for each shadow model
is allowed to have partial overlap. The evaluation dataset does
not overlap with either target dataset nor shadow dataset. The
privacy information leakage is examined by the success rate of
the membership inference attack.

For population attack, shadow models and not needed and a
single target model is trained using the training data. The attack

Fig. 2. Losses during the training of 3DAE GAN.

decision relies on statistical properties of the model outputs
(e.g., average confidence, loss distribution) for a set of queries
corresponding to the population. The attacker can query the
model with a sufficiently large set of inputs representing the
population of interest. Model outputs reveal patterns that can
differentiate between trained and untrained populations.

The robustness of the models trained by synthetic data is
evaluated using Fast Gradient Signed Method (FGSM) [25].
After the prediction model is trained using synthetic data,
original testing data are modified by the FGSM method to obtain
adversarial input. Then the new prediction results are collected
to check how well does the prediction model handle inputs with
adversarial perturbations. The adversarial data is:

xadv = x+ � � sign(r(L(x; y))); (17)

where x in the normal input and y is the true value of x. L(x; y)
is the loss function used by the model during training, which
quantifies the difference between the model’s predictions for
input x and true value y. This attack method is a single step to
modify the input and we set � to be 0.1 and 0.01.

A. Model Training

The loss trend of each component during the training process
when using Pecan-A is shown in Figure 2 for the illustration of
how each component is updated through the process. It can
be seen that the generator’s loss consistently decreases and
stabilizes throughout the training process, indicating a conver-
gence where the generated latent vector aligns with that of real
input data. Conversely, the discriminator initially experiences
a small loss that gradually increases. This behavior aligns
with expectations, as the generator and discriminator are in a
continuous feedback loop, each trying to outperform the other.
Nevertheless, the discriminator loss oscillates at 1.6, indicating
its relative stability throughout the ongoing adversarial training
process. Overall, these plots help to confirm that the designed
training process is achieved and each component has converged
while interacting with each other.

B. Synthetic Data Generation

Due to space constraints, the synthetic consumption patterns
of 4 households randomly selected from the 16 houses in
Pecan-A are shown in Figure 3. An analysis of the average
values for each house in both the Pecan-A dataset original and



Fig. 3. 3DAE GAN generated synthetic power consumption for a house.

Fig. 4. Average consumption value from generated synthetic data for Pecan-A dataset.

Fig. 5. Average consumption value from generated synthetic data for Pecan-B dataset.

TABLE VIII
AVERAGE MEAN ABSOLUTE ERROR IN AVERAGE POWER CONSUMPTIONS

Method Pecan-A Pecan-B EV
WGAN-GP 0.2974 0.04878 0.04161
VAE GAN 0.1399 0.02778 0.02938

3DAE GAN (ours) 0.0512 0.02772 0.03550

synthetic datasets is presented in Figure 4 for the proposed
3DAE GAN, WGAN-GP and VAE GAN, respectively. Notably,
the difference between our synthetic data and the original data
for each house is considerably smaller than the differences
between other synthetic datasets and the original data. Figure
5 shows the average values for Pecan-B original and synthetic
data. It can be seen that our method performs well and has
similar average value as original data. Notably, both WGAN-
GP and VAE GAN methods also perform better for this Pecan-

B dataset. There are no significant differences between original
and synthetic means as compared to the results for Pecan-A.

To quantify the comparison between the average consump-
tion, the average mean absolute error (MAE) is computed for
each method for both Pecan-A and Pecan-B datasets. The results
are shown in Table VIII. Our 3DAE GAN method produces
synthetic data with the lowest average MAE for both datasets.
This underscores our method’s capability to generate synthetic
data that closely aligns with the values of the original data
across all households.

Despite not including the average value results of EV dataset
in figures due to space constraints, we have summarized the
average MAE in Table VIII. It is noted that the VAE GAN
method performs better than our method in this dataset. How-
ever, this average MAE metric reflects only the magnitude
comparison between the original and synthetic data, providing
limited insight into pattern similarity. While the VAE GAN



TABLE IX
SIMILARITY SCORES BETWEEN REAL AND SYNTHETIC DATA FOR PECAN-A

DATASET

Method Cosine Jensen-Shannon Euclidean
Similarity Distance Distance

WGAN-GP 0.723 0.322 171.758
VAE GAN 0.794 0.259 141.073

3DAE GAN (ours) 0.859 0.204 62.169

TABLE X
SIMILARITY SCORES BETWEEN REAL AND SYNTHETIC DATA FOR PECAN-B

DATASET

Method Cosine Jensen-Shannon Euclidean
Similarity Distance Distance

WGAN-GP 0.819 0.236 76.472
VAE GAN 0.838 0.210 72.662

3DAE GAN (ours) 0.878 0.175 55.502

effectively reconstructs magnitudes close to the original EV
data, it struggles to learn the hidden and complex trends. In
contrast, our method excels at modeling these intricate patterns,
making it more suitable for applications that require a deeper
understanding of the underlying data relationships.

C. Similarity Scores

1) Pecan-A dataset: Table IX compares the similarity scores
associated with synthetic data generated by the proposed
method and existing approaches for the Pecan-A dataset. No-
tably, our method demonstrates superior performance across all
evaluated metrics. For Jensen-Shannon and Euclidean distances,
smaller values signify heightened similarity between vectors.
Our approach yields the lowest Jensen-Shannon and Euclidian
distances.

2) Pecan-B dataset: Table X shows the similarity scores of
synthetic and original data of Pecan-B dataset. Our method
achieves the best score for all the metrics. It is also noted
that both WGAN-GP and VAE GAN have better performance
on this dataset as compared to Pecan-A. This difference in
performance can be explained by the nature of the data in
Pecan-B, which comes from a single region. In contrast, Pecan-
A includes data from multiple regions, introducing greater
variability in household consumption patterns. Thus, the rela-
tively homogenous nature of Pecan-B allows for more accurate
modeling, contributing to the enhanced performance of these
models compared to Pecan-A, where the increased complexity
due to multi-region data may make it more difficult for the
models to generalize effectively.

3) EV dataset: Table XI compares the similarity scores for
EV dataset. Across all metrics, 3DAE GAN outperforms the
other two models, achieving the highest cosine similarity, the
lowest Jensen-Shannon distance, and the smallest Euclidean
distance, indicating that its synthetic data is the most similar
to the real data in both distribution and feature space.

Overall, these results demonstrate that 3DAE GAN is the
most effective model in generating synthetic data that closely
resembles the original data in multiple dimensions and in
different datasets.

TABLE XI
SIMILARITY SCORES BETWEEN REAL AND SYNTHETIC DATA FOR EV

DATASET

Method Cosine Jensen-Shannon Euclidean
Similarity Distance Distance

WGAN-GP 0.692 0.419 99.635
VAE GAN 0.810 0.349 84.929

3DAE GAN (ours) 0.858 0.280 74.845

TABLE XII
PREDICTION MAPE USING DIFFERENT DATA FOR PECAN-A DATASET

Data Normal FGSM 0.01 FGSM 0.1
Original 5.121 10.539 52.568

WGAN-GP 14.638 28.938 54.373
VAE GAN 21.175 24.742 76.342

3DAE GAN (ours) 6.667 16.678 82.755

D. Functionality Performance

1) Pecan-A dataset: Table XII summarizes the MAPE of the
prediction performance when using the Pecan-A dataset. When
utilizing the original data, the MAPE is 5:121. Conversely,
when using synthetic data generated from our 3DAE GAN
method, the MAPE is 6:667, slightly larger than that of the
original data. These results demonstrate that the synthetic data
exhibits similar functionality to the original dataset in when
applied to various tasks. On the other hand, the WGAN-GP
and VAE GAN generated data produce large MAPE values of
14:638 and 21:175, respectively, indicating that these data would
lead to larger errors in subsequent tasks. Additionally, plots
of the real test data and the predicted values are depicted in
Figure 6 for visualization. This visual comparison of the plots
reveals that the prediction model based on our 3DAE GAN-
generated dataset yields the smallest error when compared with
the results from WGAN-GP and VAE GAN methods. Moreover,
it can be seen that although our method has similar MAPE in
normal scenarios, it performs a bit worse when there are FGSM
attacks. This could be attributed to the fact that our method
is well-trained to capture the patterns present in the original
training data. When adversarial modifications are introduced to
the original test dataset, the underlying patterns in the data are
altered, creating a mismatch between the adversarial test data
and the synthetic data generated by 3DAE GAN. Nonetheless,
our method achieves the lowest MAPE compared to WGAN-GP
and VAE GAN methods under smaller adversarial perturbations,
specifically when � = 0:01.

2) Pecan-B dataset: Table XIII summarizes the MAPE of
the prediction performance when using the Pecan-B dataset. For
original data, the normal MAPE is 3:291. For our method’s gen-
erated data, the normal MAPE is 5:653, which is slightly larger
than that of original data. However, it is the smallest among
the synthetic data. The plots of the prediction performance are
shown in Figure 7. The synthetic Pecan-B data generated by
3DAE GAN demonstrates performance comparable to that of
the original dataset, whereas the WGAN-GP and VAE GAN
methods exhibit notably poorer results. When facing FGSM
attacks, our method’s generated data achieves comparable per-
formance as the original data with lower MAPE in comparison



Fig. 6. Prediction model based on different data for Pecan-A dataset.

Fig. 7. Prediction model based on different data for Pecan-B dataset.

TABLE XIII
PREDICTION MAPE USING DIFFERENT DATA FOR PECAN-B DATASET

Data Normal FGSM 0.01 FGSM 0.1
Original 3.291 5.527 25.613

WGAN-GP 7.831 13.157 63.352
VAE GAN 7.552 19.563 52.879

3DAE GAN (ours) 5.653 8.532 28.619

TABLE XIV
PREDICTION MAPE USING DIFFERENT DATA FOR EV DATASET

Data Normal FGSM 0.01 FGSM 0.1
Original 9.117 12.454 50.335

WGAN-GP 18.211 22.492 42.547
VAE GAN 14.234 15.896 25.737

3DAE GAN (ours) 9.374 11.928 14.414

with existing WGAN-GP and VAE GAN methods. Previously, it
was observed that WGAN-GP and VAE GAN methods generate
more similar synthetic data for Pecan-B dataset than Pecan-
A dataset. Thus their synthetic data used for this functionality
evaluation also provides better prediction MAPE. However, they
are more vulnerable to adversarial FGSM attacks. Since the
smaller variations in household consumption within a single
region in Pecan-B makes it easier for models like WGAN-GP
and VAE-GAN to capture the underlying patterns, they are more
prone to overfit to the original training data. Therefore, the data
generated from those two methods are more vulnerable to the
adversarial perturbations in test data.

3) EV dataset: MAPE when making predictions to get power
consumption based on driving information using EV dataset is
shown in Table XIV. Under the normal, unperturbed setting,
3DAE GAN synthetic data achieves a MAPE of 9:374, which is
very close to the original data’s MAPE of 9:117, indicating that

Fig. 8. Membership inference attack ROC curves of self-leakage using original
data for generating datasets: (a) Pecan-A, (b) Pecan-B, (c) EV.

Fig. 9. Pecan-A: membership inference attack ROC curves of self-leakage using
synthetic data from different generating method: (a) 3DAE GAN, (b) WGAN-
GP, (c) VAE GAN.

it generates synthetic data that closely mirrors the real EV data.
However, as adversarial perturbations increase, the performance
of all models degrades, but 3DAE GAN shows the smallest
increase in MAPE. The smallest MAPE using our method
when under FGSM attacks provides an insight that in certain
cases, synthetic data could play a valuable role in defending
against adversarial FGSM attacks, potentially offering more
robust predictions than real data for specific types of datasets.

The performance of the 3DAE GAN method is consistently
strong across various datasets and conditions, demonstrating its
effectiveness in generating synthetic data that closely resembles
real-world data while maintaining the similar functionality as



TABLE XV
MEMBERSHIP INFERENCE ATTACK ACCURACIES OF ALL SETTINGS

Settings Original Self-leakage (S1) Synthetic Self-leakage(S2) Cross-leakage(S3)
Shadow data type Original 3DAE GAN WGAN-GP VAE GAN 3DAE GAN WGAN-GP VAE GAN

Evaluation data type Original 3DAE GAN WGAN-GP VAE GAN Original Original Original
Pecan-A 0.5048 0.4998 0.4331 0.4988 0.5 0.5068 0.4959
Pecan-B 0.5468 0.4883 0.5031 0.4975 0.4 0.5143 0.5941

EV 0.5185 0.5065 0.552 0.5025 0.5015 0.5005 0.5

Fig. 10. Pecan-A: membership inference attack ROC curves of cross-leakage
using synthetic data from different generating method: (a) 3DAE GAN, (b)
WGAN-GP, (c) VAE GAN.

Fig. 11. Pecan-B: membership inference attack ROC curves of self-leakage
using synthetic data from different generating method: (a) 3DAE GAN, (b)
WGAN-GP, (c) VAE GAN.

the original dataset. The robustness against adversarial attack is
task specific and depends on the real scenarios to deal with.

E. Membership Inference Attack

The classification accuracies of membership inference attacks
(MIA) for all three datasets are shown in Table XV. It can
be seen that all accuracies are around 0.5 and this shows that
the membership inference attacks of all settings perform no
better or just slightly better than random guessing. However,
even if the accuracy of membership inference attacks is low,
there could still be some residual risk of privacy leakage. The
synthetic data might inadvertently reveal patterns or charac-
teristics of the original data that could be exploited. Receiver
Operating Characteristic (ROC) curves are plotted out to provide
comprehensive analysis about the privacy link between original
and synthetic data. The Area Under the Curve (AUC) is the
area under the ROC curve and it measures the overall ability
of the attacker to distinguish between the positive (member)
and negative (non-member) classes. It represents the likelihood
that a randomly chosen positive instance is ranked higher than
a randomly chosen negative instance by the classifier. The
plots in Figure 8 show the ROC curve and its AUC for self-
leakage check using original data for Pecan-A, Pecan-B and EV
datasets, respectively. The AUC of 0:626 for Pecan-A and AUC
of 0:651 for Pecan-B show that the attacker has a slightly higher
chance to identify a data record to be a member of target model
rather than non-member data among all threshold settings. The

Fig. 12. Pecan-B: membership inference attack ROC curves of cross-leakage
using synthetic data from different generating method: (a) 3DAE GAN, (b)
WGAN-GP, (c) VAE GAN.

Fig. 13. EV: membership inference attack ROC curves of self-leakage using
synthetic data from different generating method: (a) 3DAE GAN, (b) WGAN-
GP, (c) VAE GAN.

EV dataset has an AUC of 0:539 which shows that the chances
of risk in membership inference attack is similar to random
guessing.

1) Pecan-A: Figure 9 shows the ROC and AUC for self-
leakage check using different synthetic dataset. It is seen that
the attack AUC of 3DAE GAN synthetic data is 0.5, AUC
of WGAN-GP synthetic data is 0.548 and the AUC of VAE
GAN synthetic data is 0.486. All of them are around 0.5 and
lower than that of the original self-leakage check. It means
that the attacker does not have high probability to identify a
data point to be a member of target model if any parts of
the whole data population are known to public. It shows that
by having the knowledge of some synthetic data, there is not
much privacy leakage to the other data points in the same
synthetic data population. The ROC plots of the cross-leakage
check using synthetic dataset to make inference conclusions on
original data are plotted in Figure 10. This evaluation helps to
examine the extent of privacy leakage to the original data while
having knowledge of the synthetic data that are generated from
the original data. Low AUC in this cross-leakage shows that
the attacker cannot directly get the same inference conclusion
on original dataset when the attacker has the conclusion on
synthetic dataset. Thus, there is little or no privacy leakage in the
3DAE GAN and WGAN-GP generated synthetic data. However,
the higher AUC from the VAE GAN synthetic data suggests
that this synthetic dataset can lead the attacker to find more
member data in original data (the true positives) with higher



Fig. 14. EV: membership inference attack ROC curves of cross-leakage using
synthetic data from different generating method: (a) 3DAE GAN, (b) WGAN-
GP, (c) VAE GAN.

Fig. 15. Population attack ROC curves of original datasets: (a) Pecan-A, (b)
Pecan-B, (c) EV.

confidence. This result can be explained because the VAE GAN
method forces the original data to form a normal distribution
and generates synthetic data from this distribution. This process
compresses the information into a smaller boundary and thus
makes both original and synthetic data to be more compactly
represented within a reduced dimensional space. However, this
compression also brings privacy leakage more easily.

2) Pecan-B: The self-leakage check of MIA for Pecan-B
dataset is shown in Figure 11. The attack AUC of 3DAE GAN
synthetic data is 0.458, AUC of WGAN-GP synthetic data is
0.511 and the AUC of VAE GAN synthetic data is 0.481. All of
them are also smaller than that of the self-leakage check using
original data. This shows that by having the knowledge of some
synthetic data, there is not much privacy leakage to the other
data points in the same synthetic data population. Figure 12
shows the cross-leakage check for MIA ROC. The AUC when
using 3DAE GAN generated synthetic data is 0.096 and the
AUC is 0.117 when using WGAN-GP generated synthetic data.
These low AUC values suggest that there is little or no privacy
leakage in the 3DAE GAN and WGAN-GP generated synthetic
data. However, the higher AUC of 0.812 from the VAE GAN
synthetic data shows there is higher risk to reveal the original
data information from the synthetic data.

3) EV: The self-leakage check of MIA for EV dataset is
shown in Figure 13. Similar to the two Pecan Street datasets, the
scores of AUC for synthetic data self-leakage are also around
0.5. However, the AUC of 0.566 from WGAN-GP synthetic
data is slightly larger the value of 0.539 of the original dataset.
This shows that it has a little higher chance to reveal its self
information. For both our 3DAE GAN and VAE GAN, the AUC
is smaller as 0.508 and 0.515, respectively. Nevertheless, all
three types of data provide chances like random guessing to
MIA attackers. The cross-leakage check of MIA for EV dataset
is shown in Figure 14. The plots show that 3DAE GAN and
WGAN-GP have smaller chance to reveal to the information of
original EV data, because their AUC values are much smaller

Fig. 16. Pecan-A: population attack ROC curves of cross-leakage using
synthetic data from different generating method: (a) 3DAE GAN, (b) WGAN-
GP, (c) VAE GAN.

Fig. 17. Pecan-B: population attack ROC curves of cross-leakage using
synthetic data from different generating method: (a) 3DAE GAN, (b) WGAN-
GP, (c) VAE GAN.

than the VAE GAN method.

F. Population Attack

Population attack decides whether a given data point belongs
to the same population as the target data. This is a different
type of privacy attack compared to the membership inference
attack, but it also examines the information correlation between
different data points. The results of population attack ROC for
each original dataset is shown in Figure 15. The AUC of Pecan-
A under population attack is 0.552, the AUC of Pecan-B is
0.578 and the AUC of EV dataset is 0.515. All of them are
slightly larger than 0.5, showing slightly better performance
than random guessing for attackers.

1) Pecan-A: The results of population attack on synthetic
Pecan-A data are shown in Figure 16. For synthetic data from
3DAE GAN method, the AUC is 0.482. The AUC is 0.493 for
WGAN-GP synthetic data and 0.509 for VAE GAN synthetic
data. It is noted those results are also smaller than the AUC
when attacking original Pecan-A dataset as shown in Figure 15.
Thus, synthetic data increases the privacy protection. Moreover,
they are a bit larger than the AUC when performing self-leakage
MIA attacks. This is expected because to conclude whether a
data point belongs to a certain population is easier than to decide
if this data point is linked with another particular data point.

2) Pecan-B: The population attack AUC for Pecan-B syn-
thetic data is shown in Figure 17. The AUC scores are 0.528,
0.496 and 0.592 for 3DAE GAN, WGAN-GP and VAE GAN,
respectively. Similarly to Pecan-A dataset, both our 3DAE
GAN and WGAN-GP methods have smaller AUC than that
of the original dataset. However, the VAE GAN synthetic data
has a larger value than original AUC. It follows the findings
in previous sections that VAE GAN method contains more
correlation in a compact hidden space to the original data,
making the synthetic data have higher privacy risk.

3) EV: The results of AUC for population attack on EV
synthetic data are shown in Figure 18. In this case, the 3DAE



Fig. 18. EV: population attack ROC curves of cross-leakage using synthetic
data from different generating method: (a) 3DAE GAN, (b) WGAN-GP, (c)
VAE GAN.

GAN synthetic data is the only one to have lower AUC
than the original EV dataset. The original AUC as in Figure
15 is 0.515 and our 3DAE GAN has AUC of 0.507. For
WGAN-GP and VAE GAN synthetic data, the AUC scores
are 0.565 and 0.523,respectively. These results also comply
with previous findings that both WGAN-GP and VAE GAN
methods have potentially higher risk of disclosing original data
information. Nevertheless, all methods’ AUC are close to 0.5
that is marginally equal to random guessing.

In summary, from the evaluations among different types of
dataset, 3DAE GAN method has better performance than the
existing WGAN-GP and VAE GAN in data similarity, utility,
and privacy leakage protection in most cases.

V. CONCLUSION

This paper introduced the 3DAE GAN model as a novel
approach for generating synthetic data for power systems.
The primary objective is to not only uphold security and
privacy standards but also to preserve the inherent insights and
functionalities of the original dataset. Our proposed method
integrates an autoencoder with a conventional GAN to han-
dle multivariate time-series data in a 3D process, effectively
uncovering hidden interconnections between various features
and their temporal patterns. Statistical results indicate that
our approach successfully generates power consumption data
with maintained statistical coherence compared to the original
datasets, outperforming benchmarks such as WGAN-GP and
VAE GAN. Furthermore, the synthetic data exhibits similar
functionalities in tasks like predicting energy consumption using
LSTM model. In addition, the absence of privacy leakage check
was demonstrated by conducting membership inference attacks
and population attacks. The robustness of the prediction models
trained on synthetic data is also evaluated against the typical
FGSM adversarial attack. All these experiments contribute to a
comprehensive understanding of the proposed method.
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