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Abstract—Electric vehicles (EVs) have been gaining popularity
in recent years but range anxiety of drivers and the ability to
predict the energy consumption of EVs remains an important
problem. While machine learning offers promising solutions
for energy consumption prediction, it also introduces privacy
challenges, especially when handling sensitive user data. As data-
driven models become ubiquitous, ensuring the privacy and
security of user information is paramount. This paper not only
presents an innovative approach for EV energy prediction but
also emphasizes the importance of privacy considerations in
machine learning applications. We use a system that integrates
key parameters such as ambient temperature, road gradient, and
vehicle load to simulate real-world EV usage. By utilizing an
innovative transformation layer that enables minimal low-level
feature sharing and maintains maximum independence between
groups, the system is designed to produce multiple simultaneous
predictions for individual EVs while protecting privacy. Empiri-
cal results validate the system’s ability to concurrently generate
accurate predictions, outperforming conventional single-output
models. Additionally, it provides a granular accuracy analysis
across diverse EV models. We advocate for a balanced approach,
harnessing data’s potential while upholding stringent privacy
standards and our experimental results show that the proposed
model is robust against various attacks that seek to compromise
user privacy.

Index Terms—Electrical Vehicle, Energy Consumption pre-
diction, Parallel processing, Time series data, Inference attack,
Predictive model

I. INTRODUCTION

THE combustion of fossil fuels which are predominantly
used in transportation accounts for a substantial portion

of energy-related CO2 emissions. The International Energy
Agency (IEA) highlights that road transport alone contributes
to three-quarters of these emissions [1]. Given this substantial
footprint, there is an urgent need to innovate and adopt
advanced vehicle and fuel technologies. Electrification, par-
ticularly in the form of electric vehicles (EVs), is a promising
solution, offering potential environmental benefits by signifi-
cantly reducing CO2 emissions from road transport. However,
the adoption rate of EVs has been sluggish, primarily due
to drivers’ range anxiety, stemming from uncertainties in
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the remaining driving range and an underdeveloped public
charging infrastructure [2].

To address the prevalent concern of range anxiety, a pre-
dictive model that offers a nuanced understanding of energy
consumption is paramount [3]. Such a model serves a dual
purpose: from the service provider’s perspective, it facilitates
the strategic placement and planning of charging infrastruc-
ture, ensuring that EV users have access to charging facilities
when and where they need them. This not only optimizes the
utility’s resources but also enhances the overall user expe-
rience. On the other hand, from the customer’s standpoint, a
reliable predictive model can assuage range anxiety by offering
accurate forecasts of energy consumption based on various
driving conditions and patterns. A comprehensive grasp of
EV performance, derived from such models, can bolster the
confidence of potential EV adopters, nudging them towards
making the switch. Furthermore, with an accurate prediction
model in place, drivers can plan their routes more efficiently,
ensuring that they have sufficient charge for their journeys and
know where to recharge when necessary.

Building on this notion of predictive modeling, the state of
charge displayed on vehicle dashboards provides a measure
of the remaining energy, but the true challenge lies in ac-
curately predicting energy consumption. With advancements
in technology, both traditional statistical models and machine
learning or neural networks have been employed to enhance
energy consumption prediction [4]. However, a critical lim-
itation of the current methodologies is their propensity to
generate singular predictions that predominantly reflect the
average tendencies of the training dataset, thereby inadver-
tently marginalizing the idiosyncratic behaviors of specific
subgroups, such as distinct car models. This generalization
bias dilutes the nuances of individual patterns during the
training phase. Moreover, as machine learning models become
integral to such predictions, concerns about privacy arise.
Inference attacks, where malicious entities deduce sensitive
information from model outputs, and the potential misuse of
manually inserted information to build these systems, under-
score the need for privacy considerations in machine learning
studies [5].

Conventional methods often neglect the subtle behavioral
variations among individuals or groups, and they typically lack
a comprehensive analysis addressing privacy concerns [4]. To
bridge this gap, this paper introduces an innovative approach
that encompasses the following four key aspects:

– Individualized prediction: By focusing on the behavioral



differences among subgroups, our system achieves en-
hanced performance.

– Multiple-output configuration: The novel implementation
of the transformation layer empowers the system to
predict for multiple individuals simultaneously within a
single system.

– Robustness: The system’s resilience is evident through its
consistent performance, even under conditions with noise
and fast gradient sign method (FGSM) attacks.

– Privacy safeguard: By evaluating the system’s perfor-
mance against three distinct inference attacks, we demon-
strate its capability to address privacy concerns effec-
tively.

This paper is structured as follows: After this introduction,
Section II provides an overview of current research in the
field. Section III details our proposed approach, encompassing
data collection, preprocessing, and machine learning model
development. Section IV discusses the results, and the paper
concludes with key findings and implications for future re-
search in Section V.

II. RELATED WORKS

Predictive analytics for EV energy consumption has wit-
nessed substantial explorations and advancements in recent
years. These endeavors predominantly revolve around three
central methodologies: analytical models, statistical models,
and machine learning (ML) models, each with its unique
attributes and applications.

Analytical models are grounded in the principles of physics,
employing a series of equations that encapsulate the funda-
mental dynamics of vehicle motion. These models calculate
the net force propelling the vehicle or the power requisite
for such force, subsequently deriving the energy consumption
through established relationships with force [6], [7] or power
[8], [9]. These equations typically involve variables such as
the net force F essential for vehicle motion, distance traveled
d, power required P , and operation time t.

In contrast, statistical models leverage empirical data to
ascertain the mathematical correlations between vehicle energy
consumption and various influential factors. These models
are inherently reliant on data and necessitate the preliminary
definition of relationships between predictor and response
variables [10]. Techniques such as regression analysis are
commonplace, with prior research employing linear regression
models for EV energy consumption predictions [11], [12].
Additional studies have delved into the effects of specific
factors like temperature [13] and road gradient [14] on energy
consumption.

Machine learning models, particularly those based on neural
networks, have gained traction with the advent of enhanced
computational capabilities. Research in this domain has exper-
imented with Artificial Neural Network (ANN) architectures,
incorporating inputs like vehicle speed, acceleration, jerk, and
road information to model driver behavior and predict energy
consumption [15], [16]. The convolutional neural network
(CNN), another prominent approach, has been utilized for

real-time energy consumption predictions [3], [4]. However,
these studies often limit their scope to specific EV models or
a narrow set of features, overlooking the multifaceted nature
of factors influencing energy consumption, as highlighted by
[17]. Moreover, the Graph Convolutional Network (GCN)
[18], despite being a promising model for prediction tasks,
demands high-quality training data and is prone to the over-
smoothing issue as the network depth increases, which can
diminish the model’s predictive performance.

Despite the significant strides in prediction accuracy and
model sophistication, a conspicuous gap persists in the realm
of privacy preservation within these predictive models [3], [4],
[18], [19]. The contemporary academic discourse has not suf-
ficiently addressed the integration of robust privacy measures
in EV energy consumption prediction models. As user data is
harnessed and employed for model training, it inadvertently
creates a potential for privacy breaches. The sanctity of user
data is paramount, especially given the intimate nature of the
information that can be inferred from driving patterns and
energy consumption behaviors. The significance of privacy-
preserving mechanisms has been established in related do-
mains, such as studies spotlighting inference attacks that en-
deavor to extract sensitive information from model predictions,
pose significant threats to user privacy [20]. Additionally, the
specter of adversarial attacks introduces a further layer of
security concerns. Such attacks, designed to subtly distort
model outputs by introducing minuscule perturbations to the
input, are exemplified by techniques like the (FGSM) [21].
While these studies provide valuable insights into potential
vulnerabilities and defense mechanisms, their methodologies
and findings are not readily translatable to the context of EV
energy consumption predictions. This underscores the need for
development of privacy-preserving mechanisms tailored to the
intricacies of EV energy consumption predictive models, and
this paper seeks to address this problem.

Extending our preliminary work published in [19], this pa-
per improves the model prediction accuracy and addresses the
over-fitting problem. Besides, we also employ three different
inference attacks as evaluation metrics to show the model’s
robustness in protecting user privacy.

III. METHODOLOGY

A. Dataset

To generate a dataset that is representative of diverse driving
patterns, this study employs the emobpy simulation model
[22]. emobpy, an open-source framework designed for the
generation of time-series data for battery electric vehicles
(BEVs) using Python, offers a comprehensive range of ad-
justable parameters, including driver behavior and vehicle
models. The model facilitates the simulation of intricate driv-
ing profiles by allowing the user to establish a probability
map for various factors such as departure and destination,
distance and duration, and daily trip frequency. Notably,
the configuration possibilities within emobpy enable the close
emulation of German driving behaviors. This is achieved by
aligning the cumulative distribution of trips and distances



TABLE I: Driver category and rule setting

Condition
Full-time commuters Part-time commuters Non-commuters

Weekday Weekend Weekday Weekend Weekday Weekend
Category probability 0.4 0.4 0.3 0.3 0.3 0.3
Minimum Number of trips 1 1 1 1 1 1
Last trip destination Home Home Home Home Home Home
Minimum time at home 9 6 9 6 9 6
Trip to work At least 1 Based on need At least 1 Based on need N.A. N.A.
Minimum time at workplace 7 3 3.5 3 N.A. N.A.
Maximum Time at workplace 8 4 4 4 N.A. N.A.
Minimum state duration at workplace 3.5 3 3.5 3 N.A. N.A.
Minimum state duration except for workplace 0.25 0.25 0.25 0.25 0.25 0.25

with the foundational statistics of German mobility [23].
Furthermore, emobpy categorizes drivers into three distinct
groups based on their trip patterns during weekends and
weekdays, as detailed in Table I. Among these categories, full-
time and part-time commuters exhibit more consistent daily
trips relative to non-commuters, primarily due to their reg-
ular commuting to workplaces. In terms of vehicle selection,
emobpy encompasses an array of pre-defined EV models, each
characterized by specific parameters such as battery capacity,
motor type, and torque. For the purposes of this study, a
deliberate selection approach was adopted, wherein four EV
models were uniformly chosen to concentrate on the analysis
of subgroup characteristics. During the data generation phase,
a driver category is selected based on the probabilities outlined
in Table I, following which one of the four predetermined EV
models is randomly allocated to the selected driver category.
The simulation parameters were set to span one year with a
time resolution of 15 minutes, resulting in each driver having
35,040 timestamped records. In total, the simulation yielded
200 unique driver records, cumulatively comprising approxi-
mately seven million timestamped data points, as delineated
in Algorithm 1. These records were utilized in the training
phase. For evaluation, an additional set of 200 driver records
with the same length and resolution was generated, ensuring
a robust and comprehensive assessment framework.

B. Features and transformation and normalization

Contrary to studies that narrowly concentrate on engine
efficiency, such as [3], real-world battery consumption in
electric vehicles is influenced by a multitude of factors. Skuza
et al. [17] underscore the significance of various elements
including wind speed, ambient temperature, road inclination,
and vehicle load, among others, in the context of battery
usage. In light of these insights, our study incorporates a
selection of pertinent features available within the simulation
tool, as enumerated in Table II. In a novel approach, Wang et
al. [24] introduced an encoding technique to transform time
series data into image-like representations, termed Gramian
Angular Fields (GAF). This methodology commences with the
normalization of the time series data F = f1, f2, · · · , fn to a
range of [-1, 1] using the equation:

Algorithm 1: Dataset Generation Algorithm
Init Categories, vehicle brand , and mean
passenger numbers and then assign probability

// ′CFT ′ : full − time commuter
// ′CPT ′ : part− time commuter
// ′NFT ′ : non− commuter
Catvalues← [′CFT ′ : 0.4,′ CPT ′ : 0.3,′ NFT ′ : 0.3]

// Distribution : 0.4, 0.3, 0.2, 0.1
mean passenger number ← [1.5, 2, 2.5, 3]

// vehicle_selection and distribution
V olkswagen ← ID.3 : 0.25
BMW ← i3s Edition RoadStyle 42 kWh : 0.25
Audi ← e− tron Sportback 55 quattro : 0.25
Tesla ←Model X Long Range (SR) : 0.25

for counter = 0, counter < 200, counter ++ do
Pick driver category vehicle model
set rules of category based on Table I
set total hours = 8760
set time step = 0.25
set Trips per day
set Distance and duration
Generate the travel summary profile

set vehicle model
set mean passenger number
set the rest of the parameter
Generate the Consumption time series file
Combine data to form dataset

end

f̃i =
(fi −max(F )) + (fi −min(F ))

max(F )−min(F )
. (1)

Subsequent to feature scaling, the data points are transposed
into polar coordinates, incorporating both value and time
indices, as expressed by:



TABLE II: Selected features and their description

Feature name Description

Number of passengers Number of passengers to obtain vehicle
loading

Vehicle speed Speed at different timestamp

Driving Cycle
Worldwide Harmonized Light Vehicles
Test Cycle (WLTC) or Environmental
Protection Agency (EPA)

Road gradient Describe the slope in radians

Road type Build in road type to obtain rolling
resistance coefficient

Temperature Ambient temperature in Kelvin
Wind speed Local Wind speed
Weekend Weekend or weekday indicator

Category Indicate if driver is full-time/part-
time/non-commuters

{
ϕ = arccos(f̃i),−1 ≤ f̃i ≤ 1, f̃i ∈ F̃i

r = ti
N , ti ∈ N

. (2)

Here, ti are the individual time stamps, while N signifies the
total duration encompassed by the polar coordinate system.
The GAF matrix is subsequently construed as the inner product
within the time series feature space, formulated as:

F̃
′
· F̃ −

√
I − F̃ 2

′

·
√
I − F̃ 2 . (3)

In this context, I represents the unit vector. The outcome of
this process is an N×N square matrix, where N corresponds
to the number of time stamps, effectively encapsulating the
temporal dynamics amongst them.

C. Architecture

A main objective of our work is to obtain predictions for
multiple individuals or groups of individuals simultaneously,
using a single prediction model. Thus, we propose a trans-
formation layer with two characteristics: Linear transforma-
tion and maximum independence between the individuals or
groups. This layer preserves the intrinsic properties of the
dataset through its linear nature. For data x passing through a
feed-forward hidden layer, the output y is formulated as:

y = σ(w · x+ b)

where σ denotes the activation function, w represents the
weights, and b is the bias.
With our transformation, the modified output is computed as:

x′ = Ax+ c

y′ = σ(w · (Ax+ c) + b)

where A is the transformation matrix, and c is the bias vector.
This transformation achieves our objective with new weights
and bias as:

y′ = σ(w′ · x+ b′)

where w′ = wA and b′ = w · c+ b.
This layer also ensures maximum independence by integrating
data from different groups within various domains. Similar

Algorithm 2: Transformation Algorithm
input : Individual driving record
output: Transformed data record

Load dataset from the path
Drop unwanted columns
Create dictionary in the range (0, N −
1) based on vehicle selection

Rx i← 9 features from Table II
Ry i← Time series consumption
// i ← dict{vehicle_model}

// General process
Rx i← Rx i.reshape(−1, 48, 9)
Rx i← add 2 pad at bottom
Rx i← transpose(0, 2, 1)
Rx← concatenate Rx i on axis 2

Ry i← Ry i.reshape(−1, 48, 1)
Ry i← add 2 pad at bottom
Ry i← transpose(0, 2, 1)
Ry ← concatenate Ry i on axis 2

// transform and create dataset
for rows in Rx do

Create input matrix S // 100× 100
for model in models do

Get N based on model dictionary
i← N ∗ 50, j ← 50 ∗ (N + 1)
r ← int(N/2) ∗ 50, l← 50 ∗ (N%2 + 1)
S temp← Rx[:, i : j]
S temp ← normalize from Eq.1
S temp ← GAF representation from Eq.3
S temp ← 2D −DCT from Eq.4
S[:, r : r + 50, l : l + 50]← S temp

end
S ← Invers 2D −DCT

end

to signal processing, where merging data in the frequency
domain maintains content independence during time domain
transmission, we adopt the 2D-Discrete Cosine Transformation
(2D-DCT) inspired by [25]. This method ensures feature
independence during the parallel processing of multiple inputs.
The 2D-DCT is expressed as:



Xk1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]

cos

[
π

N2

(
n2 +

1

2

)
k2

]

k = 0, ..., N − 1.

(4)

This transformation also retains the property that convolution
prior to transformation is equivalent to multiplication post-
transformation:

{g ∗ h} (X) = T−1{G ·H}. (5)

Here, ∗ denotes the convolution operation, and · indicates
point-wise multiplication. The transformation layer processes
the time-series data as depicted in Algorithm 2. During this
phase, data is converted into an image representation format
of (100×100). For the multiple-output implementation, rather
than expanding the input matrix size to (200 × 200)—a
process that demands additional computational resources—the
input matrix is segmented into four 50 × 50 regions. This
approach effectively balances efficiency with computational
resource demands. Each region’s output is the convolutional
result of the transformed driver’s data with a mask matrix
(50 × 50, with a value of 1). Beyond ensuring data indepen-
dence across different subgroups, this transformation augments
privacy safeguards. The mask matrix serves a dual purpose: it
not only aids in the convolution process, but also introduces
an element of noise and low level feature sharing between
the groups, bolstering the robustness of privacy protection.
The comprehensive transformation procedure, encompassing
steps like normalization, GAF matrix conversion, and 2D-
DCT transformation preceding the convolutional layer, is
graphically represented in Figure 1.

Fig. 1: Transformation illustration of one subgroup.

Convolutional layers excel at discerning image characteris-
tics [26], [27], and hence, are our choice of image encoding
strategy for optimal compatibility. The remaining system com-
prises of convolutional layers, Rectified Linear Units (ReLU),

max-pooling layers, and fully connected layers. The final fully
connected layer, Xout, varies depending on the output format:

– Single-output model: Xout = 1 for period consumption
prediction; Xout = 100 for timestamp consumption
prediction.

– Multiple-output model: Xout = 4 for period consumption
prediction; Xout = 200 for timestamp consumption
prediction.

To mitigate the issue of dead neurons, Leaky ReLU is utilized
in place of the standard ReLU function. At last, given that
energy consumption is intrinsically linked to the frequency of
trips, the consumption metric defaults to 0 in the absence of
any travel activity by the driver. Consequently, an output value
of 0 is often anticipated. Furthermore, recognizing the signifi-
cant correlation between consumption and trip frequency, and
the prevalence of zero values in the anticipated output, we’ve
instituted a cumulative sum at the output for an alternative,
more convergent evaluation. This cumulative sum is computed
as follows:

Ỹi+1 = Yi+1 + Yi. (6)

A comprehensive depiction of the system architecture is de-
lineated in Table III.

TABLE III: Architecture of overall system

Layer Filter Kernel size Stride

Transformation - - -
Convolution 32 (7,7) (2,2)
leakyrelu - - -
Convolution 64 (5,5) (1,1)
leakyrelu - - -
pooling - (2,2) (2,2)
Convolution 128 (5,5) (1,1)
leakyrelu - - -
Convolution 128 (3,3) (1,1)
leakyrelu - - -
pooling - (2,2) (2,2)
Convolution 64 (3,3) (1,1)
leakyrelu - - -
AdaptiveAvgPool - - -
Dropout(0.5) - - -
dense (4000) - - -
dense (1000) - - -
dense (200)∗ - - -

D. Objective Functions and Optimizer

For the evaluation of regression tasks, Mean Absolute Error
(MAE) and Mean Squared Error (MSE) are frequently utilized
metrics, defined in Equations (7) and (8), respectively:

MAE Loss =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ , (7)

MSE Loss =
1

n

n∑
i=1

(
Yi − Ŷi

)2

. (8)

In these equations, Ŷi represents the prediction output from
the neural network for the i-th day, while Yi stands for the

1∗ Output layer Xout size varies according to the model configuration.



actual consumption. Our approach involves employing both
of these objective functions across various training sessions to
discern the most advantageous decision-making criterion.

Regarding the optimization process, we have chosen the
Adam optimizer [28] for its efficacy in updating neural net-
work weights during the backpropagation phase of training.
Complementing this, we implement an adaptive learning rate
strategy, initiating with a rate of 0.001, to further refine our
model’s performance.

E. Evaluation

The evaluation of the proposed method encompasses several
dimensions, including the performance metrics outlined by
[19], system resilience in the face of additive Gaussian noise
and adversarial attacks, and the preservation of privacy against
various inference attacks. A total of 10 models have been
developed to facilitate a thorough analysis of the method’s effi-
cacy under diverse conditions. These models comprise of eight
timestamp consumption models, derived from permutations
of objective functions, the application of cumulative sums,
and the choice of multiple-output configurations. Additionally,
two models are dedicated to predicting period sum for single-
output scenarios, contingent on the selection of the objective
function. The diverse scenarios and corresponding evaluation
metrics are detailed in Table IV. MAE (Equation (7) and Root
Mean Square Error (RMSE) offer direct assessments of the
discrepancy between predicted and actual energy consumption
values. To refine our model’s predictive accuracy—particularly
in situations where the absolute differences may not fully
capture prediction dynamics due to large prediction magni-
tudes—we have incorporated an evaluation using the Mean
Absolute Percentage Error (MAPE). The MAPE assesses
accuracy based on proportional differences, offering a more
nuanced view. Additionally, the R2 score is utilized to gauge
the extent to which variance in the dependent variable is
explained by the model. These metrics are defined as follows:

RMSE Loss =

√√√√∑n
i=1

(
Yi − Ŷi

)2

n
, (9)

MAPE Loss =
1

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ , (10)

R2score = 1−
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi −mean(Y ))2
. (11)

The MAPE metric ensures a balanced and relative evaluation
of prediction accuracy, that is especially beneficial when
predictions involve large numerical values. Conversely, the
R2 score provides a measure of how well observed outcomes
are replicated by the model, thereby offering insights into the
strength of the model’s explanatory power.

To evaluate the privacy implications of our proposed sys-
tem, particularly in relation to safeguarding against potential
inference attacks, we conducted a comprehensive analysis.
This analysis focused on the system’s resilience against three

types of inference attacks: transformation index inference at-
tacks, population inference attacks, and membership inference
attacks. Each attack presents unique challenges and aims
to exploit different aspects of the system to gain sensitive
information either about specific individuals or groups within
the dataset. By employing various strategies, including manip-
ulating input data and analyzing the model’s output behavior,
we aim to assess the system’s ability to protect against these
potential vulnerabilities.

IV. RESULTS

A. Time series output

To obtain precise energy consumption predictions within
specific time periods, we employed two distinct network
configurations. The initial approach entailed a direct predic-
tion of total energy consumption, represented as a singular
value, necessitating an Xout setting of 1 in the terminal
fully connected layer. Conversely, the second strategy involved
forecasting energy consumption for each timestamp, and then
aggregating these to obtain the consumption of a total of 100
timestamps. A comparative analysis of these methodologies
revealed superior mean and median values for the time-series
output relative to the total consumption prediction, as detailed
in Table V. Both models were calibrated using the MAE
objective function, with the observed performance disparity
attributed to the additional penalization inherent in the MSE
function.

B. Performance and robustness

The integration of 2D-DCT enables the model to concur-
rently process four data clusters corresponding to the four
car models. As indicated in Table VI, our best performed
model exhibits a reduced error compared to the leading model
presented in [3]. For a comprehensive evaluation of both
performance and robustness across all models, Table VII
enumerates the models, delineating variations in output mode,
objective function, and the incorporation of a cumulative
sum, assessed via five metrics across four distinct scenarios
as detailed in Table IV. The evaluation encompasses two
methodologies:

– Per Timestamp Evaluation: This metric is computed for
individual timestamps, reflecting the mean efficacy of the
output neurons.

– Aggregate Evaluation: This metric appraises accuracy
based on total consumption over the period, indicative
of the model’s proficiency in predicting driver behavior
over an extended time frame.

Our analysis of the model performance, as detailed in
Table VII, reveals that using MSE as the objective function
consistently results in suboptimal performance across various
output configurations. During the training phase, the MAE
objective function outperformed the MSE function in two key
aspects: convergence and convergence speed. The prevalence
of zero values in the target consumption time series led to
occasional failure in achieving convergence with the MSE
function, as reflected in the R2 score. Furthermore, the rate of



TABLE IV: Model performance comparison before and after convergence

Evaluation Scenario Description Evaluation metric
Normal Condition ideal situation RMSE,MAE,MAPE,R2

noise present additive gaussian noise is added during the pro-
cess

RMSE,MAE,MAPE,R2

adversarial attack adversarial example is generated based on gra-
dient obtained

RMSE,MAE,MAPE,R2

adversarial attack with noise present adversarial attack under a noisy input RMSE,MAE,MAPE,R2

transformation index inference attack adversarial has a set of data record, trying to
figure out transformation index this data belongs
to

channel response error similarity
decision histogram

population inference attack adversarial has a set of data record, trying to
figure out the model response for population
characteristics inference

receiver operating characteristic curve (ROC)
Area Under the Curve (AUC)

membership inference attack adversarial has a set of data record, build shadow
model and decide whether the record belongs to
the training data

receiver operating characteristic curve (ROC)
Area Under the Curve (AUC)

(a) Loss during training for MAE objective function

(b) Loss during training for MSE objective function

Fig. 2: Comparison of converge speed between MAE and MSE
as objective function.

TABLE V: Comparison of Time-series output to Total Sum
output

Test Name
Xout = 1 Xout = 100

RMSE MAE RMSE MAE
Mean test 18.1 6.62 15.9 5.34
Median test 3.2 3.23 2.45 2.45

Fig. 3: Illustration of the 0 value reduction from cumulative
sum

convergence was significantly slower with the MSE objective
function, as shown in Figure 2b, in contrast to the MAE
function, depicted in Figure 2a. This slower convergence
with MSE is counterintuitive in many cases and is attributed
to the large gradients observed during transitions between
‘driving’ and ‘non-driving’ states. Implementing a cumulative
sum approach, as shown in Figure 3, effectively addressed
the issue of zero values in the target time series array, thus
enabling successful training convergence. This improvement is



TABLE VI: Performance comparison with existing approaches.

Approach RMSE per timestamp RMSE aggregate MAE per timestamp MAE aggregate MAPE R2

I. Ullah et al. [4] N.A. 16.34 N.A. 13.93 N.A. N.A.
S. Modi et al. [3] 0.54 15.95 0.064 6.17 0.057 0.9116
Proposed method 0.48 9.12 0.063 3.08 0.046 0.9261

TABLE VII: Summary of model performance across various scenarios. Note: Highlighted cells in the Model des column signify
performance rankings, with colors representing the spectrum from best to worst as follows: green (best), yellow (moderate),
and red (worst). Highlighted cells in the MAPE column denote the criteria for selecting the best model. Blue-highlighted
cells indicate differential responses under FGSM attack. Cells with N.A. in the R2 column refer to the score is outside the
range of 0 to 1.

RMSE MAE
Output Model des Condition Eval Per Time Evaluation Aggregate Evaluation Per Time Evaluation Aggregate Evaluation MAPE R2

mean 169.6388196 13043.14403 41.91151404 4105.452005 74.04004456normal median 26.22239112 1724.089513 17.26880891 1724.089513 8.862396655 N.A.

mean 169.6388196 13043.14403 41.91151404 4105.452005 74.04004456noisy median 26.22239112 1724.089513 17.26880891 1724.089513 8.862396655 N.A.

mean 169.6388196 13043.14403 41.91151404 4105.452005 74.04004456FGSM median 26.22239112 1724.089513 17.26880891 1724.089513 8.862396655 N.A.

mean 169.6388196 13043.14403 41.91151404 4105.452005 74.04004456

MAE Integral

FGSM and noisy median 26.22239112 1724.089513 17.26880891 1724.089513 8.862396655 N.A.

mean 0.539116557 15.94549755 0.06399502 6.167096541 0.056394986normal median 0.139748483 2.448822784 0.026804085 2.448822476 0.044250499 0.9063

mean 0.539116556 15.94549742 0.063995016 6.167096486 0.056394947noisy median 0.139748483 2.448822784 0.026804088 2.448822696 0.044250499 0.9063

mean 0.539116557 15.94549755 0.06399502 6.167096541 0.056394986FGSM median 0.139748483 2.448822784 0.026804085 2.448822476 0.044250499 0.9063

mean 1.970469106 36.00059964 0.06399502 6.167096543 0.056394986

MAE NO Integral

FGSM and noisy median 0.142002451 2.471036652 0.026804085 2.448822476 0.044250499 N.A.

mean 169.329374 12974.65965 63.80273372 6027.101327 297.7113501normal median 77.83471144 5524.22187 57.64675905 5524.221457 107.8782035 N.A.

mean 169.329374 12974.65965 63.80273372 6027.101327 297.7113501noisy median 77.83471144 5524.22187 57.64675905 5524.221457 107.8782035 N.A.

mean 169.329374 12974.65965 63.80273372 6027.101327 297.7113501FGSM median 77.83471144 5524.22187 57.64675905 5524.221457 107.8782035 N.A.

mean 169.329374 12974.65965 63.80273372 6027.101327 297.7113501

MSE Integral

FGSM and noisy median 77.83471144 5524.22187 57.64675905 5524.221457 107.8782035 N.A.

mean 6459185.329 105669307.7 4818865.686 98208283.4 46475695.07normal median 6027451.364 98903083.82 4866134.538 99316792.01 47594285.91 N.A.

mean 6459185.329 105669307.7 4818865.686 98208283.4 46475695.07noisy median 6027451.364 98903083.82 4866134.538 99316792.01 47594285.91 N.A.

mean 6459185.329 105669307.7 4818865.686 98208283.4 46475695.07FGSM median 6027451.364 98903083.82 4866134.538 99316792.01 47594285.91 N.A.

mean 6459185.329 105669307.7 4818865.686 98208283.4 46475695.07

Single

MSE NO Integral

FGSM and noisy median 6027451.364 98903083.82 4866134.538 99316792.01 47594285.91 N.A.

mean 0.497530931 92.72131436 0.178895554 90.4412094 1.236067327normal median 0.183097631 76.06265407 0.139082501 76.06265259 1.179076462 0.9202

mean 0.497530931 92.72131436 0.178895554 90.4412094 1.236067327noisy median 0.183097631 76.06265407 0.139082501 76.06265259 1.179076462 0.9202

mean 0.497530931 92.72131436 0.178895554 90.4412094 1.236067327FGSM median 0.183097631 76.06265407 0.139082501 76.06265259 1.179076462 0.9202

mean 0.497530931 92.72131436 0.178895554 90.4412094 1.236067327

MSE Integral

FGSM and noisy median 0.183097631 76.06265407 0.139082501 76.06265259 1.179076462 0.9202

mean 34.79818801 284.4204874 14.55894265 150.7833399 140.0155646normal median 1.742048669 17.98862561 0.690691881 17.98859211 5.639758539 N.A.

mean 33.39583942 272.6513777 13.35429384 139.7387359 128.365177noisy median 1.686370201 17.13726633 0.640824662 16.64647094 5.174663638 N.A.

mean 33726.11504 150536.9036 10734 56209 103539FGSM median 527.7092002 2979.915435 355 3198 3443 N.A.

mean 32350.28927 139502.4719 9314 45773 89840

MSE NO Integral

FGSM and noisy median 470.0744622 2790.603161 311 2762 3012 N.A.

mean 0.480659852 9.197762127 0.076678439 5.496336633 0.190942271normal median 0.090650609 4.19404978 0.023917858 4.194049835 0.19489 0.9255

mean 0.480659852 9.197762127 0.076678439 5.496336633 0.190942271noisy median 0.090650609 4.19404978 0.023917858 4.194049835 0.19489 0.9255

mean 0.480659852 9.197762127 0.076678439 5.496336633 0.190942271FGSM median 0.090650609 4.19404978 0.023917858 4.194049835 0.19489 0.9255

mean 0.480659852 9.197762127 0.076678439 5.496336633 0.190942271

MAE Integral

FGSM and noisy median 0.090650609 4.19404978 0.023917858 4.194049835 0.19489 0.9255

mean 0.478487502 9.120882889 0.062757357 3.083468013 0.046344769normal median 0.083946527 0.635489055 0.014632967 0.640154745 0.037457418 0.9261

mean 0.478487502 9.120882889 0.062026751 3.083433281 0.046344769noisy median 0.083871685 0.635489055 0.013081913 0.635486096 0.037457418 0.9261

mean 0.478487502 9.121503188 0.062757357 3.083468013 0.046344769FGSM median 0.083946527 0.640176876 0.014632967 0.640154745 0.037457418 0.9261

mean 0.478487502 9.121503188 0.062757357 3.083468013 0.046344769

Parallel

MAE NO Integral

FGSM and noisy median 0.083946527 0.640176876 0.014632967 0.640154745 0.037457418 0.9261



TABLE VIII: Summary of model performance skewness across various scenarios. Note: traffic light indicator in front of the
number indicate the skewness ranking, with colors representing the spectrum from best to worst as follows: green (best), yellow
(moderate), and red (worst).

Output model des Condition RMSE Per Time Evaluation RMSE Aggregate Evaluation MAE Per Time Evaluation MAE Aggregate Evaluation MAPE

Single

MAE Integral

normal 5.469235348 6.565235989 1.427006649 1.381229033 7.354040282

noisy 5.469235348 6.565235989 1.427006649 1.381229033 7.354040282

FGSM 5.469235348 6.565235989 1.427006649 1.381229033 7.354040282

FGSM and noisy 5.469235348 6.565235989 1.427006649 1.381229033 7.354040282

MAE NO Integral

normal 2.857763206 5.511495096 1.387509977 1.518392657 0.274448597

noisy 2.857763199 5.511495043 1.38750951 1.518392408 0.274447713

FGSM 2.85776319 5.511495043 1.387509977 1.518392657 0.27444977

FGSM and noisy 2.857763206 5.511495096 1.387509978 1.518392657 0.27444977

Parallel

MSE Integral

normal 1.717298562 0.219012346 0.2862594 0.1830957 0.048335174

noisy 1.717298562 0.219012346 0.2862594 0.1830957 0.048335174

FGSM 1.717298562 0.219012346 0.2862594 0.1830957 0.048335174

FGSM and noisy 1.717298562 0.219012346 0.2862594 0.1830957 0.048335174

MAE Integral

normal 4.302334486 1.1930503 2.205907432 0.310508184 0.020256189

noisy 4.302334486 1.1930503 2.205907432 0.310508184 0.020256189

FGSM 4.302334486 1.1930503 2.205907432 0.310508184 0.020256189

FGSM and noisy 4.302334486 1.1930503 2.205907432 0.310508184 0.020256189

Parallel MAE NO Integral

normal 4.699908217 13.35254128 3.288764991 3.816754129 0.23726546

noisy 4.704994469 13.35254128 3.741412797 3.8852086142 0.23726546

FGSM 4.704994469 13.35254128 3.288764991 3.816754129 0.23726546

FGSM and noisy 4.699908217 13.24841092 3.288764991 3.816754129 0.23726546

Fig. 4: Illustration showing predicted value failing to catch up
with the speed of increment.

due to the substantial penalties applied during iterations with
predominantly zero outputs. While the cumulative sum method
promotes training convergence and increases the model’s

resilience to adversarial inputs, it slightly reduces accuracy.
This reduction in accuracy occurs because the cumulative
output rises sharply with significant target values, leading the
network to produce smoother outputs. This, in turn, impedes
the model’s ability to precisely track incremental changes, as
illustrated in Figure 4. We also observed an overfitting issue
during the model improvement process in our preliminary
work [19]. To address this, we adopted an early-stop strategy
and conducted three additional rounds of training with a
randomly split dataset to confirm that the overfitting issue was
resolved.

In the context of FGSM attacks, a notable escalation in
the mean MSE evaluation was exclusively observed for the
MAE NO Integral model (highlighted in blue), suggesting
that only a subset of the attacks led to erroneous predic-
tions. Given the model’s susceptibility to adversarial attacks,
we can infer that both the cumulative sum methodology
and the parallel transformation layer contribute positively
in combatting adversarial instances. Table VIII presents the
percentage disparity between mean and median values; a more
pronounced divergence signifies a higher skew in the accuracy
distribution, thereby implying reduced stability in the model’s
output. By analyzing the performance trajectory, it is evident
that in instances where the model exhibits acceptable perfor-
mance (as listed in Table VIII, excluding MAE integral), the



Fig. 5: Histograms of channel responses across all multi-output models, with legends denoting the corresponding actual channels
of each record.

(a) Result of Population inference attack. (b) Result of membership inference attack.

Fig. 6: ROC and AUX evaluation for population inference attack and membership inference attack.



employment of a cumulative sum strategy potentially bolsters
the model’s performance consistency.

C. Privacy

Algorithm 3: Algorithm of transformation index in-
ference attack
Attacker has a set of driving record D

create data set metric list for di in D do
create metric list for c in range(4) do

// c is guessed channel number
Initialize dummy input with size (200,9)
dummy[c ∗ 50 : (c+ 1) ∗ 50, :] = di

obtain MSE, MAE and MAPE at channel
output

end
append MSE, MAE, MAPE if Decision with one

record then
Index = argmin(MSE or MAE or MAPE)

else
append to data set metric list

end
end
if di in D belongs to the same model then

Index = argmin(mean(data set metric))
else
end

The proposed transformation layer is partitioned into four
sub-regions, each corresponding to a different car model. This
structure inherently poses a potential vulnerability: an adver-
sary could attempt to infer whether a specific driving record
is associated with a particular car model. This type of attack,
known as a transformation index inference attack, operates
under the assumption that the attacker possesses certain driving
records. The attacker’s strategy involves padding these records
with zeros at the beginning and end, effectively manipulating
the record’s position within the transformation layer. By sub-
sequently analyzing the model’s output, the attacker aims to
determine whether the manipulated record corresponds to the
guessed car model. This determination is based on a compar-
ison of channel evaluation metrics, as described in Algorithm
3. Here, the term “channel” refers to the transformation index
used to allocate records to the appropriate sub-region. To
assess the resilience of our model against such an attack, we
simulated this scenario using driver records sampled from the
test dataset. We then plotted a histogram map of the channel
responses, counting the number of records classified under
each channel for all multi-output models. Figure 5 summarizes
the model’s behavior when different driver records, encoded to
the presumed channel, were introduced. Notably, the trained
model exhibited a uniform channel response, unaffected by the
absence of record information from other sub-regions. This
outcome demonstrates that the proposed method maintains its

functional integrity while safeguarding against transformation
index inference attacks.

Moreover, we extended our privacy analysis by adopting the
methodology presented in [29]. This was employed to evaluate
the best performed model that is trained with MAE as the
objective function and no cumulative sum implementation at
its output. This comprehensive evaluation encompassed two
inference attacks:

– Population inference attack: This type of attack aims to
deduce sensitive information about a population subset
based on aggregated data. The attacker leverages the
model’s output to make generalized inferences about
characteristics or patterns common to a group, without
pinpointing individual members.

– Membership inference attack: In contrast, this attack
seeks to ascertain whether a specific individual’s data
was included in the training dataset used by the machine
learning model. The attacker uses the model’s predictions,
combined with knowledge of the target’s characteristics,
to infer their presence in the dataset.

Both evaluations employed the receiver operating characteris-
tic curve (ROC) and Area Under the ROC Curve (AUC) as
metrics to gauge the accuracy of the attacker’s guesses regard-
ing data belonging to the targeted member group. Remarkably,
the AUC evaluation under both scenarios yielded a score of 0.5
(as depicted in Figure 6), indicating an equivalent chance of a
random guess. This result underscores the model’s robustness
in protecting user privacy against such inference attacks.

V. CONCLUSION

This paper presented a method for predicting electric vehicle
energy consumption. The primary objective was to delve
into driver behavior analytics and harness this information to
forecast energy requirements accurately, employing a novel
computational model for this purpose.

One of the key innovation of the proposed system is its
unique ability to categorize input data into distinct segments
based on car models and restructure the data utilizing the 2D-
DCT technique. This transformation layer is pivotal, offering
the dual advantages of parallel processing capabilities and en-
suring the independent analysis of each data segment, thereby
preserving the unique behavioral patterns inherent to each.
Our analysis shows that employing the MAE as the objective
function during the training phase offered superior resilience in
scenarios characterized by data noise and potential adversarial
attacks, outperforming the MSE based implementation. This
resilience is crucial in real-world applications where data
irregularities are the norm rather than the exception. Further-
more, the robustness of the proposed system was demonstrated
against three sophisticated inference attacks, simulating sce-
narios that an adversary might employ in attempts to breach
data privacy. This resilience against inference attacks not only
underscores the system’s robust design but also its suitability
for real-world application scenarios where data security is of
paramount importance.
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