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Abstract—In this paper, we formulate an analytical model to characterize the

spread of malware in decentralized, Gnutella type peer-to-peer (P2P) networks

and study the dynamics associated with the spread of malware. Using a

compartmental model, we derive the system parameters or network conditions

under which the P2P network may reach a malware free equilibrium. The model

also evaluates the effect of control strategies like node quarantine on stifling the

spread of malware. The model is then extended to consider the impact of P2P

networks on the malware spread in networks of smart cell phones.

Index Terms—Malware propagation, peer-to-peer networks, Internet worms and

viruses.
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1 INTRODUCTION

THE use of peer-to-peer (P2P) networks as a vehicle to spread
malware offers some important advantages over worms that spread
by scanning for vulnerable hosts. This is primarily due to the
methodology employed by the peers to search for content. For
instance, in decentralized P2P architectures such as Gnutella [1]
where search is done by flooding the network, a peer forwards the
query to it’s immediate neighbors and the process is repeated until a
specified threshold time-to-live, TTL, is reached. Here TTL is the
threshold representing the number of overlay links that a search
query travels. A relevant example here is theMandragoreworm [2],
that affected Gnutella users. Having infected a host in the network,
the worm cloaks itself for other Gnutella users. Every time a
Gnutella user searches for media files in the infected computer, the
virus always appears as an answer to the request, leading the user to
believe that it is the file the user searched for. The design of the
search technique has the following implications: first, the worms can
spread much faster, since they do not have to probe for susceptible
hosts and second, the rate of failed connections is less. Thus, rapid
proliferation of malware can pose a serious security threat to the
functioning of P2P networks.

Understanding the factors affecting the malware spread can help
facilitate network designs that are resilient to attacks, ensuring
protection of the networking infrastructure. This paper addresses
this issue and develops an analytic framework for modeling the
spread of malware in P2P networks while accounting for the
architectural, topological, and user related factors. We also model
the impact of malware control strategies like node quarantine.

The rest of the paper is organized as follows: Section 2 presents
the related work and the analytic framework is presented in
Section 3. We analyze the model and study the impact of
quarantine in Section 4. Simulation results validating our model
are presented in Section 5 and Section 6 concludes the paper.

2 RELATIONSHIP TO PRIOR WORK

Though the initial thrust in P2P research was measurement
oriented, subsequent works, [3], [4], [5], have proposed analytical
models for the temporal evolution of information in the network.

The focus of these works is on transfer of regular files and they do
not apply to malware that spread actively. In addition, they are
specialized to BitTorrent like networks and cannot be extended for
P2P networks such as Gnutella or KaZaa.

The issue of worms in peer-to-peer networks is addressed in [6],
[7] using a simulation study of P2P worms and possible mitigation
mechanisms. Epidemiological models to study malware spread in
P2P networks are presented in [8], [9]. These studies assume that a
vulnerable peer can be infected by any of the infected peers in the
network. This assumption is invalid since the candidates for
infecting a peer are limited to those within TTL hops away from it
and not the entire network. Another important omission is the
incorporation of user behavior. Typically, users in a P2P network
alternate between two states: the on state, where they are
connected to other peers and partake in network activities and
the off state wherein they are disconnected from the network.
Peers going offline result in fewer candidates for infection thereby
lowering the intensity of malware spread.

An empirical model for malware spreading in BitTorrent is
developed in [10] while models for the number of infected nodes
by dynamic hit list-based malware in BitTorrent networks is
presented in [11], [12]. However, these models ignore node
dynamics such as online-offline transitions and are applicable
only to BitTorrent networks.

In [13], [14], the authors use hypercubes as the graph model for
P2P networks and derive a limiting condition on the spectral
radius of the adjacency graph, for a virus/worm to be prevalent in
the network. The models do not account for the fact that once a
peer is infected, any susceptible peer within a TTL hop radius
becomes a likely candidate for a virus attack.

In the current work, we formulate a comprehensive model for
malware spread in Gnutella type P2P networks that addresses the
above shortcomings. We develop the model in two stages: first, we
quantify the average number of peers within TTL hops from any
given peer and in the second stage incorporate the neighborhood
information into the final model for malware spread.

3 MALWARE PROPAGATION MODEL FOR P2P
NETWORKS

This section presents our framework for modeling malware spread
in P2P networks. Our model’s focus is on the propagation of
malware and not regular files.

3.1 Search Mechanism

The transfer of information in a P2P network is initiated with a
search request for it. This paper assumes that the search
mechanism employed is flooding, as in Gnutella networks. In this
scenario, a peer searching for a file forwards a query to all its
neighbors. A peer receiving the query first responds affirmatively
if in possession of the file and then checks the TTL of the query. If
this value is greater than zero, it forwards the query outwards to
its neighbors, else, the query is discarded. In our scenario, it
suffices to distinguish any file in the network as being either
malware or otherwise. This is because, as noted earlier, an infected
peer replies affirmatively to all the queries that it receives with the
malware being substituted for the file being searched for. Thus to
model malware spread, it is imperative to determine the average
rate at which queries reach a node, which in turn depends on the
search neighborhood.

We now use the generating function approach as in [15] to
quantify the search neighborhood. Define the generating function
for the probability mass function (pmf) of the vertex degree as
G0ðxÞ ¼

P1
i¼0 pix

i, where pi is the probability that a randomly
chosen vertex has degree i. Since the Gnutella network has a power
law degree distribution [16], we have pi ¼ Ci�� , where C and � are
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constants. The heterogeneity of the connectivity distribution

inherent in power law distributions significantly affects the search

region of nodes with different degrees. Thus, we evaluate the

neighborhood size of a vertex as a function of its degree k.
The distribution of the degree of a vertex that we arrive at by

following an edge from a vertex is different from that of an arbitrary

vertex in the graph. An edge arrives at a vertex with probability

proportional to the degree of the vertex. Thus, the probability that a

randomly chosen edge leads to a vertex with degree i is proportional

to ipi. The pmf of the degree of the vertex can then be obtained from

the pmf of an arbitrary vertex by normalizing it with
P

i ipi and its

probability generating function (pgf) is then

P
i ipix

iP
i ipi

¼ xG
0
0ðxÞ

G00ð1Þ
:

As we follow a randomly chosen edge to reach a vertex and then

continue on each of the edges of that vertex, and so on, to reach all

the m-hop neighbors, the number of vertices arrived at from each

vertex has the degree distribution above, less one power of x to

compensate for the edge we arrived on. The pgf of the number of

outgoing edges at each vertex is then

G1ðxÞ ¼
G00ðxÞ
G00ð1Þ

:

With N nodes in the network, the probability of any of these

outgoing edges connecting to the original vertex we started at or to

any of its immediate neighbors falls as N�1 and can thus be

neglected as N !1. The number of 2-hop neighbors is the sum of

the neighbors of each 1-hop neighbor. Since the generating

function for sum of random variables is the product of the

individual generating functions, the pgf for the 2-hop neighbors is

given by

X
k

pk½G1ðxÞ�k ¼ G0ðG1ðxÞÞ:

Similarly, the distribution of the m-hop neighbors is given by

G0ðG1ðG1ð� � �G1ðxÞÞÞÞ, with m� 1 iterations of the function G1

acting on itself. Now, given that a node has degree k, the pgf of

its degree is given by G
ðkÞ
0 ðxÞ ¼ xk. Then, the pgf of the number of

m-hop neighbors of a node with degree k can be defined in terms

of the recursive convolution:

GðkÞm ðxÞ ¼
4

xk for m ¼ 1
½G1ðG1ð� � � ðG1ðxÞÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m�1

�k for m � 2:

8<
: ð1Þ

Differentiating the pgf and substituting x ¼ 1 yields the average

number of m-hop neighbors. For example, the average number

of one and two hop neighbors of a peer with degree k are

g i v en by z
ðkÞ
1 ¼ G

ðkÞ0
0 ð1Þ ¼ k and z

ðkÞ
2 ¼ d

dxG
ðkÞ
0 ðG1ðxÞÞjx¼1 ¼

G
ðkÞ0
0 ð1ÞG01ð1Þ ¼ kG000ð1Þ=G00ð1Þ, respectively, (the expression for

z
ðkÞ
2 uses: G1ð1Þ ¼ 1). The average number of m-hop neighbors is

then

zðkÞm ¼
dGðmÞ

dx

����
x¼1

¼ GðkÞ00 ð1Þ½G01ð1Þ�
m�1 ¼ k z2

z1

� �m�1

; ð2Þ

where z2 ¼ G000ð1Þ and z1 ¼ G00ð1Þ. Since the search neighborhood of

a peer extends up to TTL hops, the average neighborhood size is

given by

zðkÞav ¼
XTTL
i¼1

z
ðkÞ
i ¼ k

z1

z2 � z1

z2

z1

� �TTL
� 1

" #
: ð3Þ

3.2 Compartmental Model

We formulate our model as a compartmental model, with the peers

divided into compartments, each signifying it’s state at a time

instant. In addition, to account for power-law topologies, we

develop the compartmental model in terms of the node degree

[17]. For each possible node degree k, the network is partitioned

into four classes:

. P
ðkÞ
S : Number of peers wishing to download a file.

. P
ðkÞ
E : Number of peers currently downloading the

malware.
. P

ðkÞ
I : Number of peers with a copy of the malware.

. P
ðkÞ
R : Number of peers who either have deleted the

malware or are no longer interested downloading any file.

Further, each class has two components: one comprising of peers

of that class that are currently online, while the second represents

the offline peers. For instance, P
ðkÞ
Ion

denotes the peers with degree k

infected by the malware that are currently online and P
ðkÞ
Ioff

, the

offline infected peers. Note that since we consider networks with a

finite number of nodes, the number of classes is finite, even with

power-law topologies. We denote by NP the total number of peers

in the network and by N
ðkÞ
P the total number of nodes with degree

k, both online and offline. Table 1 defines the parameters used in

our model.
Our formulation is based on the principle of mass action, where

the behavior of each class is approximated by the mean number

in the class at any time instant. By employing the mean-field

approach, we make the following assumptions about the system:

. The number of members in a compartment is a differenti-
able function of time. This holds true in the event of large
compartment sizes and since P2P networks comprise of tens
of thousands of users, assuming this is quite reasonable.

. By abstracting the P2P graph through differential equa-
tions, the emphasis is more on the numbers of each class,
rather than the particulars of each member of the
respective classes.

. The spread of files in the P2P network is deterministic, i.e.,
the behavior is completely determined by the rules
governing the model. In other words, the properties of a
class are dictated by the number of members present.

. The size of the network does not vary over the time during
which the spread of malware is modeled.

We first determine the probability that a susceptible peer

with degree k is infected when it tries to download an arbitrary

file. Following the discussion in Section 3.1, the probability that

a neighbor of an arbitrary node has a degree j is given by
jpj
�z ,

with �z ¼
P

i ipi. Now, when a query reaches a node with

degree j, it is infected and responds positively to the query with
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probability P
ðjÞ
Ion
=N
ðjÞ
P . Then the probability that an arbitrary

neighbor is infected, pinf , is given by

pinf ¼
X
j

jpj
�z

P
ðjÞ
Ion

N
ðjÞ
P

: ð4Þ

Now, a search initiated by a node with degree k, on an average,

reaches zðkÞav peers. The probability that at least one of the zðkÞav peers

responds to the query and the susceptible node gets infected is

thus ð1� ð1� pinf Þz
ðkÞ
av Þ.

The dynamics of the spread of malware in peers with degree k

can then be represented in terms of the constituent classes by the

following deterministic system of equations:

dP
ðkÞ
Son

dt
¼ ��P ðkÞSon

1� 1� pinf
� 	zðkÞav� �

þ r1P
ðkÞ
Eon

þ r2P
ðkÞ
Ron
� �offP ðkÞSon

þ �onP ðkÞSoff
ð5Þ

dP
ðkÞ
Eon

dt
¼ �P ðkÞSon

1� 1� pinf
� 	zðkÞav� �

� r1P
ðkÞ
Eon

� �P ðkÞEon
� �offP ðkÞEon

þ �onP ðkÞEoff
ð6Þ

dP
ðkÞ
Ion

dt
¼ �P ðkÞEon

� �P ðkÞIon
� �offP ðkÞIon

þ �onP ðkÞIoff
ð7Þ

dP
ðkÞ
Ron

dt
¼ �P ðkÞIon

� r2P
ðkÞ
Ron
� �offP ðkÞRon

þ �onP ðkÞRoff
ð8Þ

dP
ðkÞ
Soff

dt
¼ �offP ðkÞSon

� �onP ðkÞSoff
ð9Þ

dP
ðkÞ
Eoff

dt
¼ �offP ðkÞEon

� �onP ðkÞEoff
ð10Þ

dP
ðkÞ
Ioff

dt
¼ �offP ðkÞIon

� �onP ðkÞIoff
ð11Þ

dP
ðkÞ
Roff

dt
¼ �offP ðkÞRon

� �onP ðkÞRoff
: ð12Þ

Note that we have strived to arrive at a generic formulation of

the problem encompassing all possible scenarios. Different flavors

of the model can be obtained by appropriately choosing the

parameter values. For instance, � ¼ 1, P
ðkÞ
Eoff
ðtÞ ¼ 0, 8 t; k results in

an SIR epidemic model. Also, the offline rates for the various

classes have been kept same in order to reduce the number of

variable and ease of analysis. Different rates for each class can

easily be accommodated in the model.
We now describe the rationale behind the equations of the

model above. A transition out of class P
ðkÞ
Son

occurs if either a peer

goes offline or initiates a search query that is successful. The

former occurs at rate �off while the latter is contingent on the rate �

at which requests for file download are generated, multiplied by

the probability that the query reaches at least one infected node in

the online state. Thus, the rate at which the transitions from P
ðkÞ
Son

into P
ðkÞ
Eon

occur is given by �P
ðkÞ
Son
ð1� ð1� pinf Þz

ðkÞ
av Þ. Now, member-

ship of class P
ðkÞ
Son

increases if:

. An offline peer of class P
ðkÞ
S comes online: a transition from

class P
ðkÞ
Soff

which occurs at rate �on.
. A peer currently downloading terminates the process, say

due to unsatisfactory download speeds: a transition from
state P

ðkÞ
Eon

to P
ðkÞ
Son

at rate r1.
. A peer that previously had the file, either accidentally or

intentionally deletes the file, and wishes to download it
again: a transition from state P

ðkÞ
Ron

which occurs at rate r2.

The peers per unit time exiting class P
ðkÞ
Son

total

�off þ � 1� ð1� pinf Þz
ðkÞ
av


 �
 �
P
ðkÞ
Son

and those entering number r1P
ðkÞ
Eon
þ r2P

ðkÞ
Ron
þ �onP ðkÞSoff

. Combining

the two gives the rate of change of membership of class P
ðkÞ
Son

as

given in (5). Equations characterizing the rates of change for the

remaining compartments can be derived in a similar fashion. Note

that the transition rates among the various compartments are

assumed to be known.
The model presented above represents an upper bound on the

number of infected nodes. This is because the model neglects the
correlations in the neighborhoods of nodes that are within

TTL hops of each other. Also, since malware sizes are typically
small (less than a few kilobytes), the download times are expected

to be smaller than the on-off transition times of peers which are of
the order of hours. Thus, the mean-field approximations used in

our analysis are acceptable.

4 MODEL ANALYSIS

In this section, we analyze the model presented in the previous
section and obtain the expressions governing the global stability of

the malware free equilibrium (MFE).

4.1 Malware Free Equilibrium

We now proceed with the derivation of the basic reproduction

number, R0, a metric that governs the global stability of the MFE.

Here, R0 quantifies the number of vulnerable peers whose security
is compromised by an infected host during it’s lifetime. It is an

established result in epidemiology that R0 < 1 ensures that the
epidemic dies out fast and does not attain an endemic state [18].
Stability information of the MFE is important since this guarantees

that the system continues to be malware free even if newly infected
peers are introduced.

We follow the methodology presented in [19], [20], where “next
generation matrices” have been proposed to derive the basic

reproduction number. In this method, the flow of peers between
the states are written in the form of two vectors F and V. The

ith element of F is the rate of appearance of new infections in
compartment i and the ith element of V is defined as Vi ¼ V�i � Vþi ,
where Vþi is the rate of transfer of peers into compartment i by all

other means and V�i is the rate of transfer of peers out of
compartment i. These vectors are then differentiated with respect

to the state variables, evaluated at the malware free equilibrium,
and only the part corresponding to the infected classes are then

kept to form the matrices F and V , i.e.,

F ¼ @F i

@xj
ðx0Þ

� �
; V ¼ @Vi

@xj
ðx0Þ

� �
; 1 � i; j � m; ð13Þ

where F i and Vi are the ith entries of F and V, xi is the ith system

state variable with _xi ¼ F iðxÞ � ViðxÞ, ðx0Þ is the malware free
equilibrium and m is the number of infectious states. For

calculating F and V , the column vectors F and V may be
considered to consist of m rows, each corresponding to an

infectious state. In our model, we have m ¼ 4K corresponding to
P
ðkÞ
Eon

, P
ðkÞ
Eoff

, P
ðkÞ
Ion

and P
ðkÞ
Ioff

. Here K is the largest node degree in the
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network, with K � NP . Ordering the infectious states as

P
ð1Þ
Eon
; . . . ; P

ðKÞ
Eon

, P
ð1Þ
Eoff

; . . . ; P
ðKÞ
Eoff

, P
ð1Þ
Ion
; . . . ; P

ðKÞ
Ion

, P
ð1Þ
Ioff
; . . . ; P

ðKÞ
Ioff

, from

(5-12) we have

F ¼

�P
ð1Þ
Son
ð1� ð1� pinfÞz

ð1Þ
av Þ

..

.

�P
ðKÞ
Son
ð1� ð1� pinf Þz

ðKÞ
av Þ

�0

�0

�0

2
666666666664

3
777777777775
;

V ¼

r1P
ð1Þ
Eon
þ �P ð1ÞEon

þ �offP ð1ÞEon
� �onP ð1ÞEoff

..

.

r1P
ðKÞ
Eon
þ �P ðKÞEon

þ �offP ðKÞEon
� �onP ðKÞEoff

�onP
ð1Þ
Eoff
� �offP ð1ÞEon

..

.

�onP
ðKÞ
Eoff
� �offP ðKÞEon

�P
ð1Þ
Ion
þ �offP ð1ÞIon

� �onP ð1ÞIoff
� �P ð1ÞEon

..

.

�P
ðKÞ
Ion
þ �offP ðKÞIon

� �onP ðKÞIoff
� �P ðKÞEon

�onP
ð1Þ
Ioff
� �offP ð1ÞIon

..

.

�onP
ðKÞ
Ioff
� �offP ðKÞIon

2
666666666666666666666666666666664

3
777777777777777777777777777777775

;

with �0 representing a K-row zero vector. Note that only state EðkÞon
in the set of (5-12) has inflow of new infections and thus only its

terms in F have a nonzero entry. Now, at the malware free

equilibrium, we have

.

dP
ðkÞ
Son

dt
¼
dP
ðkÞ
Soff

dt
¼
dP
ðkÞ
Eon

dt
¼
dP
ðkÞ
Eoff

dt
¼
dP
ðkÞ
Ion

dt
¼
dP
ðkÞ
Ioff

dt

¼
dP
ðkÞ
Ron

dt
¼
dP
ðkÞ
Roff

dt
¼ 0

. P
ðkÞ
Ion
¼ P ðkÞIoff

¼ P ðkÞEon
¼ P ðkÞEoff

¼ 0

for all 1 � k � K. Substituting the above values in (5) and (9), we

get r2P
ðkÞ
Ron
¼ 0 ) P

ðkÞ
Ron
¼ 0. Again, using this result in (12) yields

P
ðkÞ
Roff
¼ 0. Note that the total number of peers with degree k, given

by N
ðkÞ
P ¼ P

ðkÞ
Son
þ P ðkÞSoff

þ P ðkÞIon
þ P ðkÞIoff

þ P ðkÞEon
þ P ðkÞEoff

þ P ðkÞRon
þ P ðkÞRoff

, is

a constant. Thus, at the MFE we have N
ðkÞ
P ¼ P

ðkÞ
Son
þ P ðkÞSoff

, and using

the relation from (9), the peer distribution for degree k at the MFE

evaluates to the vector: fP̂ ðkÞSon
; P̂
ðkÞ
Soff

; 0; 0; 0; 0; 0; 0g, where

P̂
ðkÞ
Son
¼ �onN

ðkÞ
P

�on þ �off
; P̂

ðkÞ
Soff
¼ �offN

ðkÞ
P

�on þ �off
:

Differentiating F and V with respect to P
ð1Þ
Eon
; . . . ; P

ðKÞ
Eon

, P
ð1Þ
Eoff

; . . . ;

P
ðKÞ
Eoff

, P
ð1Þ
Ion
; . . . ; P

ðKÞ
Ion

, P
ð1Þ
Ioff
; . . . ; P

ðKÞ
Ioff

and evaluating at the malware

free equilibrium fP̂ ðkÞSon
; P̂
ðkÞ
Soff

; 0; 0; 0; 0; 0; 0g for all 1 � k � K, we

have

F ¼ 0 G
0 0

� �
; V ¼ A 0

�C B

� �
; ð14Þ

with 0 representing a 2K � 2K zero matrix and

G ¼

�z
ð1Þ
av �on1�p1

�zð�onþ�off Þ � � � �z
ð1Þ
av �onK�p1

�zð�onþ�off Þ 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

�z
ðKÞ
av �on1�pK

�zð�onþ�off Þ � � � �z
ðKÞ
av �onK�pK

�zð�onþ�off Þ 0 � � � 0

0 � � � 0 0 � � � 0
..
. . .

. ..
. ..

. . .
. ..

.

0 � � � 0 0 � � � 0

2
6666666664

3
7777777775
; ð15Þ

A ¼

r1 þ �þ �off � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � r1 þ �þ �off 0 � � � 0

0 � � � 0 �on � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � �on

2
66666666664

3
77777777775
� ~M;

ð16Þ

B ¼

� þ �off � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � � þ �off 0 � � � 0

0 � � � 0 �on � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � �on

2
66666666664

3
77777777775
� ~M; ð17Þ

C ¼

� � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � � 0 � � � 0

0 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � 0

2
66666666664

3
77777777775
; ð18Þ

~M ¼

0 � � � 0 �on � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � �on

�off � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � �off 0 � � � 0

2
66666666664

3
77777777775
: ð19Þ

Note that A, B, C, G, and ~M are all 2K � 2Kmatrices. The basic

reproduction number, R0, is then the largest absolute eigenvalue

(spectral radius), �ðÞ, of the matrix FV �1, i.e., R0 ¼ �ðFV �1Þ. Using

elementary matrix algebra and rearranging the terms, it can be easily

verified that the product FV �1 can be broken down intoGB�1CA�1,

with the constituent matrices as enumerated above. Thus,

R0 ¼ �ðGB�1CA�1Þ: ð20Þ

4.2 Illustrative Example

We now use a simple scenario to illustrate the effectiveness of the

model at isolating the impact of system parameters on the

dynamics of malware propagation. Specifically, we show how

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. X, XXXXXXX 2011



the impact of user behavior on R0 can be evaluated by the model.

The simplified model makes the following assumptions:

. Instead of modeling the network by grouping nodes

according to their degree, we use a single compartment

(i.e., PSon , PSoff , PEon , PEoff , PIon , PIoff , PRon
, and PRoff

) to

include all nodes, irrespective of their degree. This

model is more appropriate for random graph networks,

but is used here for illustrative purposes since unlike the

model presented in Section 3.2, leads to closed form

solutions that are easier to visualize. Thus in (5-12), we

drop the superscript ðkÞ and use pinf ¼ PIon
PN

and zðkÞav ¼
zav ¼ z1

z1

z2�z1
½ðz2=z1ÞTTL � 1�.

. Peers do not spend time in the exposed state, i.e., transition
occurs directly from PSon to PIon .

. Only susceptible peers go offline, i.e., PIoff ¼ PRoff
¼ 0.

This essentially reduces the systems of (5-12) to

dPSon
dt
¼ r2PR � �PSon 1� 1� PI

NP

� �zav� �
� �offPSon þ �onPSoff ð21Þ

dPI
dt
¼ �PSon 1� 1� PI

NP

� �zav� �
� �PI ð22Þ

dPR
dt
¼ �PI � r2PR ð23Þ

dPSoff
dt
¼ �offPSon � �onPSoff : ð24Þ

Using the methodology described above, the basic reproduction

number can be calculated as

R0 ¼
�zav�on

�ð�on þ �off Þ
: ð25Þ

Now, consider the basic reproduction number (sayR00) for a model

that neglects online-offline transitions, i.e., a peer is always on and

in one of the following three states: susceptible, infected or

immune. It can be seen that in this case:

R00 ¼
�zav
�

: ð26Þ

The ratio of (26) and (25) gives us

R00
R0
¼ ð�on þ �off Þ

�on
: ð27Þ

Indeed, if one assumes that a peer strictly alternates between
online and offline behavior, the probability that a peer is online at
any given time can be derived as

pon ¼
�on

ð�on þ �off Þ
: ð28Þ

Thus, if we assume pon ¼ 0:5, then (27) tells us that models not

incorporating peer behavior, such as in [9], end up overestimating

the epidemic threshold metric by a factor of two.

4.3 Quarantine

As a form of damage control, the intensity of malware spread can

be limited by quarantining infected nodes. This section quantifies

the impact of the quarantine rate on the basic reproduction

ratio R0. Quarantine is introduced in the system as follows: we

assume that an infected node is taken off the network with

probability �. We also assume that this operation does not result

in the P2P network being split into disconnected components.

The quarantined peers comprise a new compartment P
ðkÞ
Q and

when rid of malware, enter the recovered state at rate #. This

introduces the following changes to the system of (5-12):

. Additional terms to the classes P
ðkÞ
Ion

and P
ðkÞ
Ron

reflecting the
departure of quarantined peers and addition of recovered
peers, respectively.

. An additional equation describing the evolution of P
ðkÞ
Q .

Thus (7) and (8) are, respectively, modified to

dP
ðkÞ
Ion

dt
¼ �P ðkÞEon

� �P ðkÞIon
� �offP ðkÞIon

þ �onP ðkÞIoff
� �P ðkÞIon

ð29Þ

dP
ðkÞ
Ron

dt
¼ �P ðkÞIon

� r2P
ðkÞ
Ron
� �offP ðkÞRon

þ �onP ðkÞRoff
þ #P ðkÞQ ð30Þ

and the dynamics of P
ðkÞ
Q are described by

dP
ðkÞ
Q

dt
¼ �P

I
ðkÞ
on
� #P ðkÞQ : ð31Þ

The addition of class P
ðkÞ
Q does not change the equilibrium

distribution of peers at the malware free equilibrium. The only

change is the addition of an extra infectious state, i.e., m ¼ 5K.

Accordingly, ordering the states as P
ð1Þ
Eon
; . . . ; P

ðKÞ
Eon

, P
ð1Þ
Eoff

; . . . ; P
ðKÞ
Eoff

,

P
ð1Þ
Ion
; . . . ; P

ðKÞ
Ion

, P
ð1Þ
Ioff
; . . . ; P

ðKÞ
Ioff

, P
ð1Þ
Q ; . . . ; P

ðKÞ
Q , the relevant matrices

for computing R0 are modified as

F ¼
0 G ~0
0 0 ~0
~0
T ~0

T
0̂

2
4

3
5; V ¼ A 0 ~0

�C �B ~0
~0 D E

2
4

3
5; ð32Þ

where ~0 is a 2K �K zero matrix, ~0
T

is the transpose of ~0, G, A, C,

and ~M are given in (15), (16), (18), and (19), and

�B ¼

� þ � þ �off � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � � þ � þ �off 0 � � � 0

0 � � � 0 �on � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � �on

2
66666666664

3
77777777775
� ~M;

ð33Þ

D ¼

�� � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � �� 0 � � � 0

2
664

3
775; ð34Þ

E ¼
# � � � 0
..
. . .

. ..
.

0 � � � #

2
4

3
5: ð34Þ

Note that D is a K � 2K matrix and E is a K �K matrix. We then

have R0 ¼ �ðFV �1Þ. Again, to illustrate the impact of quarantining

infected nodes, we work with the simplified scenario introduced in

Section 4.2 and evaluate the dependency of R0 on the quarantine

rate. The equations for the model, (21-24) now become

dPSon
dt
¼r2PR � �PSon 1� 1� PI

NP

� �zav� �
� �offPSon

þ �onPSoff
ð36Þ
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dPI
dt
¼ �PSon 1� 1� PI

NP

� �zav� �
� �PI � �PI ð37Þ

dPQ
dt
¼ �PI � #PQ ð38Þ

dPR
dt
¼ �PI � r2PR þ #PQ ð39Þ

dPSoff
dt
¼ �offPSon � �onPSoff : ð40Þ

Now, following the procedure outlined in Section 4.1

F ¼ �PSon 1� 1� PI
NP

h izavh i
0

" #
;V ¼ ð� þ �ÞPI

#PQ � �PI

� �
ð41Þ

F ¼
�zavpon 0

0 0

� �
and V ¼

ð� þ �Þ 0

�� #

� �

FV �1 ¼ 1

#ð� þ �Þ
#�zavpon 0

0 0

� �
;

ð42Þ

and therefore

R0 ¼
�zavpon
ð� þ �Þ : ð43Þ

The malware spread does not reach epidemic proportions

provided R0 < 1 and hence, the required rate for quarantining

infected peers need is � > �zavpon � �. Such a measure takes the

node off the P2P network and thus it would not be able to

participate in any further file transfers until the malware has been

completely removed. This is indeed necessary since an infected

peer always responds positively to any query with the malware

cloaked as the file being searched for. Thus, the only way to

prevent the node from infecting others is to take it off the network.

5 RESULTS

In this section, we validate our model using simulations and also
demonstrate its capability to illustrate the effect of various system
parameters on malware dynamics. The simulations were con-
ducted using a custom built simulator. Results are reported for a
10,000 node network with a power-law graph topology with
� ¼ 3:4. The initial network state for all simulations consisted of
4,950 randomly selected nodes in the susceptible online state, 5,000
randomly selected nodes in the susceptible offline state, and 50
randomly selected nodes in the infected online state. Other
parameters that stayed constant in all simulations (unless other-
wise noted) were �on ¼ 0:1, �off ¼ 0:2, � ¼ 0:5, � ¼ 0:3, r1 ¼ 0:1,
r2 ¼ 0:1, and # ¼ 0:1. The results for each parameter setting are
averaged over 20 runs and the 90 percent confidence interval was
within 10 percent of the mean.

Figs. 1a and 1b substantiate our analytical result that requires
the basic reproduction number to be greater than 1 for an epidemic
to prevail. We see that if R0 < 1, the number of infected peers
drops down to zero (Fig. 1a), else it reaches endemic proportions
(Fig. 1b). From (20), we see that R0 is directly proportional to �on.
This implies that nodes staying online for long periods as
compared to their offline durations result in a higher intensity of
malware presence. Simulations concur with the above observation
and are shown in Figs. 2a and 2b. The analytic model tends to
overestimate the steady-state number of infected nodes when
R0 > 1. This is because our model does not take into account the
correlation in the neighborhoods of nodes that are within TTL hops
of each other. The sensitivity of malware intensity to �on (varied
from 0.0 to 1.0 in steps of 0.1) is shown in Fig. 3a for � ¼ 0:02 and
the intensity of the epidemic increases monotonically with �on.
Simulations results have been omitted from Fig. 3a to avoid clutter.
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Fig. 1. Impact of � on malware intensity for the system in (5-12).
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Fig. 2. Influence of offline duration on malware intensity for the system in (5-12).

(a) �on ¼ 0:27, � ¼ 1:0. (b) �on ¼ 0:75, � ¼ 1:0.



The effectiveness of quarantine in controlling the spread of
malware is shown in Fig. 4 which shows the infected population in
the network with and without quarantine. Also, (43) depicts an
inverse relationship between R0 and the quarantine rate �.
Analytic results for increasing values of � (from 0.0 to 1.0 in steps
of 0.1) for � ¼ 0:02 for the power-law topology are presented in
Fig. 3b which shows that the malware intensity is inversely
proportional to �.

6 CONCLUSION

In this paper, we developed an analytic model to understand the
dynamics of malware spread in P2P networks. The need for an
analytic framework incorporating user characteristics (e.g., offline
to online transitional behavior) and communication patterns (e.g.,
the average neighborhood size) was put forth by quantifying
their influence on the basic reproduction ratio. It was shown that
models that do not incorporate the above features run the risk of
grossly overestimating R0 and thus falsely report the presence of
an epidemic.
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Fig. 3. Simulation results for the system in (5-12) (top) and (29-31) (bottom).
(a) Effect of �on on malware intensity. (b) Effect of quarantine on malware intensity.


