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Abstract—Physically Unclonable Functions (PUFs) provide a
streamlined solution for lightweight device authentication. Delay-
based Arbiter PUFs, with their ease of implementation and vast
challenge space, have received significant attention; however, they
are not immune to modelling attacks that exploit correlations
between their inputs and outputs. Research is therefore polarized
between developing modelling-resistant PUFs and devising ma-
chine learning attacks against them. This dichotomy often results
in exaggerated concerns and overconfidence in PUF security,
primarily because there lacks a universal tool to gauge a PUF’s
security. In many scenarios, attacks require additional informa-
tion, such as PUF type or configuration parameters. Alarmingly,
new PUFs are often branded ‘secure’ if they lack a specific attack
model upon introduction. To impartially assess the security of
delay-based PUFs, we present a generic framework featuring a
Mixture-of-PUF-Experts (MoPE) structure for mounting attacks
on various PUFs with minimal adversarial knowledge, which pro-
vides a way to compare their performance fairly and impartially.
We demonstrate the capability of our model to attack different
PUF types, including the first successful attack on Heterogeneous
Feed-Forward PUFs using only a reasonable amount of challenges
and responses. We propose an extension version of our model,
a Multi-gate Mixture-of-PUF-Experts (MMoPE) structure, fa-
cilitating multi-task learning across diverse PUFs to recognise
commonalities across PUF designs. This allows a streamlining of
training periods for attacking multiple PUFs simultaneously. We
conclude by showcasing the potent performance of MoPE and
MMoPE across a spectrum of PUF types, employing simulated,
real-world unbiased, and biased data sets for analysis.

Index Terms—Physical Unclonable Function (PUF), Machine
Learning-Modelling Attacks (ML-MA), Minimal Adversarial
Knowledge.

I. INTRODUCTION

Lightweight authentication is gaining momentum as
a vital research area, primarily due to the ubiquitous
integration of the Internet of Things (IoT) in our daily
lives. Numerous methodologies have emerged to bolster
its resilience. Traditionally, secret keys stored in non-
volatile memory are employed to encrypt sensitive data, and
cryptographic techniques, such as asymmetric cryptography,
have been used for device authentication [1]. However,
cryptographic implementations can be resource-intensive,
particularly given the nature of IoT devices, which are often
resource-constrained. Even with cryptography, devices remain
susceptible to various threats, including invasive attacks
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[2]. In contrast, Physical Unclonable Functions (PUFs)
offer a streamlined approach to security, suitable for both
authentication and secure key generation. Their efficacy in
authentication revolves around optimal energy consumption,
computational power, and robust defence against threats. This
is largely attributed to PUFs deriving volatile secrets from a
device’s inherent physical characteristics rather than relying on
stored secrets in non-volatile memory. These characteristics,
resulting from random variations during integrated circuit
(IC) manufacturing, ensure that no two ICs are identical [1].
Moreover, the unique delay sequences in transistors and wires
of each IC make PUFs capable of generating unpredictable
sequences, offering a formidable defence against malicious
attacks. Furthermore, PUFs are efficient, negating the need
for intricate cryptographic operations.

PUFs utilize sequences of binary numbers as input and
output, referred to as challenge-response pairs (CRPs) [3].
Based on the number of CRPs they can produce, PUFs are
classified as ‘Weak’ and ‘Strong’. This terminology has no
bearing on the security properties of the PUF but rather
indicates the total number of supported unique CRPs. Weak
PUFs are limited to generating a linear number of CRPs,
making them apt for key generation and storage. Strong PUFs
can produce an exponentially growing number of unique
CRPs (based on PUF size), making them ideal for creating
one-time authentication tokens. However, a key vulnerability
persists for PUFs, particularly for delay-based Arbiter PUFs,
known as ‘machine learning modelling attacks’ (ML-MA). In
such attacks, adversaries collect CRPs produced by PUFs and
employ machine learning techniques to deduce the challenge-
response correlation [4]. As such a model can predict the
response to future challenges, it can allow an adversary to
pose as the PUF-authenticated device. The high prediction
accuracy of this technique jeopardizes the security of PUFs.
Consequently, diverse PUF variations have been proposed
to fortify their defences. For instance, XOR Arbiter PUFs
(XOR-APUFs) integrate the responses of multiple Arbiter
PUFs (APUFs) [5][6], while (XOR) Feed-Forward Arbiter
PUFs (FF-APUFs) incorporate a “feed-forward loop” (FF-
loop) concept and Interpose PUFs (iPUFs) utilize the upper-
lower-layers design. All these designs are geared towards
enhancing PUF non-linearity [4]. Nevertheless, so long as
the training CRP set is large enough, accurate predictions of
these complex PUFs are still feasible. Without more extreme
countermeasures, they only raise the modelling effort and do
not fundamentally prevent it.
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A. Related Work

In general, the crux of modelling attacks on PUFs is
identifying the relationship between challenges and responses.
This implies that the attacker needs access to the CRPs in the
PUF. Multiple studies have explored how to conduct modelling
attacks on PUFs using ML methods. Rührmair et al. first
employed Logistic Regression (LR) to model XOR-PUFs [4].
They began by formalizing the mathematical model of the
arbiter PUF and then captured the XOR logic for the machine
learning model. For instance, they utilized multiplication oper-
ations of 1,−1 to symbolize XOR, achieving high modelling
accuracy. However, their mathematical model is less effective
when faced with noisy data and intricate PUFs, such as those
with many XOR-APUF stages. In [7], both LR and Evolution
Strategies (ES) were deployed to target various PUFs (some of
which are examined in this paper) using both simulated and sil-
icon data. Their outcomes reaffirmed the viability of ML-MA.
PUFs’ reliability also emerged as a vulnerability, revealing
differences in delay paths. Becker [8] introduced reliability-
based machine learning attacks, demonstrating a link between
response reliability and delay differences, suggesting that an
unstable response indicates a minuscule delay difference. In
[9], researchers presented a comprehensive framework to con-
duct logical approximation modelling attacks on several delay-
based PUFs. The framework leveraged a logical approximation
and global approximation rooted in artificial neural networks
(ANN). The former estimated basic logical operations like
AND and OR in circuits, applied linear functions, and built
an ANN model of the logical architecture. For more intricate
logics, the global approximation discerned an appropriate
continuous function to map the challenge-response relation,
subsequently formulating an ANN structure to emulate the
chosen function. The primary goal of [9] was to depict the
nonlinear components in PUF designs through soft models to
expedite modelling. In [5], the authors delved into another type
of modelling attack on Arbiter PUF compositions. This attack
was founded on a deep feed-forward neural network and did
not rely on the mathematical model or structural knowledge
of PUFs as seen in prior work [4], [7], [8]. Distinct layers
with varying neurons were meticulously designed to enable
a successful attack. Aseeri et al. [10] considered a different
neural network approach to model XOR PUFs. This structure
is more standardized, expanding with the increase of compo-
nent arbiter PUFs. Mursi et al. in [11] refined the structure
and various ML hyper-parameters, outperforming [5], [10].
Nonetheless, the efficiency of ML-MA methods varies across
devices and datasets. In [12], a new strategy is proposed, using
“transition theory” to represent the mathematical model of the
PUFs to an equivalent representation of XOR PUFs, which
can connect the modelling resistance across different PUFs
and further enable an “out-of-date” model to attack a new
PUF.

In [13], Wisiol et al. provided unbiased comparisons of
recent ML-MAs, underscoring the promise of neural network-
based attacks on PUFs. They also unveiled a new model
for XOR FF-APUFs but admitted their inability to breach
heterogeneous XOR Feed-Forward Arbiter PUFs, even under

Fig. 1. Generic framework vs. multiple single models for PUF modelling

moderate parameter settings. A recurring observation across
these studies was the sensitivity of the methods to model
settings. Even minor alterations could result in attack failures,
indicating designs tailored for specific PUFs. In [14], a new
evolutionary search (ES) based modelling method CalyPSO
was proposed. CalyPSO targets delay-based PUFs and was
able to mount successful modelling attacks on high-order
XOR-PUFs, interpose-PUFs and LR-PUFs. The method re-
quires knowledge of the architectural topologies, and the train-
ing cost is exceptionally high relative to other approaches. Sig-
nificantly, compared to this work, they attempt a “downgrade
attack” where they attack n−XOR PUFs using a model tuned
for (n+1)−XOR and achieve moderate success, making this
method at least partially generic. While the concepts in this
paper are interesting, we have some reservations about the
results claimed due to errors found in the codebase associated
with the paper and the resulting difficulty in replicating the
results, e.g., overlaps between the training dataset and test
dataset, miscalculation of the amount of training data, etc.

Apart from CRPs, side channel information is also used
for modelling PUFs. In [15], an auxiliary learning framework
ALScA is proposed, which is a multiple-task learning model
utilizing both CRPs and side channel information to help mod-
elling tasks. ALScA has a shared-bottom structure and focuses
on the correlations between the mathematical model and side-
channel models and achieves good accuracy improvement on
Arbiter-based PUFs.

B. Problem Statement and Motivation

Strong PUF-based authentication threat models often as-
sume an attacker capable of gathering large numbers of CRPs
and a single target PUF of fixed type. Further, the structure
of the PUF is known to the adversary. In many ways, this
is a worst-case scenario for remote attacks: a logical threat
model for most PUF papers where the aim is either to prove
the security of a given design or to disprove such claims
previously made. In reality, it is unlikely that most attackers
will have the unlimited ability to read network traffic or
have such detailed knowledge of hardware implementation.
If the case is that only one PUF exists in the network. PUF
authentication protocols are generally agnostic of the specific



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

hardware implementation. So, there is no reason to assume that
every device has the same PUF or PUFs in a mixed device
network. This cannot be easily inferred from network traffic
alone, nor is it something that manufacturers are likely to
disclose. Thus, when attacking PUFs, we should treat them
as an ideal black box; only input and output data are available
and no other information. Besides, regardless of whether a
PUF is provably secure, in relative terms, what is the real risk
from an opportunistic attacker? Such an attacker is simply
probing for weaknesses, who does not have unlimited ability
to avoid detection, who is not a hardware security expert but
has enough technical skill to use any tools that other experts
have produced. Does such an adversary pose a real threat with
the available tools? If not, could a tool be built to enable
that threat? We should expect the adversary to prefer to attack
without the need to know much more details about PUFs other
than CRPs. As discussed above, this kind of extra information
can be hard to obtain in practical scenarios.

Prevailing ML-MA techniques necessitate information be-
yond just CRPs. We classify this information into ‘Explicit’
and ‘Implicit’ categories. Explicit information encompasses
setup parameters of PUFs, such as the placement of Feed-
Forward Loops. On the other hand, Implicit information
refers to type-specific details, like the count of APUFs in
XOR PUFs or the number of Feed-Forward Loops in FF-
PUFs. Some methodologies leverage ‘Explicit’ knowledge to
construct precise models aligning with the PUFs. A majority
employ ‘Implicit’ information for model creation, asserting
that any alterations to their model would render the attack
ineffective. Consequently, these models often falter in real-
world applications. One might argue that iterating through all
potential models is an alternative, but even with a comprehen-
sive catalog of PUF designs and specific attacks, the uncer-
tainty of which PUF to initially target makes this approach
inefficient. It either results in trial and error or necessitates a
deep learning approach demanding considerably more training
data. As previously stated, in realistic settings, discerning the
exact type of PUF a device employs, even with a uniform
authentication protocol, presents a challenge for adversaries.
For example, the same 64-stage 6 XOR-APUF in [5] was re-
ported to need 20 minutes to train an attack model. Of course,
the difficulty depends on available computing resources, but
repeatedly training and testing models until the right one is
found is costly. The alternative is an entirely black-box deep
learning attack, which infers both the PUF model and the
values of a given PUF. The core motivation of this work is
to explore the lower bound of viable attackers. To this end,
we examine techniques for training PUF prediction models
in parallel and without prior design knowledge (as shown in
Fig. 1). This is an example of a single expert tool that a low-
capability attacker could use to probe for modelable PUFs. We
also look at the lower bound of CRPs needed to achieve a high
chance of collision between actual and predicted CRPs. The
aim is to provide insight into the real risk level for PUF-based
authenticated devices against opportunistic, low-effort attack-
ers. Beyond the scope of practical adversary situations, we
have observed a research schism. The community is divided
between crafting modelling-resistant PUFs and designing ma-

chine learning attacks against them, sparking debates over their
security robustness. This divide often inflates concerns and
fosters undue confidence in PUF security, primarily due to the
absence of a standardized tool to evaluate a PUF’s security.
In discussions surrounding newly introduced PUFs, disputes
arise over their relative security. While unique attack strategies
may exist for each, they might employ varying techniques,
such as neural networks or evolution strategies. Finding an
equitable comparison metric is thus challenging. We aim to
introduce a universal framework capable of modelling any
delay-based PUF without necessitating setting alterations. In
this manner, the requisite number of CRPs can serve as a
definitive standard for assessing security levels, and thus, the
quantitative index of modelling resistance of a PUF design. On
the other hand, managing multiple models for multiple PUF-
embedded devices could be challenging, where an adversary
needs to train, store and load individual PUF models for a
target device. Thus, to address this issue, in this research, we
aim to build a generic PUF model where an attacker needs
to maintain only a single model for all PUFs. To summarize,
our motivation for this article can be specified through the
following research questions (RQs):

1) RQ 1: Can we perform a modelling attack on a PUF
without knowing its architectural topology information?

2) RQ 2: Is it possible for an attacker to maintain a single
model to attack multiple cross-architectural PUFs? And
would no update of the constructed single model even
be required to perform the attack on other PUFs?

3) RQ 3: Considering the practical concerns of training
efficiency, time cost, and model loading problem, how
realistic is it to attack multiple PUFs together with one
single model?

C. Contributions

Existing literature posits two primary ML attack methods
against PUFs: mathematical-model-based and deep-learning-
based attacks. Attacking using a predetermined mathematical
model is highly efficient. However, it requires an attacker to
know the type of PUF and details of its specific implementa-
tion (e.g., the number of stages in a delay PUF, the number
of XORs in an XOR PUF, etc.). On the other hand, PUF
inference using deep learning can attack any PUF without
knowing as much detail as required by mathematical-model-
based methods, but requires large sets of training data and
some high-level implementation details. In this work, we pro-
pose a generic model which does not require any information
about the targeted PUF except the CRPs. Further, we expand
the model for multi-task learning that could be applied to
PUF attacks to exploit commonalities in structure and logic
across PUF instances, thereby creating an attack which is
generic (like deep learning inference), with reasonable training
data and computation costs (like using a predefined model),
minimal expertise required to use, and which retains high
prediction accuracy. The specific contributions are:

1) We define a pragmatic PUF attack scenario based around
determining the “Minimum Viable Adversary”. That
is the bare minimum of skill, knowledge, and resources
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required to compromise the authentication system under
test.

2) We propose a generic framework based on multi-experts
collaborative learning for modelling delay-based PUFs
with minimal knowledge and resources. This represents
the kind of tool that significantly lowers the bar for what
constitutes a Minimum Viable Adversary.

3) We provide a replication of several proposed ML attack
methods found in the existing literature [4], [10], [11]
and compare their performance with respect to our
proposed solution using both simulated and in-silicon
PUF data in order to validate our claim that attacks using
predefined mathematical models are not generic.

4) We demonstrate a successful attack using our tool on the
heterogeneous XOR Feed-Forward Arbiter PUF. To the
best of our knowledge, this is the first published attack
against this design.

5) We conduct cross-architectural experiments and show
that our model can achieve high accuracy among differ-
ent kinds of delay-based PUFs without any modifications
to the model. For instance, we attack five distinct delay-
based PUFs, four unique 4-XOR-APUFs, five different
FF-XOR-APUFs and Interpose PUFs, with all attacks
attaining a prediction accuracy over 90%.

6) We successfully attack multiple PUFs together in one
single model, where the PUFs have different settings and
structures. We conduct detailed experiments and achieve
accuracy beyond 90% in all the experiments.

7) We provide all code, FPGA implementations of PUFs,
and datasets used in this paper for the use of the research
community1. We hope this tool will be useful for those
working on variant delay-based PUFs as an “out of the
box” attack to test against, without needing a lot of
modification or computational resources to run.

II. PRELIMINARIES

This section lays the foundation for our discussion by pro-
viding an overview of Arbiter PUF and its various components.
We delve into the intricate world of modelling attacks aimed
at PUFs, highlighting representative methods that challenge
their security. Furthermore, we introduce the cutting-edge
Multi-gate Mixture-of-Experts Model (MMoE) as a promising
solution. Lastly, we define the adversary model as the basis
for our analysis.

A. Delay-based PUFs

As described in Section I, PUFs can be classified into
two distinct categories: Strong PUFs and Weak PUFs. This
classification does not reflect their security levels but rather
hinges on the number of CRPs they support. The exponential
number of CRPs in Strong PUFs renders them the preferred
choice for device authentication. Their inherent property of
random deviations during hardware manufacturing grants them

1The code and datasets used in this paper are pro-
vided in full for the use of the research community at:
https://github.com/AnonymousAppdx/Generic-Framework-for-
Modelling-PUFs

Fig. 2. Arbiter PUF delay chain diagram.

an unclonable physical structure, making it challenging for
attackers to model their behaviour. However, they remain
susceptible to modelling attacks facilitated by ML techniques.
In these attacks, an adversary collects a significant number of
CRPs and constructs a mathematical model, allowing them to
predict the patterns of CRPs accurately. This section aims to
elucidate the concepts behind various types of Strong PUFs.
An example of an implementation of a strong arbiter PUF
is shown in Figure 2. This design exploits the manufacturing
variability in the gate delays for randomness and establishes
a race condition in a symmetric circuit. The circuit splits
an input edge to two multiplexers and creates two identical
paths to the output latch based on the input challenge bits
c[0], · · · , c[n]. Though the two paths and their propagation
times are identical as designed, the random manufacturing
variability in the gate delays at the multiplexers will result
in one edge arriving first at the latch, with the latch acting as
the “arbiter”. The figure shows one output (response) bit that
depends on the n challenge bits, and multiple such circuits
may be used in parallel to obtain additional response bits.

B. Classical Machine-Learning Modeling Attacks on PUF

ML-MA on PUFs have been a significant pain point when
developing Strong PUFs, almost since their conception. ML-
MA are carried out by adversaries collecting a subset of CRPs
from an individual PUF’s total CRP space to use as an input
to a sophisticated ML algorithm, such that a mathematical
model can be generated which learns correlative properties
between different challenges and responses. Over the years,
almost all Strong PUFs proposed are vulnerable to ML-MA
using many different types of ML algorithms, ranging from
traditional ML, which is specifically tailored to a given PUF
design, to deep learning methods. The first significant work
exposing the vulnerability of PUFs to ML-MA was demon-
strated by Rührmair et al. in [4], where the Logistic Regression
and Covariance-Matrix Evolutionary Strategy (CMA-ES) algo-
rithms were exploited to model Arbiter PUFs, Ring Oscillator
PUFs, XOR Arbiter PUFs, Lightweight Secure PUFs and
Feed-Forward Arbiter PUFs. These attacks required varying
numbers of CRPs for training the models, with the simple
Arbiter PUFs, at a minimum, requiring simply 640 CRPs to
break the PUF. The more obfuscated PUFs (XOR-Arbiter PUF
and Feed-Forward Arbiter PUF), however, generally required
many more CRPs before model convergence occurred at up to
500,000 in most cases. While less efficient than traditional

https://github.com/AnonymousAppdx/Generic-Framework-for-Modelling-PUFs
https://github.com/AnonymousAppdx/Generic-Framework-for-Modelling-PUFs


IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

ML-MA (on PUFs), deep learning-based modelling attacks
can learn latent representation without requiring knowledge of
the underlying PUF structure, broadening their use cases [16],
[17]. More extensively obfuscated APUF designs have shown
improved defences against traditional ML attacks; however,
feed-forward neural networks (FNNs) have been shown to
successfully model up to 5-XOR APUFs, and (4,4)-iPUFs
[16].

C. Multi-task Learning

Multi-task learning has been considered to be an important
research topic in the machine learning community for a long
time. By transferring the common knowledge shared between
different but related tasks, multi-task learning is expected to
improve efficiency and model quality on each task. Deep learn-
ing has continuously made breakthroughs in various tasks and
applications in recent years. Consequently, multi-task learning
methods based on deep network architectures have gradually
become the research mainstream. The shared bottom network,
proposed by Caruana [18], is one of the most widely adopted
multitask learning methods. It comprises of a shared bottom
model structure, where the hidden bottom layers are shared
between tasks and several tower networks specific to the task.
The shared-bottom model structure enables knowledge transfer
among tasks and dramatically reduces the risk of overfitting.
Unfortunately, it may suffer from negative transfer as all tasks
must utilize the same shared bottom layers, and the differences
between tasks are artificially obliterated.

D. Mixture-of-Experts and Multi-gate Mixture-of-Experts
Model

Mixture-of-Experts (MoE) layer was first proposed by
Robert et al. [19] as an associative version of competitive
learning. By dividing the main tasks into several appropriate
subtasks, each of the subtasks can be solved using simple
expert networks. The spirit of dividing and learning is suitable
for PUF modelling since the basic APUF component can be
easily learned using a network with only dozens of neurons.
The core of MoE is the gate function, which can be trained to
‘select’ the most suitable experts for the main task. This kind
of gate function is usually composed of only several neurons
and does not cost much resources. It has normalized outputs
which are activated by a Softmax function, referring to the
weights assigned to each expert. Then, each expert contributes
to the final output according to the weights.

The Multi-gate Mixture-of-Experts Model is proposed by
Wang et al. [20] to solve the negative transferring produced
in multi-task modelling. Additionally, it can also capture the
similarities across tasks and improve general performance.
MMoE adds more gate functions based on the original MoE
Model [19]; the structure is shown in Figure 3. The core idea
of multiple experts is to set up a MoE layer as an ensemble
method of multiple individual models. These models are
viewed as experts with specific capabilities to solve different
tasks. Then, a separate gating network gt for each task t is
used to select suitable experts. The output of task t is:

yk = ht
(
f t(x)

)
, (1)

Fig. 3. Multi-gate MoE Model.[20]

where

f t(x) =

n∑
i=1

gt(x)ifi(x). (2)

The gating networks are linear transformations of the input
with a softmax layer:

gt(x) = softmax (Wgtx) . (3)

E. The Basic Threat Model

The threat models of machine learning attacks (MLAs) have
often not been thoroughly examined or analyzed. This over-
sight allows adversaries to easily gather excessive information,
resulting in an overestimation of the adversary’s capabilities
and a corresponding underestimation of security robustness.
Here, we give a formal basic threat model for modelling strong
PUFs.

Basic Threat Model for Strong PUFs
1) A network of devices exists.
2) This network comprises of nodes (to be verified) and

verifiers.
3) Nodes are low-resource devices in a low-security en-

vironment, and verifiers are high-resource devices in a
high(er) security environment.

4) All nodes possess a PUF. The PUF can be issued
challenges and returns a response.

5) Responses to a given challenge are unique for a given
node.

6) A verifier knows the expected response to any challenge
for all nodes it is assigned to verify.

7) A node is considered authentic (trusted) if it can return
the expected response to challenges issued by the cor-
responding verifier.

8) The adversary cannot directly access device contents for
either nodes or verifiers.

9) The adversary does not have physical access to devices.
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10) The adversary cannot alter the behaviour of devices but
can trigger any behaviour that is exposed to the network.

11) The network is transparent to the adversary. The ad-
versary acquires any data transmitted by devices on the
network.

12) If the adversary can predict expected responses, they
can impersonate a node and gain trusted access to the
network.

The crux of the modelling attack problem for PUFs are
points 11 and 12 of the basic model described above. In early
works, it was assumed that simply discarding a CRP after use
was enough to prevent response prediction. A large body of
subsequent work has shown that, in fact, an ML model trained
on a subset of CRPs can infer the response to any arbitrary
challenge. Proposals to mitigate this can be broadly placed
into the following categories:

Time Bounded: Rate limit PUF query such that a response
can be generated only once every T seconds. In theory, so
long as T is sufficiently large, it becomes impractical for an
adversary to acquire a training set for any given PUF. Even if
some attack is used to challenge the node rapidly, it will only
respond at a fixed rate. This opens the risk of denial of service
attacks against the authentication system. The designer must
balance network performance against the lower bound on the
number of CRPs needed for an attack.

Mathematically Unmodelable PUF: The standard threat
model is safe so long as the PUF cannot be predicted without
knowing the full CRP set in advance. Ideally, the mathematical
model of the PUF should be able to prove this infeasibility.
Many “ML resistant” PUF proposals aim for this objective, but
to date any time such claims have been made, some new attack
method has proven them false for at least some scenarios. In
this case, a powerful model suitable for different PUFs can be
a good benchmark for researchers to evaluate their proposed
PUFs in the first place.

Complexity Bounded: This approach relies on increasing
the number of physical variables and the complexity of their
relationship in the PUF design. The higher the complexity, the
larger the time to model, even with many CRPs. Modelling
is theoretically possible and feasible, given enough attacker
resources. However, this difficulty is known and can be scaled
by the designer at the cost of additional resource usage.
However, complex designs bring unreliability to the responses
of the PUF, which may weaken its security against reliability-
based ML-MA. The designer must balance resource usage
vs. time-to-model vs. response reliability vs. the anticipated
attacker resources.

Obfuscated: This approach relies on decoupling responses
from physical information in the PUF design itself. This can
be done reliably by encrypting the authentication such that it,
in effect, becomes opaque to the adversary. However, in many
ways this negates the key benefits of a PUF: their low resource,
lightweight nature. There is a body of published work on
lightweight obfuscation techniques but these produce mixed
results in practice.

Reconfigurable: This approach uses a PUF structure that

can be reconfigured to change the challenge-response map-
ping. The idea is that even if an adversary can model a PUF
once, risk can be mitigated if the system has a mechanism
to invalidate that model. In some proposals, this is applied
periodically or as part of the challenge, while in others, it is
an active countermeasure that is applied if an intrusion or false
authentication is suspected.

F. How Realistic Are Classic Threat Models?

For Strong PUFs, the number of real-world examples of
deployment is highly limited. This means there is no way
to be sure that they hold up in practice at the time of
writing. This is due in no small part to the state of the art
in attacks outpacing countermeasures, making Strong PUFs
seem a dubious prospect at best to designers. Something we
need to ask, however, is whether the fact that a given PUF
can be modelled means it is likely to be modelled if deployed.
Our standard threat model is unsuitable for this evaluation
because it assumes an adversary with deep knowledge of
PUFs attacking a single known PUF, with no barriers in play
except any countermeasure built into the PUF itself. This
certainly allows for the evaluation of the risk by a highly
capable adversary but does not provide much insight into
what guarantees can be made. There is a significant gap
between “not resistant to the most capable adversaries” and
“not resistant to any adversaries at all”. Here, we list some of
the assumptions of the basic threat model that may not align
with practical implementation and discuss those aspects.

The network is transparent to the adversary. Is it realistic
to assume that an adversary will have unrestricted ability to
read network traffic with no time limit? Network intrusion
detection is a well-explored area. Even in the context of likely
devices for PUF use (lightweight embedded systems), there
are proposals for detecting snooping [21].

The adversary has expert knowledge of PUFs and
Machine Learning modelling. While modelling attacks on
PUFs are often trivial in terms of computations required,
this is in the context of academic literature. The level of
expert knowledge needed to know how to implement such an
attack is non-trivial. No tools currently exist to enable non-
expert attacks against PUF systems. That said, there is no
fundamental technical barrier to such a tool. The motivation
to create one is simply lacking for the time being.

The adversary already knows what type of PUF is
in play. Many of the more efficient attacks rely on prior
knowledge of a mathematical model for the PUF structure.
While for some PUFs, these models are public knowledge, for
others, they have never (or at least not yet) been published.
Deriving one requires a high level of expert knowledge.
Conversely, black box attacks inferring the structure are rela-
tively inefficient, needing more training data to achieve high
prediction accuracy. Even assuming there is a public model for
the PUF being used, there is the question of how the adversary
knows which PUF is in the device before launching the attack.
If that information has not been disclosed, they are limited
to black-box attacks or must first use reverse engineering to
determine the PUF.
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There is only one type of PUF in play. Most published
works propose a single PUF structure or use a single structure
as an example of a PUF in a protocol. There is no reason
why two or more entirely different PUFs cannot be used on a
given device. Some proposed structures (such as the CT-PUF
proposed in [22]) can even allow one circuit to act as different
PUFs at will. This particular scenario actually provides one
of the key benefits to an attacker when utilising the scheme
proposed in this work. In scenarios where different PUF types
are exploited to increase the difficulty for an attacker, a generic
framework that does not require PUF knowledge is particularly
powerful (this is experimentally verified and discussed in
Section V).

The adversary can cleanly identify target PUF CRPs
from normal network traffic and other PUF CRPs. To
collect a training set of CRPs, the adversary needs to be able
to spot when a PUF authentication is happening and correctly
identify the device being authenticated. Even a few errors here
will result in poisoned models that perform significantly worse
than expected [23].

Everything that looks like a CRP is derived from a
PUF. The corollary to how simple it is to model a PUF is that
it is equally simple to poison such a model through active
defence. A properly configured device can easily transmit
network traffic, which appears to be a PUF protocol packet
but which contains random data in place of a PUF response.
As the adversary has not yet trained a predictive model for
any PUF in the system, they have no way to tell these fake
responses from real ones, leading to poisoning of the training
data.

G. Minimum Viable Adversary Model

In many instances, the threat models of MLAs have not
been thoroughly examined or analyzed. This oversight allows
adversaries to easily gather excessive information, resulting
in an overestimation of the adversary’s capabilities and a
corresponding underestimation of security robustness. The
excessive information includes the type information of PUFs,
e.g. XOR-APUFs or FF-APUFs, and the configuration details,
such as XOR-APUFs or FF-APUFs, alongside intricate config-
uration details like the number of XOR gates or the positioning
of Feed-Forward Loops. The methodologies for acquiring such
information—and the feasibility of doing so—beyond merely
Challenge-Response Pairs (CRPs) warrant careful considera-
tion. Thus the key motivation in this work is to identify the
level of actual capability and knowledge an attacker needs
in order to pose a threat to a PUF system in real life. In
practice, the system designer knows (or at least can know)
about PUF vulnerabilities and countermeasures just as much
as the adversary. To model a realistic scenario, therefore, we
need to incorporate these countermeasures in a way that is
still general enough to apply generically to PUF systems. A
detailed discussion of various factors we considered can be
found in the Appendix. This led us to the following threat
model for determining whether a given adversary can perform
a viable attack against a realistic PUF network, which uses
the following assumptions:

Viable Adversary PUF Threat Model

1) A network of devices exists.
2) This network comprises of nodes (to be verified) and

verifiers.
3) Nodes are low-resource devices in a low-security en-

vironment, and verifiers are high-resource devices in a
high(er) security environment.

4) All nodes contain a PUF. The PUF can be issued
challenges and returns a response.

5) The PUF has been designed with possible attacks in
mind and is as complex as possible within the resource
constraints of the system.

6) There is a rate limit, Ratetime, which dictates how often
a PUF may be challenged.

7) Responses to a given challenge are unique for a given
node.

8) A verifier knows the expected response to any challenge,
for any possible configuration, for all nodes it is assigned
to verify.

9) A node is considered authentic (trusted) if it can return
the expected response to challenges issued by the cor-
responding verifier.

10) The adversary does not have physical access to devices
or access to device contents.

11) The adversary cannot tell which PUF design is being
used on any given node but knows which structures are
most common in PUF design.

12) The adversary cannot alter the behaviour of devices.
They can trigger any behaviour that is exposed to the
network, but doing so risks detection.

13) There is a time-to-detection after which the network
becomes aware of an active adversary and can trigger
reconfigurations that reset any modelling progress.

14) The adversary has a limited window of time to gather
CRPs. The number of CRPs which can be gained is a
function of the rate limit, T, and the worst-case time-to-
detection.

15) If the adversary can predict expected responses under
these conditions, they are a Viable Adversary and can
impersonate a node to gain trusted access.

Of particular interest in this work is the Minimum Viable
Adversary, the lowest effort and capability adversary who still
has a good chance of success in this threat model. Modelling
this kind of adversary gives us insight into the true lower
bound of security for a given PUF design. It is of course
important to know whether or not a security mechanism is
theoretically secure, but even when the answer is “no”, it may
still provide a useful deterrent. A system which can be broken
by 45% of adversaries can be justifiably called insecure but
can equally be viewed as a successful deterrent for 55% of
threats. A security measure’s practical value is always relative
to how much it costs and how capable the adversaries are.
To calculate the actual practical value of adding a PUF to a
given system, we need to know how the relative cost of the
PUF compares to other lightweight primitives, the properties
of the Minimum Viable Adversary, and whether they fall above
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or below the anticipated capability of real attackers. This
is a more complex and situational question than the binary
theoretically secure/theoretically insecure dichotomy, but one
worth investigating.

H. What Constitutes a Successful Attack?

A PUF can be considered ‘broken’ if an adversary can
successfully predict complete (bit-perfect) responses with a
significant advantage above 50% accuracy. i.e., random guess-
ing. Intuitively, as the per-bit prediction accuracy increases,
the number of guesses needed for a collision (all bits guessed
correctly) reduces. While there is no significant consensus (as
of the publication of this work) on a precise per-bit accuracy
value at which a PUF is considered vulnerable, and a threshold
value of 70% per-bit is commonly applied. The soundness of
this is debatable; in the realm of cryptography, even advantages
of 50% +/- 2% are considered to be insufficiently secure for
some applications. In the case of PUFs, it is something that
must be considered in the context of an applied attack. In
a scenario where the adversary can perform queries at high
speed, the adversary can attempt a brute force prediction
analogous to guessing an encryption key. In this case, the
assumption that >50% prediction accuracy is a serious flaw
is a justified one. If, however, we look at a scenario where
the attacker is remote and has to interact with the PUF over a
network and via a protocol they cannot modify (the standard
assumption for most PUF attack papers) then it becomes
trivially easy to deny them that capability. If there is any sort
of intrusion detection or time-bounding in play, then the brute
force approach becomes much harder to pull off.

For example, a 70% per-bit prediction accuracy only has a
1.49×10−20 chance of a full collision on any given attempt for
a 128-bit ID. Something as simple as a 1 nanosecond delay
enforced between authentication attempts takes the average
time to collide into the order of hundreds of years. Further,
while faking authentication once is all well and good, ideally
the adversary needs to be able to repeatedly do so without
being detected. In order to fake a PUF with a good chance
of success in a network that has even the most basic counter-
measures, the prediction rate has to be fairly close to the error
rate of the actual PUF transmissions. That is, the PUF after
on-device error correction has been applied. We suggest that
this must be at minimum > 80% for a 64-bit ID (giving better
than 1 in 1 million chance of a full correct guess on any given
attempt), and by the same reasoning, 90% for 128 bits, 95%
for 256 bits, 98% for 512 bits, and so on. Within a practical
amount of time, less than 80% accuracy is only viable as an
attack if the PUF ID is in the order of 32 bits or less.

Due to this, in the remainder of this work, we assume a
success threshold of 90% as a reasonable minimum. If a tool
could be made which achieves this threshold consistently for
any target PUF with an achievable amount of CRPs, then
the Minimal Viable Adversary presents a quite serious threat.
Thus, we define a successful attack with minimal knowledge
as follows.

Definition 1 (Successful attack against PUFs). An adversary
A can successfully attack a PUF P with MP

A CRPs, if and

only if for any instance of PUF P , A can achieve prediction
accuracy beyond 90% on unseen CRPs with any MP

A number
of CRPs.

We believe that such a tool is possible and such a defi-
nition is reasonable, and the following sections will present
an example of one based on the Mixture-of-Experts model.
Something to emphasise in our general methodology is the
goal of consistency: aiming purely for minimal CRPs can
result in an attack tool which fails for outlier devices. As such,
throughout the following sections, we always use the approach
of finding the lowest number of CRPs needed to achieve the
target accuracy, testing for a very large numbers of PUFs, and
if a failure is detected, increase the CRPs incrementally until
we find no failures. This hopefully captures the limitations of
an attack tool intended for use by non-experts.

III. PROPOSED GENERIC FRAMEWORK

As discussed in Section I-A, numerous modelling attack
methods [4], [11], [10], [24] have demonstrated commendable
prediction accuracy in PUF responses. A shared characteristic
among these methods is their reliance on the type or structure
of the target PUF as foundational information for modelling.
Typically, traditional machine-learning-based models are in-
tricately tailored for a specific PUF type, exhibiting prowess
in predicting unacquired CRPs with remarkable precision.
Beyond the issue of generality, as delineated in the adversary
model in Section II-G, acquiring such information covertly
within a network is impractical. Expecting an adversary to test
every possible structure while targeting a PUF is also illogical,
given the varying amounts of training data required for differ-
ent PUFs to orchestrate a successful attack. Considering the
‘Minimal Viable Adversary’, we introduce a generic frame-
work to address these challenges of generality and absence of
PUF information in PUF modelling. Here, a singular neural
network structure is employed to model diverse PUF types,
irrespective of prior PUF type knowledge. An extended version
is also proposed to perform multiple-PUF modelling on the
combinations of several of the same or different PUFs. As
discussed in Section. I-A, many types of delay-based-Strong
PUFs share structural similarities. Therefore, it is intuitive to
utilise this structural similarity and capture the relationship
across these differing PUF instances during modelling when
preparing an ML-MA.

A. Generic Framework for a Single PUF

We propose Mixture-of-PUF-Experts layer (MoPE) on the
basic MoE structure [20], as briefly outlined in Section II-D,
for modelling PUFs. The structure of MoPE is depicted in
Figure 4. The model accepts a challenge as input and produces
the predicted response as output. Challenges are processed
by an input layer connected to three experts. These experts
are tailored to handle the distinct features of CRPs. Each
expert comprises of two hidden layers, each with 32 neurons,
called ‘PUF Expert’, which are designed for PUF modelling
tasks. The first layer is directly connected to the input layer,
while the second links to the gate function. The gate function
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Fig. 4. Generic framework for modelling a single PUF.

assigns weights to the experts, amalgamates their outputs,
and channels them to the tower. Initially, we convert the
challenge bits Cn = {c1, c2, . . . , cn} (where n represents the
PUF stages) into the feature vector Xn = {x1, x2, . . . , xn},
aligning with the structure of delay-based PUF:

xi =

n∏
j=i

cj . (4)

This transformation aids the model in perceiving the deci-
sion boundary as a hyperplane. The response r serves as the
label and is adjusted to the range [0, 1], if not already within it,
to align with the activation function. Post feature engineering,
the input layer is structured to accommodate these features. In
the MoPE layer, we establish E experts, with the count being
adaptable based on the number of tasks. The expert structure
remains consistent across all PUF types, as two hidden layers
equipped with non-linear activation functions are believed to
model any function, given sufficient parameters. The e−th
expert, denoted as fe(·), is designed to extract specific insights
or features from the input. Each expert delivers their unique
interpretation of the input: he(X) = fe(X

n).
To harness the expertise of various experts without overbur-

dening the model with excessive parameters, we introduce the
gate function g(x). This function evaluates the features and
determines the weight. We employ the softmax(·) activation
function post the N × E kernel Wge to distribute weights
among experts and ensure that the model prioritises the most
apt one. Consequently, weights are computed as: g(X) =
softmax(WNE(X)). The weight assigned to the e-th expert
is represented as ge(X), ensuring that

∑E
e=1 g

e(X) = 1. Here,
we use multiple (5 for single-task, adaptive for multiple-tasks)
same experts to ensure the success of modelling. However in
most cases, the task will not use all the experts.

Now, to accelerate the training process, we propose a
method called ‘Sparse Softmax’, as shown in Algorithm 1.
Sparse Softmax function automatically sets the weights below
a certain threshold τ to zeros, which has two benefits. First,
the model pays more attention to the more suitable experts
and helps accelerate the training. Second, the model can
be flexible regarding scale size such that even overdoses of
experts will not slow the training down too much, since the
backward propagation will cost much more resources and

training time than forward propagation, and zero weights
need no calculations. The Sparse Softmax function is crucial
for the generic framework, since it prevents the overfitting
problem for PUFs with simple structures and help the conver-
gence speed when modelling complex PUFs. Subsequently, the
MoPE layer’s output is derived by amalgamating the outputs
of the experts: mope(X) =

∑E
e=1 g

e(X)he(X). We then
establish the tower layer, T (·), tasked with processing the
composite information supplied by the experts. This layer then
connects to the output layer, which employs the sigmoid(·)
activation function to restrict the prediction output to the range
0, 1. Our rationale for selecting a dual-layer hidden structure
aligns with the perspective of Wisiol et al. in [13]. Viewing
neural networks as a potent instrument for PUF modelling, we
are confident that, given ample parameters and layers, PUFs
can be effectively modelled, barring optimization constraints.
Fewer layers expedite model convergence. Additionally, the
MoPE structure’s inherent flexibility allows the gate function
to integrate multiple experts, facilitating network scalability to
accommodate the diverse complexities inherent in PUFs.

Algorithm 1 Sparse Softmax Activation
Require: Input vector WNUMExperts

, threshold τ = 0.0001

Ensure: Sparse softmax vector ŴNUMExperts

1: procedure SPARSESOFTMAX(W, τ )
2: sum← 0
3: for j = 1 to NUMExperts do
4: sum← sum + eWj

5: end for
6: for i = 1 to NUMExperts do
7: Wi ← eWi

sum
8: if Wi < τ then
9: Wi ← 0

10: end if
11: end for
12: return Ŵ
13: end procedure

B. Generic Framework for Multiple PUFs

This section extends the framework to a multi-task learning
model to enable the attack over multiple unique PUF instances.
As discussed in Section II-A, the additive delay function
represents the inner interaction of PUFs. We can find that
they share similar mathematical formulations for the same
category of PUF. Taking XOR-Arbiter-PUF as an example,
for a k-XOR APUF, the responses can be represented as
P(c) = sgn(

∏k
l=1 (⟨Wl, x⟩+ bl)), signifying that various

modelling tasks exhibit commonalities as they employ an
identical mathematical representation with varying parameter
(delay) values. Here bl is the bias value for the l-th PUF.
Thus, a multi-tasks framework can help improve the modelling
performance. The structure of the generic framework for
multiple PUFs is shown in Figure 5.

The number of PUF experts can be customized according
to the potential types and numbers of PUFs. We add three
more PUF experts per extra task. The idea is that different
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Fig. 5. Generic framework for modelling multiple PUFs.

structures or numbers of neurons in hidden layers are suitable
for different types of PUFs. For some simple PUFs, if the
model is too complex, it will be hard for the model to converge
without a large amount of training data. This can also be
concluded from the comparison results shown by Wisiol et
al. in [13]. In this case, the gate function helps choose the
suitable expert from the MoPE layer to alleviate optimization
problems caused by too large a model. In Section III-A, we
have already shown how to build the single-task model based
on MoPE. For multiple tasks, we assign one gate function,
tower function, and output layer to each task. In Figure 5, we
give an example of modelling several PUFs simultaneously.
In this figure, the red arrows represent dataflow for Taski
and the purple ones for Taskj . The dark blue arrows are the
common dataflow for both tasks. The feature engineering and
input layer remain the same as described in Section III-A. The
PUF expert structure is also the same, but the number of PUF
experts may differ according to the number of PUFs.

There are NPUFs gate functions, tower functions, and
output layers for NPUFs PUF models, so-called as NPUFs

tasks. For the t-th task, the weighed output of MoPE layer is:

moet(X) =

K∑
i=1

git(X)hi(X). (5)

Then, the specific tower Tt(·) for task t will deal with the
extracted features provided by the experts and forward the
results to the output layer to give the prediction.

C. Modelling Setup

We implement our method and replicate other methods
using Python 3.8 and TensorFlow 2.4 [25] back-end executed
on a Windows laptop with 48 GB of main memory, 5GHz i9-
12900H Intel(R) Core processor and NVIDIA GeForce RTX
3070 Ti Laptop GPU. The proposed method should to be
generic for any composition of Arbiter-based PUFs; thus, we
set up one model and experimented with this model with the
same settings. In Section III, we introduced the structure of the
generic framework; we show the hyperparameters used in the
experiments in Table I. We use Relu as the activation function
for all the hidden layers, Softmax for the gate function and
Sigmoid for the tower function. For all kinds of PUFs, the

TABLE I
HYPERPARAMETER VALUE USED

Hyper Parameters Values

Kernel Initializer Glurot uniform
Optimizer Adam[26]

Hid. Lay. activ. Relu
Learning rate Adaptive
Loss function BCE

MoPE has four experts, each with two fully connected hidden
layers with 32 neurons. We adjust the batch size according to
the scale of the training dataset. With the number of CRPs
denoted as Ncrp, we set batch size = min{Ncrp, 20000}.
From the experiments, we find that dynamic adjustment can
help the network to converge faster. All the codes, data
and implementation details are presented in our anonymous
GitHub repository2.

D. Data Preparation

We conduct experiments on three unique datasets: one
simulated dataset built by an additive-delay model, one col-
lected from PUF designs synthesised in hardware, provided
by Mursi et al. [11], and one biased dataset collected from
a non-layout-optimized designed by us. Each dataset simply
consists of CRPs. In our simulated dataset, the challenges
are generated using the PyPuf [27] python library’s random
generator function as a set of binary strings of length n
corresponding to the PUF challenge length. Responses are
generated by applying each challenge to each tested PUF
instance, each of which is generated with a random seed
(for each unique PUF). The seed is randomly chosen and
guaranteed to differ for every simulated data generated in this
article. For more details, please refer to the code2.

IV. GENERIC FRAMEWORK FOR MODELLING SINGLE PUF

In this section, we first show how to use the generic
framework for any kind of delay-based PUF without knowing
any extra information other than CRPs and answer RQ 1
and RQ 2. Then, we present the results and analysis based
on the experiments. For our initial comparison, we present
the experiment settings and results for the proposed generic
framework of a single PUF.

A. Modelling Accuracy Results on Simulated Dataset

As shown in Table II, we present the performance of our
method on modelling XOR PUF and compare them with
other state-of-the-art machine learning models. Overall, our
method successfully performs attacks on different structures
of Arbiter-based PUFs without the need to change settings.
With the benefit of a fixed structure, rather than a structure
that expands as the PUF structure becomes more complex,

2The code and datasets used in this paper are pro-
vided in full for the use of the research community at:
https://github.com/AnonymousAppdx/Generic-Framework-for-
Modelling-PUFs

https://github.com/AnonymousAppdx/Generic-Framework-for-Modelling-PUFs
https://github.com/AnonymousAppdx/Generic-Framework-for-Modelling-PUFs
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the training time does not increase exponentially with the com-
plexity of PUFs. From the accuracy results, we can find that
our method does not require more training CRPs to counteract
the negative effects brought by the fixed network structure.
During the experiments, the strategy for every method is to
begin the modelling at a reasonable amount of CRPs; then,
if the attack succeeds with accuracy beyond 90%, we attempt
more random PUFs. If an attempt fails, we increase the amount
of CRP training data; otherwise, if the method models all the
PUFs, we decrease the amount of training data and continue
the test. A detailed algorithm for finding the minimal amount
of training data is shown in Algorithm 2.

The inputs are the attack model A, challenge database
DTBSC , PUFs database DTBSPUF , an initial value of
minimal amount of CRPs m, and the epoch rounds nepoch.
The algorithm outputs the minimal amount of CRPs nmini,
the average accuracy Accavg , and average time Tavg . The
whole algorithm is a while loop; it only breaks if the
model A achieves accuracy beyond 90% for all the PUFs in
DTBSPUF on nepoch different challenges randomly selected
from DTBSC . After the two for loops, the average accuracy
and time consumed is calculated, and the final amount of CRPs
is recorded. Then, the while loop breaks. When a model, e.g.,
MoPE, is evaluated using Algorithm 2 against PUF PUF
and outputs Accavg, Tavg and nmini, we can say with at least
nmini CRPs, model A can break any PUF of this type in any
situation. In other words, PUF is totally broken when nmini

CRPs are released.
The idea is to find the point where each attack succeeds

enough to be practically useful, as described in Section II-G,
against even fairly large PUFs, can achieve this consistently,
and uses as few CRPs as possible within those constraints. In
order to make a fair evaluation, we apply the strategy on all the
methods presented in this section. While 90% is the point at
which we consider a model practically useful, that is not to say
higher accuracy would not be better. If improvement beyond
90% is possible without too much cost, this is still useful. For
this reason, we employed a patience strategy, stopping after
any 10 sequential epochs with minimal change in accuracy.
The final results do not represent the true upper limit of
these models; given sufficient time and resources, some could
achieve up to 99%. However, improvements in the precision of
even a few points above a certain threshold - typically 90-95%
- require an expenditure that is several times greater than that
needed to reach the threshold in the first place. The strategy
we employed captures the level of performance that can be
achieved before hitting this slowdown. From the adversary’s
perspective, pushing past this point is rarely worthwhile as
they already have a successful, if sub-optimal, attack.

1) XOR Arbiter PUF: We mainly refer to two state-of-
the-art neural network models [10], [11] and one logistic
regression model [4] to compare our results. These models
offer detailed guidance for implementing the codes that can
be easily replicated. Additionally, their claimed accuracy is
close to our observations. To make the comparisons fair and
reasonable, we evaluate the performance of compared models
by reproducing them using the same dataset and hardware
resource. Besides our strategy for finding a stable amount of

Algorithm 2 Security Evaluation on Minimal Amount of
CRPs
Require: model A, challenge database DTBSC , PUFs

database DTBSPUF , minimal amount m, nepoch

Ensure: nmini, Accavg , Tavg

1: procedure SECURITY EVALUA-
TION(A,DTBSC ,DTBSPUF ,m,nepoch)

2: while true do
3: Accavg, Tavg ← 0
4: for puf in DTBSPUF do
5: for i← 1 to nepoch do
6: Cs← select(DTBSC ,m)
7: Rs← puf.eval(Cs)
8: acc← A.train and evaluate(Cs,Rs, nepoch)
9: if acc < 90% then

10: m ↑↑
11: break
12: end if
13: Accavg += acc
14: Tavg += ∆t
15: end for
16: if acc < 90% then
17: m ↑↑
18: end if
19: end for
20: if acc < 90% then
21: m ↑↑
22: continue
23: end if
24: Accavg =

Accavg

NUMpuf×nepoch

25: Tavg =
Tavg

NUMpuf×nepoch

26: nmini ← m
27: end while
28: end procedure

training data, we tried to find the best hyperparameters for
compared schemes that were not disclosed, e.g., the training
batch size.

For the method presented by Rührmair et al. [4], we use
code provided by Wisiol et al. in the PyPuf Python library
[27]. This attack builds the network strictly according to the
mathematical models. For small stages of XOR-APUFs, it
outperforms all other methods in terms of training time (lower
is better) and accuracy. As stated in [28] Theorem 1, the
logistic regression method is the most powerful attack among
classical machine learning attacks; however, as the number
of stages increases, LR consumes the most training data and
time. Intuitively, when the number of XORs is more than 5,
our proposed method has more advantages.

For the attacks presented by Asseri et al. in [10] and Mursi
et al. in [11], we implement their methods using the same
setting claimed in their paper, including the kernel initializer,
optimizer, learning rate, activation functions, and loss function.
However, we optimize the batch size and adapt it according
to the scale of training data. During the difficult reproducing
work of different schemes, we find that the success of an attack
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TABLE II
MODELLING RESULTS OF FOR SINGLE XOR PUF ON SIMULATED

CRPS

Method k crp time acc Memory

Rührmair et al[4]
2

8k <20sec >97.0% 1.78 GiB
Aseeri et al[10] 8k <20sec 97.0% 1.79 GiB
Mursi et al[11] 8k <1min >98.0% 1.86 GiB

Proposed Scheme 8k <20sec >94.0% 2.06 GiB

Rührmair et al[4]
3

20k <20sec >99.0% 1.84 GiB
Aseeri et al[10] 24k <20sec >97.0% 1.81 GiB
Mursi et al[11] 24k <1min >98.0% 1.88 GiB

Proposed Scheme 24k <1min >95% 2.15 GiB

Rührmair et al[4]
4

30k <20sec >99.0% 1.91 GiB
Aseeri et al[10] 100k <1min >98.0% 1.91 GiB
Mursi et al[11] 120k <1min >98.0% 1.97 GiB

Proposed Scheme 80k <1min >97.0% 2.26 GiB

Rührmair et al[4]
5

260k <20sec >99.0% 1.88 GiB
Aseeri et al[10] 400k <2min >95.0% 2.32 GiB
Mursi et al[11] 240k <1min >98.0% 2.29 GiB

Proposed Scheme 240k <1min >97.0% 2.24 GiB

Rührmair et al[4]
6

3M <1min >99.0% 2.34 GiB
Aseeri et al[10] 1.6M <2min >99.0% 4.29 GiB
Mursi et al[11] 1.6M <2min >99.0% 3.04 GiB

Proposed Scheme 800k <2min >96.0% 3.31 GiB

Rührmair et al[4]
7

20M <1hr >98% 4.61 GiB
Aseeri et al[10] 5M <20min >97% 8.05 GiB
Mursi et al[11] 4M <20min >98.0% 8.07 GiB

Proposed Scheme 2.4M <20min >98.0% 5.08 GiB

highly relies on many factors: the dataset, the initial state of the
model, the structure of the network, and even the batch size.
Many ML-MA works indicate optimal accuracy and present
their best accuracy on specific PUFs with few training CRPs.
When we try to apply the method to a different dataset, it
fails or can not achieve a reliable success rate. In some cases,
different initialisations of the kernels succeed on some datasets
and fail on others. The modelling process can be susceptible
to differing hyperparameters. This kind of unreliable attack
is unacceptable for realistic adversaries. Besides, the methods
of Asseri et al. [10], and Mursi et al. [11] designed different
structures for different PUFs. In most cases, they cannot learn
the PUFs of different types of PUFs, which means they need to
know the type information. We discerned their acute sensitivity
to the PUF’s structure through our attack implementations
on these schemes. This underscores the indispensability of
type/structure information for mounting successful attacks. For
instance, in [11], the neural network devised for attacking a k-
XOR Arbiter PUF comprises of three fully connected hidden
layers sized {2k−1, 2k, 2k}. This implies that for a 5-XOR
APUF and 6-XOR APUF, the hidden layer structures should be
{24, 25, 24} and {25, 26, 25}, respectively. We validated their
efficacy on the stated CRP quantities, 200k and 200M. Yet,
when we experimented with the {24, 25, 24}-structure neural
network for the 6-XOR APUF and the {25, 26, 25}-structure
for the 5-XOR PUF, both attempts were unsuccessful. These
outcomes underscore that non-generic models are meticulously
crafted; simplistic models falter with complex PUFs, and con-
versely, intricate models struggle with simpler PUFs. Potential
reasons could range from optimization challenges to under-
fitting in the former scenario and over-fitting in the latter.

Next, we evaluate the generic capability of different models
as shown in Table III, from where we can find that our
proposed scheme can achieve good accuracy in modelling
different PUFs. Table III shows the performance of different
models, including MoPE, Mursi et al. [11], Aseeri et al. [10],
Rührmair et al. [4] and Mishara et al. [14], on XOR-PUFs
ranging from 2 to 7 XORs. The sub-columns of each method
represent the model designed for the specific type of PUF.
For example, the cell positioned at {3-XOR, Mursi [11], 2}
indicates that the accuracy of modelling 3-XOR-PUF using 2-
XOR-PUF-Model is 98%. The table shows that our proposed
model can perform the modelling attack across any XOR-PUF
with accuracy ranging from 94 − 98%. On the other hand,
this kind of cross-architectural modelling capability has not
been considered in all other methods. Consequently, this leads
to a pertinent question: How can we compare the security
levels of two distinct PUFs? Furthermore, how should we
select the model and conduct the evaluations? For instance,
if we consider the 7-XOR-PUF model proposed by Aseeri
et al. and evaluate the 6-XOR-PUF and 5-XOR-PUF, we
get the accuracy of 98% and 50%, which denotes that the
security-level of 5-XOR-PUF is stronger than 6-XOR-PUF,
which is not true. In a nutshell, if we consider evaluating
the security performance of a structure-unknown PUF or
comparing distinct PUFs, our proposed model has a significant
advantage over all other methods.

2) XOR Feed-Forward Arbiter PUF and Interpose PUF:
In this section, we demonstrate the versatility of our model
in adapting to a range of modelling tasks. Specifically, we
apply our generic model to various additional delay-based
PUFs, encompassing even those PUFs previously resistant to
successful attacks. Avvaru et al. introduced the homogeneous
and heterogeneous Feed-Forward XOR PUFs in [29]. Subse-
quent to their work, a multitude of machine learning models
were proposed to target FF-APUFs [13]. A large portion of
these models capitalize on the inconsistent reliability of PUF
designs, focusing particularly on homogeneous XOR FF PUFs
with uniform loop positions. In contrast, heterogeneous XOR-
FF-APUFs are largely considered resilient against modelling
attacks. As evidenced in Figure IV, we successfully modelled
2−loop FF PUFs with 2 XOR stages and 1−loop FF PUFs
with 3 XOR stages, achieving accuracy exceeding 95% and
98%, respectively. The Interpose PUF was introduced by
Nguyen et al. in [28]. Although it was later targeted using the
‘divide-and-conquer’ technique [30], our results, as depicted in
Figure IV, confirm that our proposed model can adeptly launch
successful attacks on various configurations of the Interpose
PUF without necessitating any structural alterations to the
model itself.

B. Modelling Accuracy Results on Silicon CRPs

To avoid faulty evaluations caused by wrongly generated
simulated data, we validate our method on both unbiased real-
world data provided by Mursi et al. [11] and biased implemen-
tations. We include the biased dataset primarily to demonstrate
the profound impact even minimal (and potentially otherwise
accepted) amounts of bias can have in providing knowledge to
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TABLE III
COMPARISON OF GENERIC MODELLING CAPABILITY

Method MoPE Mursi[11] Aseeri[10] Rührmair[4] Mishra[14]
PUFs/Model Ours 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 1 2 3 4 5
2-XOR 94 98 98 98 98 95 95 98 97 96 93 92 93 99 97 99 59 50 52 75 - - - -
3-XOR 95 98 98 98 98 96 95 98 97 97 95 92 87 66 99 99 99 50 54 - 78 - - -
4-XOR 97 98 98 98 98 98 51 50 50 98 50 56 55 60 63 99 50 99 52 - - 77 - -
5-XOR 97 98 98 98 98 99 50 50 50 50 95 50 50 55 58 52 99 50 50 - - - 80 -
6-XOR 96 50 50 50 50 99 50 50 50 50 50 99 98 50 54 59 67 99 50 - - - - 79
7-XOR 98 50 50 50 50 50 98 50 50 50 50 50 97 50 50 50 50 50 99 - - - - -

TABLE IV
MODELLING RESULTS OF FOR FEED-FORWARD PUFS AND INTERPOSE

PUFS.

Type k Loops crp time acc

Homogeneous
FF-PUF

1

1 20k <2min >94%
2 120k <2min >97%
3 250k <2min >98%
4 500k <2min >98%
5 1M <10min >94%

2

1 90k <2min >93%
2 200k <10min >97%
3 400k <10min >93%
4 800k <20m >85%
5 1.6M <1hr >90%

3 1 120k <2min >90%
2 400k <10min >93%

Heterogeneous
FF-PUF

2 1 160k <2min >98%
3 1 640k <10min >98%
2 2 400k <2min >95%

Interpose
PUF

Upper
chains

Lower
chains

crp time acc

1 5 480k <2min >98%
3 3 320k <3min >98%
4 4 800k <1hr >96%
5 5 2M <1hr >96%

TABLE V
MODELLING RESULTS OF FOR SINGLE XOR PUF ON SILICON

CRPS, FROM [11] AND OUR NON-OPTIMIZED IMPLEMENTATIONS.

Mursi et al. [11] Our data

k crp time acc crp time acc

4 40k <20sec 92.56% 40k <20sec 92.90%
5 160k <20sec 95.21% 120k <1min 95.36%
6 560K <1min 94.56% 120k <1min 95.36%
7 1.6M <1min 93.38% 600k <10min 95.81%

the adversary’s MLA. We randomly select the demand amount
of CRPs from the silicon data and apply our framework
without changing any model settings, which is needed for all
other models. The results are shown in Table V. We can find
that the accuracy does not decrease at all for any stage of
XOR-APUFs when we use the same amount of CRPs.

Then, we implement 64-stage Arbiter PUFs on a Zynq-
7000 FPGA using the Vivado design suite. Verilog hardware
description language is used to build the PUF design. No
placement design is applied to these PUFs. The hardware
layout is shown in Figure 6. We applied a DRAM controller
to transfer challenges and obtain responses between the pro-
grammable logic (PL) and processing subsystem (PS) sides.
For each single Arbiter PUF, we evaluate its performance.

TABLE VI
MODELLING RESULTS OF FOR MULTIPLE (TWO) XOR

PUFS ON SIMULATED CRPS.

Method k crp time acc

Aseeri et al[10]
2

10k <20sec 71.5%
Mursi et al[11] 10k <20sec 67.34%

Proposed Scheme 8k <20sec 93.50%

Aseeri et al[10]
3

30k <20sec 72%
Mursi et al[11] 30k <20sec 74.39%

Proposed Scheme 24k <20sec 93.02%

Aseeri et al[10]
4

100k <20sec 73.72%
Mursi et al[11] 100k <20sec 74.60%

Proposed Scheme 80k <20sec 93.99%

Aseeri et al[10]
5

400k <20sec 50%
Mursi et al[11] 400k <20sec 74.89%

Proposed Scheme 240k <20sec 97.88%

Aseeri et al[10]
6

2M <1min 74.08%
Mursi et al[11] 2M <1min 74.08%

Proposed Scheme 800k <20sec 95.04%

Aseeri et al[10]
7

5M <1hr 74.20%
Mursi et al[11] 5M <20min 50%

Proposed Scheme 2.4M <20min 98.04%

The average bias is around 55%, which makes the PUF more
vulnerable to ML-MA. As shown in Table V, much fewer
CRPs are needed to perform successful attacks compared to
unbiased implementations.

C. Resource Consumption and Efficiency Analysis

In many modelling attack works targeting PUFs [13], [16],
[11], [10], the structure of the model varies for different
PUFs. As our framework is designed for a generic purpose,
it is not suitable to compare the scale of models directly for
consumption evaluations. However, we list the time cost and
memory usage in Table II. The time cost of our proposed
scheme is not much different from other compared methods
and outperforms Rührmair et al [4] and Aseeri et al. [10] when
attacking 7-XOR APUF. We used more memory in our scheme
for attacking, which is attributed to the number of neurons
and layers that are required in our model. For 7-XOR APUF,
5.08 GiB memory is needed, and methods in [4], [10], [11]
need 4.61, 8.05, 8.07 GiB. We clarify here that our memory
usage might be different than that claimed by the authors [4],
[10], [11]; in addition to the hardware differences, we used
larger batch sizes to speed up the training. For our model, the
memory usage between different tasks mainly depends on the
size of the dataset, which determines the batch size. Overall,
we fixed the structure for all types of PUFs and the most
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Fig. 6. Hardware layout, schematic and overhead for 7 PUFs on XC7Z010
FPGA Board. No optimization design for the layout was performed.

complex PUF determines the hardware requirement for our
model.

V. GENERIC FRAMEWORK OF MULTIPLE PUFS

In Section IV, we have shown the generality of the proposed
model that does not need to design specific structures for
different types of PUFs, and no information apart from CRPs
is needed. Next we evaluate another generic property of
our proposed model on multiple tasks. To the best of our
knowledge, multi-task learning for multiple PUFs has not
been studied before. In this section, we first show how multi-
task learning challenges the existing modelling methods [4],
[10], [11] and compare them with ours. Then, we present
our modelling accuracy results on different combinations of
various types of PUFs.

A. Setup

In Section III, we showed the structure of a generic frame-
work for multi-task learning and the strategy of choosing
experts. In the experiments, we first set up several randomly
chosen PUFs, then generated the challenges and used them to
query all the PUFs and collect the responses to store in a list.
We feed the challenges and the response list to the model.
The model does not know from which PUF the data is from
but creates one gate function, one tower layer, and one output
layer per group of responses. The model is expected to predict
all the responses to unseen challenges for all the PUF inputs.

B. Modelling Results Comparison and Summary

We employed extra output layers on contrasting schemes
[10], [11] to enable their multi-task learning capability. After
the modifications, their models look like the share-bottoms

[18], which is the most common way of enabling multi-
task learning. For [4], we cannot add output layers for a
mathematical-model-based structure since they used multiply-
ing layers and directly output the result after the activation
function. Due to the new methodology proposed in [14],
its publication shortly before the time of writing, and some
issues with the released codebase (also reported in [31]), its
replication was not feasible within the scope of this work.
Instead, We have referenced the provided results in [14] for
comparison purposes, though this is limited by what tests were
performed in the work referenced. We add one extra output
layer for [11], [10]. The results for modelling multiple XOR
PUFs are shown in Table VI. The results show that applying
multi-task learning features on a proven feasible model cannot
balance between different tasks and will always fail one
random task, described as the result of “Negative Transfer”
when the two tasks have low similarity or the experts cannot
understand the correlation. In this case, multi-task learning
does not work and even the performance for training the single
task is degraded by the other conflicting task. However, as
shown in Table VI, our proposed model can deal with different
tasks with good performance compared to the same single task.
For two 7-XOR APUFs, we need the same amount of CRPs
for both and achieve an average accuracy of 98.04% in 20
minutes. On average, we can save half of the training time,
which will be efficient for an adversary modelling multiple
PUFs. We also list more combinations of different numbers
of various PUFs in Table VII to show the flexibility of the
proposed model. Specifically, we are testing the modelling
ability for multiple PUFs where the PUFs are not all of
the same type e.g., some devices being attacked have FF-
APUFs and others have Interpose PUFs, devices use XOR-
APUFs of varying size, etc. We test several such combinations
to demonstrate the consistency of the method but not every
possible permutation to keep this experiment’s complexity
manageable. In particular, in comb. I, we show the results
of modelling four XOR APUFs with the same stages and
different stages. In comb. II, we show the results of modelling
four homogeneous XOR FF-APUFs with different types. In
comb. III, we show the results of modelling four heterogeneous
XOR FF-APUFs. In comb. IV, we show the results for different
combinations of XOR APUFs, (two kinds) XOR FF-APUFs,
and Interpose PUFs. Compared to the results in Table II, 3% of
accuracy is traded off on average, and the maximum is around
8%. This shows that even for systems containing mixtures of
completely different PUF designs, our approach consistently
achieves viable attack capability (at least, for cases where all
are delay-based PUFs).

VI. CONCLUSION

In this study, we proposed a generic framework for mod-
elling different delay-based PUFs. In this regard, we intro-
duced a new notion called the Mixture-of-PUF-Experts layer
that enables attacks with minimal knowledge using the gate
function and experts of PUFs. A realistic threat model has
been considered where the Minimum Viable Adversary can
only sniff the data in the network without knowing any other
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TABLE VII
RESULTS OF ATTACKING DIFFERENT COMBINATIONS OF DIFFERENT PUFS WITH OUR PROPOSED SCHEME

Comb. No. Combinations Numbers Performance
of PUFs Average Accuracy Running time

I

4 × 3-XOR APUF† 4 >93% <2min
4 × 4-XOR APUF† 4 >93% <10min
5 × 3-XOR APUF† 4 >94% <20min

2 × 3-XOR APUF† , 2 × 4-XOR APUF† ,1 × 5-XOR APUF† 5 >92% <10min

II 4 × (2-1)-Homo. XOR FF-APUF†† 4 >95% <20min
4 × (1-3)-Homo. XOR FF-APUF†† 4 >92% <30min

III 4× (3-1)- Hete. XOR FF-APUF†† 4 >92% <30min
4× (2-2)- Hete. XOR FF-APUF†† 4 >95% <20min

IV

4 × (1,5)-Interpose PUF‡ 4 >96% <30min
2 × 3-XOR APUF† , 2 × 4-XOR APUF† ,1 × (1,5)-Interpose PUF‡ 5 >96% <30min

1 × (2-1)-Hete. XOR FF-APUF,1 × (2-2)-Hete. XOR FF-APUF,1 × (3-1)- Hete. XOR FF-APUF†† ,1 × (1,5)-Interpose PUF‡ 4 >90% <30min
1 × (1,5)-Interpose PUF‡ ,1 × (2,2)-Interpose PUF‡ ,1 × (3,3)-Interpose PUF‡ 3 >90% <30min

† The parameter indicates the number of XOR stages;
†† The two parameters indicate the number of XOR stages and loops;
‡ The parameter indicates the number of parallel arbiter chains in up and lower layers.
* In the table, the amount of training data for each PUF is the same as the corresponding single task.

information about the communication objects. We showed suc-
cessful attack results on XOR-APUFs, both homogeneous and
heterogeneous XOR FF-PUFs, and Interpose PUFs, without
changing any settings of the model which answers RQ 1.
Besides, we have also proposed an extended version of MoPE
i.e., Multi-Gate Mixture-of-PUF-Experts. It enables multi-task
modelling on PUFs, which can capture the relationship be-
tween similar PUFs and accelerate the modelling process and
answer RQ 3. We are the first to enable multiple-PUF attack
capability of adversaries without incurring an unacceptable
loss of accuracy. To facilitate a fair comparison with the
latest advancements in PUF modelling, we have undertaken
analogous experiments to those conducted in previous studies,
such as [4], [11], [10]. Experiments on different datasets,
including simulated, biased silicon and unbiased silicon data,
were performed to validate our methods. We argue that our
proposed models successfully solve RQ 2 and will be helpful
for the PUF community, especially when one comes up with
a new PUF design and is willing to test whether their PUF
is ML-MA secure without disclosing details of the PUF. In
this research, we mainly considered the delay-based PUF(s);
however, in the future, we would like to consider other
categories of PUFs.
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