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Abstract—Data privacy is a critical concern in the digital age.
This problem has compounded with the evolution and increased
adoption of machine learning (ML), which has necessitated
balancing the security of sensitive information with model utility.
Traditional data privacy techniques, such as differential privacy
and anonymization, focus on protecting data at rest and in transit
but often fail to maintain high utility for machine learning
models due to their impact on data accuracy. In this article,
we explore the use of synthetic data as a privacy-preserving
method that can effectively balance data privacy and utility.
Synthetic data is generated to replicate the statistical properties of
the original dataset while obscuring identifying details, offering
enhanced privacy guarantees. We evaluate the performance of
synthetic data against differentially private and anonymized data
in terms of prediction accuracy across various settings—different
learning rates, network architectures, and datasets from various
domains. Our findings demonstrate that synthetic data maintains
higher utility (prediction accuracy) than differentially private
and anonymized data. The study underscores the potential of
synthetic data as a robust privacy-enhancing technology (PET)
capable of preserving both privacy and data utility in machine
learning environments.

Index Terms—Accuracy, anonymization, differential privacy,
machine learning, PETs, synthetic data.

1. INTRODUCTION

ATA privacy is essential in the digital age to defend
individual freedom, stop fraud and identity theft, build
confidence in digital services, encourage ethical data usage,
and protect national security. It preserves confidence in online
interactions, stops cybercrime, and gives individuals control
over their personal information.
Data privacy is the foundation of individual liberty in the
digital age. It is important to secure the use of data to prevent
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unauthorized surveillance of individuals. Data privacy measures
have evolved through various stages, reflecting changes in reg-
ulations, technological breakthroughs, and public awareness.
Before the digital era, physical protection and restricted access
were key components of data privacy. Only authorized staff
had access to the paper records that contained personal infor-
mation. Data storage changed from paper records to electronic
databases with the introduction of computers. Optimization in
privacy was still largely undeveloped despite the introduction
of basic security features such as passwords and access limits.
Implementations of database management systems (DBMS)
enhanced the retrieval and organization of data. Sensitive data
might be sent and stored securely thanks to advancements in
encryption technology. However, because of centralized data
storage and lax encryption standards, intrusions continued to
happen. Cryptography and other methods effectively protect
data when it is in transit and at rest. However, there has been a
need for methodologies to protect data in use. Extensive work
has brought forth a plethora of mechanisms that attempt to
secure data when in use.

However, when one speaks of data privacy in machine learn-
ing, the accuracy of the model must be taken into consideration,
as a secure yet inefficient model is not useful. Section III of
this article has listed some of the key works in this regard.
It is important to consider privacy from a machine-learning per-
spective. If data is not secure, adversaries can identify whether
a specific data point is part of a dataset or make inferences
about sensitive information, such as classification labels. Such
possibilities are inherent in technology, and as a result, there
are well-defined methods to effectively address these vulnera-
bilities. One may argue that algorithms to do such tasks already
prevail and are in use. However, it must be noted that they secure
data when it is either at rest or in motion, but not when it is in
use. Data protection in processing is the main topic of concern
[1]. In [2], the author proposes a new method for picture encryp-
tion and decryption based on self-adaptive chaotic substitution
and a computational genetic approach. This technique aims to
ensure individual and smart device authentication, protect data
privacy both at rest and in transit, and address various user
requirements. The authors in [3] unveil a privacy-preserving
communication (PCSS) scheme for software-defined network-
ing (SDN)-enabled smart homes. Additionally, PCSS offers
privacy-preserving user queries for smart homes and prevents
an intruder from learning or altering data during transmission.
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In [4], the author briefs about several technologies available
that try to protect data even when it is in use, and such methods
are known as computing on encrypted data (COED), which are
among the so-called privacy-enhancing technologies (PETs).
PETs include statistical methods like homomorphic encryption
[5], multiparty computation (MPC) [6], data anonymization
[7], differential privacy [8], synthetic data [9], and federated
learning [10]. To safeguard the privacy of sensitive information
and support vectors during computation and transmission, the
authors in [11] have developed a secure and effective classifica-
tion technique utilizing support vector machines (SVM). At the
same time, these techniques do their part in ensuring the privacy
of data while in use. The objective of this article is to compare
the performance of a few selected techniques. We focus on
three key techniques: differential privacy, anonymization, and
synthetic data. In the context of this article, our primary concern
is safeguarding data privacy in machine learning. This study
deals with establishing which approach works better in ensuring
privacy without compromising on accuracy.

Motivation: Our primary concern is safeguarding data pri-
vacy in machine learning when data is in use. Our aim is to
evaluate the performance of synthetic data compared to dif-
ferentially private and anonymized data in terms of prediction
accuracy. By doing these evaluations, we emphasize the use
of synthetic data, which is a replica of the original data, as it
provides a balance between privacy and utility.

II. ORGANIZATION

The rest of this article is organized as follows. The recent
works related to three essential PETs, i.e., differential privacy,
anonymization, and synthetic data, are presented in Section III.
Preliminary concepts related to differential privacy and syn-
thetic data and the problem statement for our article have been
discussed in Section IV. Section V illustrates the evaluation
methodology we have used in our experiments. Section VI
presents the experiments that were conducted with results that
support our findings. In Section VII, the conclusion to our study
is presented. Finally, Section VIII presents the future scope of
our research.

III. RELATED WORKS

This section presents most of the works aiming toward the
privacy preservation of data while in use. It is not unknown
that introducing noise to a dataset compromises accuracy while
releasing the data to outside parties, as it heightens the risk of
data or label leakage when extensively queried by adversaries,
which will be proved in the experiments further into this article.
We have divided this section into three subsections summariz-
ing works related to differential privacy, anonymization, and
synthetic data about their abilities to secure original data.

A. Works Related to Differential Privacy

Differential privacy is a widely used privacy model. Due to its
high privacy guarantee, i.e., an individual’s existence or absence
in a dataset does not materially affect the outcomes of studies

conducted on the dataset. Enforcing this stringent assurance,
however, severely distorts data, restricting its applications and
reducing the analytical value of the differentially private results.
In [12], the authors contend that the conventional formalization
of differential privacy is more stringent than the privacy guar-
antee that it aims to provide. This results in a considerable loss
of accuracy since it restricts the data controller’s capacity to
modify the degree of safeguarding given actual data. In [13],
the authors propose a differentially private strategy that requires
only one parameter to be tuned to withstand both membership
inference and model inversion attacks efficiently. Sei et al. [14]
proposes true-value-based differential privacy (TDP), a unique
privacy paradigm. This paradigm does not apply standard dif-
ferential privacy to the “measured value” that contains mistakes
but rather to the “true value” that the information owner or
anonymizer does not know. The optimized differential privacy
(ODP) technique is put forth by the authors in [15] as a means
of protecting the confidentiality of each data point while per-
mitting the extraction of important information. The assessment
findings of [16] produced after each iteration of the K-means
clustering algorithm serve as the foundation for the method-
ology. After each cycle, the tightness and separation between
the clustered sets are first measured to assess the impact of the
clustered sets dynamically. Next, by giving the typical privacy
budget allocation to some weight, the assessment results are
included in the process. Last, to adaptively introduce perturba-
tion noise to each group, distinct privacy budgets are allocated
to various sets of clusters during the iteration. Though there are
many works on differential privacy. Differential privacy intro-
duces noise in the data to protect individual privacy. However,
the prediction accuracy significantly degrades, limiting its use
in ML models.

B. Works Related to Anonymization

Anonymization is a practical solution that allows data own-
ers, such as hospitals, banks, social network service providers,
and insurance companies, to protect their user’s privacy when
publishing data. By anonymizing the data, it remains useful for
legitimate information consumers while preventing the iden-
tification of specific individuals. Many models, algorithms,
frameworks, and prototypes were developed to achieve privacy-
preserving data publishing (PPDP). The goal is to maintain
the overall utility and integrity of the data while ensuring that
individuals cannot be identified for analysis or other purposes.
Several widely used methods for maintaining privacy while
anonymizing data include k-anonymity [17], [-diversity [18],
t-closeness [19], and amplified randomization [20]. Healthcare
data that contain sensitive information are at risk of being
attacked when stored on public clouds. To address this, Wang
et al. [21] introduced a framework designed to facilitate the
outsourcing of healthcare data with high dimensionality to a
cloud infrastructure. The framework comprises first classify-
ing the data into segments that are sensitive and nonsensitive.
The sensitive data is then stored in a private cloud, while the
nonsensitive data is kept in a public cloud. To protect the
sensitive data, differential privacy noise is injected into it. K



anonymity guarantees that within a dataset table, a minimum
of k records exhibit similarity. However, despite this safeguard,
such datasets remain susceptible to identity and attribute dis-
closure attacks. Kim and Chung [22] proposed a protocol that
uses k-anonymity to prevent identity disclosure attacks, which
can be categorized as internal or external. Internal identity
disclosure occurs when the data collector can identify the data
holder, on the other hand, external identity exposure occurs
when a person’s identity is revealed via network headers. To
prevent such attacks, they proposed k-anonymity models. These
models guarantee that a minimum of k records possess identical
quasi-identifiers. Additionally, on the data collector’s end, each
group comprises at least k data holders whose quasi-identifiers
are the same. Zhang et al. [23] introduces MRMondrian, a
scalable MapReduce-based approach for the multidimensional
anonymization of big data. The approach addresses the chal-
lenges of privacy preservation in cloud computing by leveraging
the MapReduce paradigm to achieve scalability and efficiency
in anonymizing large datasets. The article [24] describes the
development of an unmanned aerial vehicle (UAV) system with
a deep learning-based face anonymizer to protect people’s pri-
vacy in videos captured by UAVs. The system aims to maintain
the semantic information of the footage while anonymizing
individual faces. The face anonymizer uses generative adver-
sarial networks to modify facial features to ensure anonymity
while preserving a human-like appearance. The system is im-
plemented on a UAV platform and is shown to effectively
anonymize individuals in first-person videos without resem-
bling anyone in the dataset used. Moreover, the anonymized
videos do not degrade the system’s perception performance
for essential functions such as simultaneous localization and
mapping. Anonymization often involves removing or masking
identifying information using techniques such as generaliza-
tion, suppression, or noise addition, which can lead to a loss
of valuable features that might be important for the model’s
performance, thereby reducing the utility of the anonymized
data.

C. Works Related to Synthetic Data

High-quality data is crucial for artificial intelligence and ma-
chine learning techniques. However, obtaining real data can be
expensive and challenging. It may contain personal and confi-
dential information that no one wants to get published. The kind
of data can be utilized for different types of problems, such as
predicting machine life span and analyzing changes in climate,
and health. Unfortunately, such data is not always available due
to privacy concerns, its high cost, and the need for experts to col-
lect it. This scarcity of data can be a hindrance to processing and
analyzing research data in general. Real data can be substituted
with synthetic data for processing and analysis. It can be used to
generate rare data that are difficult to collect, such as equipment
breakdowns, unusual weather, and unusual disease symptoms,
to augment or increase the amount of data for training machine
learning models. One promising approach to generating syn-
thetic data is through generative adversarial networks (GANS).
The author in [25] first introduced GAN as a model to generate

synthetic data for various applications. Some of the popular
GAN models are conditional generative adversarial network
(CGAN), deep generative adversarial network (DGAN), infor-
mation maximizing generative adversarial network (InfoGAN)),
coupled generative adversarial networks (CoGAN), auxiliary
classifier generative adversarial network (AC-GAN) along with
numerous other variations of GANs [26]. Antonio et al. [27]
explore the utility of synthetic data generation algorithms us-
ing CTGANs in medical tabular databases for disease pre-
diction. The study demonstrates the effectiveness of synthetic
data generation techniques in small and imbalanced datasets,
maintaining classification performance comparable to real data
and even improving it in some cases. Using residual GCB-Net
[28], a CNN-based network, author demonstrated the excel-
lent classification performance. Utilizing deep learning tech-
niques based on autoregressive convolutional recurrent neural
networks (CRNNs), the authors in [29] have produced synthetic
data for ultrawideband (UWB) and ultrahigh-frequency radio
frequency identification (UHF-RFID) sensors through multi-
variate time series prediction. The contents of free electronic
medical records (EMRs) are scarce, include a wealth of personal
data, and lack uniform standards. Furthermore, it might be
challenging to have an adequate quantity of specimens for the
various illness types being studied. These issues have hampered
the advancement of ML and NLP techniques for EMR data
processing. The authors in [30] have created a model known
as medical text generative adversarial network, or mtGAN, to
produce synthetic EMR text to address these issues. It creates
synthetic texts as electronic medical records (EMRs) for the
associated diseases using disease tags as inputs. Chougule et al.
[31] proposed a GAN for synthetic data generation technique
for controller area networks (CANs) to address the lack of
availability of large amounts of data required for developing
security mechanisms in CANSs. The authors propose a GAN-
based technique to generate synthetic CAN datasets, which can
be tailored to specific needs or conditions not available in real
data. The author in [32] proposes user-driven synthetic dataset
hunting methods to generate synthetic datasets with specified
privacy objectives, allowing data owners to release datasets
with confirmed privacy levels. It is essential to evaluate the
prediction accuracy of synthetic data compared to differentially
private and anonymized data under different conditions. This
will prove the utility of synthetic data in comparison to other
PETs. To the best of our knowledge, there is very little work
done on thorough performance analysis of synthetic data, and
the aim of this work is to do the same.

IV. PRELIMINARIES

The task is to compare the performance of the machine
learning model for synthetic data with that of differential pri-
vacy and anonymized data. Hence, another component is to
introduce the element of differential privacy, which is done by
adding noise (for instance, Laplace noise) to the gradients and
then using these gradients to update the weights to train with
other trainable variables, the procedure to update the gradient is
shown in Fig. 1. The previous section lists work related to such
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Fig. 1. Differential privacy in machine learning.

techniques concerning machine learning applications. It can be
argued that there is no need for such a comparison between
these techniques. However, the nature of their functioning lays
the ground for such a study. Either of these meets our require-
ments, but the objective is to determine which one emphasizes
both accuracy and security in the model. The following are the
key points of differential privacy in machine learning:

1) Here, privacy is instilled within the model by adding noise
to the gradients. Subsequently, the weights are updated
while training on the trainable variables.

One could argue that adding noise directly to the data
points might be sufficient. However, this would simply
move the values from one point to another by a specific
distance, making it easier for adversaries to trace back to
the original data points.

Adding noise to the gradients brings arbitrary changes
into the model as the accuracy and the final result would
be known only when the training and testing have oc-
curred through the specified number of iterations.

The previous section has already listed an abundance of
the techniques concerned. However, they have been unable
to establish which is more suitable considering data privacy
across machine learning. In this work, we use datasets with
some numerical features and one categorical feature of values,
either O or 1. To begin with, we employ generative adversarial
networks (GANSs), a method that generates synthetic data that
mimics the original dataset, on which a machine learning model
can be trained. The main objective is to compare the accuracy
of the ML model when trained and tested on the original and
synthetic one. This method, in the interest of our study, serves
the following intentions:

1) Since the idea is to establish the security of data while
in use, generating synthetic data distills the knowledge
contained by the original data into data points that are not
members of the source. In other words, the synthesized

2)

3)

(Determine the loss's gradient
in relation to each parameter.)

Indicates gradients
with their direction

data points together capture the distribution without ex-
posing the identity of any particular point. Given the capa-
bilities of an adversary, attempts may include measures
such as randomly querying the dataset for data leakage
or testing the model with random mini-batches of data
points. However, if the members targeted are not a part
of the training data itself, despite achieving expected
answers, the rival will not gain any insight.

A synthetic dataset that is smaller in size than the original
reduces the need for managing extensive storage, making
it more cost-effective.

One might argue that using training data other than the
distribution of the testing data leaves the possibility of
an inaccurate model unattended. However, the synthetic
dataset imitates the original distribution but might not be
included within the source. Since the task of an ML model
is to identify the pattern in which a distribution behaves,
the generated data produces results similar to what the
original produces.

2)

3)

V. EVALUATION METHODOLOGY
A. Differential Privacy in Machine Learning

Here, gradients are manipulated by adding any noise. These
updated gradients subsequently update the weights and biases,
which ultimately train the model. The approach to differential
privacy in machine learning proceeds as shown in Fig. 2:

1) Initialize parameters: Start by setting initial values for the

neural network’s weights and biases. These values should
be modest and randomized.
Forward pass: Conduct a forward pass through the net-
work to predict the output for a given input. This involves
using the current set of parameters to propagate the input
through each layer.

2)
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TABLE I
NOTATION SUMMARY

Notations Meaning

Vi) Loss function’s gradient

0 Model’s parameters

b Scale of Laplace distribution

v Mean of the Laplace distribution

« Learning rate

Pn New parameter

Po Old parameter

m Batch size

z; Real or generated samples

Yi Corresponding labels

2; Random noise vectors

D(G(=1)) Discriminator’s confidence in classifying the

generated samples as real.
3) Compute loss: Determine the amount of inaccuracy or

4)

loss by contrasting the actual (ground truth) result with
the output that was expected.

Backward pass (Backpropagation): Determine the loss
gradient for each component, including weights and
biases. To achieve this, propagate the error backward
through the network. The gradients indicate both the mag-
nitude and direction of adjustments needed to minimize
the loss. Various notation used is listed in Table 1.

Let VJ(0) represent the loss function’s gradient con-
cerning the model’s parameters 6. Now, we must add
Laplace noise to every gradient vector member. Two pa-
rameters define the Laplace distribution: scale (b) and
location ().

Noisy gradient = V.J(6) + Laplace(v, b) (1)

where Laplace(v, b) is a random variable drawn from
Laplace distribution with mean » and scale b. Laplace
distribution is represented as follows:

f(zlv,b) = %exp <_|a: ; V|)

@

(Predicted Output) )

Loss
Computation

Backward pass
(Gradients)

—

Update
Parameters

5) Update the parameters: Adjust the parameters to mini-
mize the loss. This involves subtracting a fraction of the
gradient from the current parameter values. The learn-
ing rate, a hyperparameter governing the size of each
optimization step, determines the fraction in the update
equation

3

where p,, is the new parameter after updation and « is the
learning rate
By adding randomness to the gradient developments, this
procedure makes it harder for an opponent to deduce details
about specific training samples. Selecting the learning rate and
laplace noise parameters (v and b) is an important decision that
frequently necessitates balancing model accuracy with privacy.
The above sequence can also be done for other noises, and the
distribution for that is shown in Section VI.

Dn = Do — o X Noisy gradient

B. Anonymization

Anonymization is the process of transforming or modifying
personal or sensitive information so that it can no longer be
attributed to an individual. The goal is to protect the privacy
of individuals while allowing for the use of the data for anal-
ysis, research, or other purposes. Anonymization techniques
are commonly employed in various fields, including healthcare,
finance, and research, to mitigate the risk of reidentification
and unauthorized disclosure of sensitive information. We have
used k-anonymity to anonymize the data. Sweeney [17] first
proposed the k-anonymity anonymization concept for exchang-
ing personal data. According to this notion, personal records
are similar to at least k-1 records in terms of certain quasi-
identifiers. There are two methods to achieve k-anonymity,
i.e., suppression and generalization. Suppression replaces some
entries with an asterisk “*” while generalization groups entries
into categories. The steps for k-anonymization are

1) Identify quasi-Identifiers (QI): Identify the attributes in

the dataset that, when combined, could potentially iden-
tify individuals. These are quasi-identifiers.
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2) Group records: Group the records based on the quasi-
identifiers to form equivalence classes. All records in an
equivalence class are considered indistinguishable with
respect to the quasi-identifiers.

3) Apply generalization: Generalize the quasi-identifiers to
create more generic or abstract representations. This in-
volves making the values less specific.

4) Ensure equivalence class size (k): Ensure that each
equivalence class has a size of at least k. This is the core
requirement for k-anonymity.

5) Suppress identifiers: Suppress or remove specific values
to achieve indistinguishability. This involves hiding or
replacing certain quasi-identifier values.

C. Synthetic Data

As mentioned in the previous section, generating synthetic
data out of the original data is one of the techniques we have
studied concerning privacy when data is in use. Over the past
few decades, evolution in methods to generate synthetic data
has brought forth a plethora of algorithms. However, we never
have a single solution that fits all, especially concerning data.
The reason is that real-life data often suffer from class im-
balance. precisely when one of the classes remains underesti-
mated. A common method for balancing the proportion between
the classes in unbalanced data is minority oversampling [33].
We have employed anyway conditional tabular generative ad-
versarial network (ACTGAN) [34] to generate synthetic data.
ACTGAN was chosen because its active learning mechanism
helps ensure that the generated data covers a diverse range
of patterns and variations present in the real data. This can
result in synthetic datasets that are more representative and
comprehensive, enhancing the generalization performance of
models trained on them. In generative adversarial networks,
two networks, a discriminator (D) and a generator (G), learn
in a competitive environment. G’s goal is to generate fictitious
observations that deceive D, as it gets trained to link random
noise created through a spectrum to data values in the training

System model for synthetic data: The objective is to make sure that accuracy with synthetic data a5 and original data a, are close to each other.

dataset. D has been trained to distinguish between true and
fraudulent input. This indicates if it is or is not from the de-
sired distribution [33]. The operation of ACTGAN is as shown
in Fig. 3:

1) Initialization: First, random weights are used to initialize
the discriminator and generator networks.

2) Training the discriminator: This stage uses a labeled
dataset to train the discriminator network. The discrim-
inator’s goal is to accurately classify produced and ac-
tual samples. This training phase usually uses the binary
cross-entropy loss as the loss function. The discrimina-
tor minimizes the binary cross-entropy, and the loss is
given by

LD =~ 3 i= 1" (yslog(D(a:)
(1 - o) log(1 - D(w))) @

where m is the batch size, x; are the real or generated
samples, and y; are the corresponding labels (1 for real
samples, 0 for generated samples).

3) Active learning: An active learning stage is implemented
once the discriminator has been trained. In this stage, a
subset of the produced items that the discriminator has
highly confidently categorized as real are chosen. The dis-
criminator is then retrained using these chosen samples
that have been introduced to the training set.

During the active learning step, a subset of generated
samples, denoted as Ggelected, 1S selected based on the
discriminator’s confidence in classifying them as real.
These selected samples are then added to the training set.

4) Training the generator: Training the generator in a gen-
erative adversarial network (GAN) involves iteratively
optimizing the parameters of the generator neural net-
work to produce realistic synthetic data. This process
is part of a dynamic interplay with the discriminator,
which attempts to distinguish between real and generated
data. The generator is designed with an architecture that
takes random noise as input and produces synthetic data



while the discriminator assesses the authenticity of the
input. The training loop includes generating synthetic
data, training the discriminator on a mix of real and
generated samples, and updating the generator to improve
its ability to deceive the discriminator. Fine-tuning in-
volves adjusting hyperparameters and monitoring metrics
such as loss and accuracy. GAN training is an iterative
process that requires careful balancing to achieve optimal
results and generate high-quality synthetic data. The gen-
erator minimizes the negative binary cross-entropy loss
given by:

LG=— 13 i=1"lg(D(G(=) O

where m is the batch size, z; are random noise vectors,
and D(G(z;)) represents the discriminator’s confidence
in classifying the generated samples as real.

VI. EXPERIMENTATION AND RESULTS

Initially, it was essential to evaluate the performance of a
machine learning model without integrating either differential
privacy, anonymization, or synthetic data. This initial assess-
ment provided insights into the baseline accuracy achievable
by a conventional model. While adjusting hyperparameters can
enhance model accuracy, it is crucial to underscore our primary
objective, i.e., determining which approach strikes the right
balance between data privacy (in use) and utility. The focus
is on comparing methods and understanding their impact on
the model’s effectiveness while considering privacy concerns.
For this purpose, we chose the PIMA Indian diabetes dataset
[35]. There are 768 instances with the following independent
variables/features:

1) Number of pregnancies (numerical value)

2) Plasma glucose concentration in an oral glucose tolerance

test (numerical value)

3) Blood pressure in units of mm Hg (numerical value)

4) Triceps skin fold thickness in units of mm (numerical

value)

5) Insulin content in units of x U/mL (numerical value)

6) Body mass index (numerical value)

7) Diabetes pedigree function (numerical value)

8) Age (numerical value)

The target variable is “Outcome,” which is a categorical
variable that denotes whether the patient has diabetes or not.
We defined a funnel-shaped neural network architecture to train
as it aims to capture a hierarchical representation of the fea-
tures besides reducing the dimensionality of the architecture.
The neural network architecture used is

1) An input layer of eight neurons

2) A hidden layer of five neurons and activation function of

“ReLU”

3) A single neuron output of “sigmoid” activation function

4) Loss function: binary cross-entropy

5) Optimizer: Adam

We refer to the above network architecture as Network
architecture-1. This also enables parameter efficiency as more
neurons in the first layers enable the collection of a wide variety

TABLE II
PERFORMANCE OF A NEURAL
NETWORK WITHOUT
IMPLEMENTING PETS

Learning rate | Accuracy
0.0001 0.7229
0.0005 0.7229
0.001 0.7532
0.005 0.7619
0.01 0.7229
0.05 0.7575
0.1 0.7445
0.5 0.7229

of features; fewer neurons in the later layers enable the consol-
idation and more condensed representation of these features.
This may result in a more frugal model. This also helps mitigate
overfitting, as reducing the number of neurons imposes a form
of simplicity on the model. The model compiled is tested for
a set of learning rates, which is {0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5}. Table II records the respective accuracies
of a neural network for the different learning rates mentioned.

A. Differential Privacy

As elaborated in the preceding section, our approach is to
instill differential privacy in our experiments, which involves
introducing noise to the gradients. Notably, Laplace noise is not
the sole choice available for this purpose. We have identified
numerous alternative distributions from which noise can be
generated and incorporated into the calculations with the model.
The distributions we have examined include:

1) Laplace noise: A Laplace distribution with mean v and

scale b is represented as follows:

f(z|v,b) = %exp <_|x;1/|)

2) Gaussian noise: The probability density function (PDF)
of a Gaussian distribution with mean p and standard
deviation o is given by

(6)

fle) = vV 27r026 "

3) Exponential noise: The probability density function
(PDF) of an exponential distribution with rate parameter

A is given by
-z >
() = {)\e x>0

(N

. 8

0 <0 ®)

4) Geometric noise: The probability mass function (PMF)

of a geometric distribution with success probability p is
given by

P(X =k)=(1-p)"'p ©)

where X is the random variable representing the number
of trials until the first success.



TABLE III
ACCURACY OF THE MODEL WITH DIFFERENT LEARNING RATES

. Accuracy
Learning Rate — - - - - - -
Original | Laplace | Gaussian | Exponential | Geometric | Poisson | Anonymized | Synthetic

0.0001 0.7446 0.5486 0.5632 0.5352 0.5778 0.5365 0.7229 0.7878
0.0005 0.7099 0.5113 0.5938 0.5392 0.6177 0.5751 0.7099 0.7922
0.001 0.7186 0.5911 0.4660 0.6097 0.6536 0.5685 0.7402 0.7965
0.005 0.7575 0.5192 0.5831 0.6217 0.6536 0.6031 0.7186 0.7922
0.01 0.7272 0.6017 0.6536 0.5964 0.6536 0.6470 0.7316 0.7835
0.05 0.7359 0.6536 0.6536 0.6536 0.6536 0.6536 0.7012 0.7662
0.1 0.7359 0.6536 0.6536 0.6536 0.6536 0.6536 0.7489 0.8268
0.5 0.7575 0.6536 0.6536 0.6536 0.6536 0.6536 0.7186 0.8008

5) Poisson noise: The probability mass function (PMF) of
a Poisson distribution with rate parameter A is given by

e~k
k!

For each type of noise with a noise scale of 1 mentioned above,
a neural network with a funnel architecture was trained with
eight different learning rates to observe the convergence of these
models. Table III records the accuracies with the addition of
Laplace, Gaussian, Exponential, Geometric, and Poisson noise,
respectively. When compared with the original data in Table II,
the accuracies are lesser than the values for the respective
learning rates, hence proving to be of lesser utility than a neural
network without adding any noise to the gradients. However,
utility is not our only purpose privacy, being the other side of
the coin, needs discussion as well.

Any algorithm is termed as differentially private if given an
output, an observer cannot be certain that a particular data point
is used or not. Section V gives the mathematical approach to
introduce privacy through the addition of noise to the gradients
and not the data points themselves. Adding noise to the data
points can also introduce privacy however, upon aggregating
the values, the noise is subdued, obtaining results closer to the
original answer. Hence, this is the desirable approach. Since the
gradients are manipulated, the training data remains unchanged,
and if an adversary attempts to query the model with data
points similar to those in the original dataset, the accuracy gets
closer to the original value, revealing whether or not a particular
data point is present. Table III record the accuracies upon the
addition of Laplace, Gaussian, Exponential, Geometric, and
Poisson noise to the gradients, respectively. When compared
with the values of Table II, which stores the accuracies of a
neural network without adding any noise, the latter’s utility is
way better. Fig. 4 infer that the addition of perturbations does
not assist in maintaining a balance between privacy and utility.

P(X =k)= (10)

B. Anonymized Data

This privacy-enhancing technology (PET) is designed to al-
ter or manipulate data with the goal of safeguarding individ-
ual privacy while maintaining the utility of the information.
The approach involves applying k-anonymity to achieve data
anonymization, with a specified parameter k= 5, ensuring
that the anonymized data comprises at least five rows with

identical values. The generalization technique is employed to
generalize the quasi-identifier, enhancing privacy. The result-
ing anonymized data is then utilized for training and testing
neural networks, with the corresponding accuracy recorded in
a Table III. Furthermore, a comparative analysis depicting the
accuracy of the anonymized data in contrast to the original data
is presented in Fig. 4.

C. Synthetic Data

This pertains to another PET approach on which experiments
were conducted. The strategy involves generating synthetic data
derived from the original dataset, serving as input for training
the neural network. The newly created dataset must emulate the
original information’s behavioral patterns. To qualify as appro-
priate synthetic data, it should mirror the behavior of the data
from which it was generated. For instance, if the original set
exhibits the second-highest correlation between features A and
B, the synthetic data should similarly exhibit this correlation.
To achieve this, we employ ACTGAN, as previously outlined
in Section V. The approach adheres to a specific methodology,
as detailed below:

1) Generate synthetic data using ACTGAN as mentioned in

Section V.

2) Use the same neural network as the one used for original
and differential privacy to train and test the generated
dataset, the results of which are recorded in Table III.

3) The accuracies of the synthetic dataset and the original
dataset are compared and shown in Fig. 4.

A comparison between the accuracies of these models for
different learning rates and different noise vectors is recorded
in Table III and also shown in graphical form in Fig. 4. It is
evident from these figures that when trained using a synthetic
dataset, the accuracies are even better than that of the original
data, unlike what was observed regarding differential privacy
and anonymized data. From Fig. 4, it is evident that the model
trained on synthetic data achieves better accuracy compared to
the model trained on original data. However, one must remem-
ber that privacy is another key aspect to be considered. Given
that the data utilized for training the network is synthetic, repre-
senting a replication of the original data, the specific data point
sought by potential adversaries is nonexistent. Consequently,
despite obtaining reasonably accurate outputs, these entities are
unable to discern the original data point. This underscores the
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effectiveness of synthetic data in striking a balance between
utility and privacy, which has been our objective since the
beginning.

D. Comparative Analysis

1) Accuracy Versus Learning Rate (Different Network Ar-
chitecture): We have performed the experiments mentioned

in Sections VI-A, VI-B, and VI-C on neural networks with
an architecture different from that of Network architecture-1.
We refer to the architecture of this new neural network as
Network architecture-2. The architecture of this new neural
network is

a) An input layer of 8 neurons

b) First dense layer with 64 neurons and an activation func-

tion of “ReLLU.”
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Batch normalization layer after the first dense layer to g) Dropout layer with a dropout rate of 0.3 to prevent over-
normalize the activations. fitting.

Dropout layer with a dropout rate of 0.3 to prevent over- h) Third dense layer with 16 neurons and an activation func-
fitting. tion of “ReLU.”

Second dense layer with 32 neurons and an activation 1) Batch normalization layer after the third dense layer to
function of “ReLU.” normalize the activations.

Batch normalization layer after the second dense layer to j) Loss function: Binary cross-entropy.

normalize the activations. k) Optimizer: Adam
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The accuracy of the original, differentially private,
anonymized, and synthetic data is compared. We have
found that the accuracy of synthetic data is better than that of
differentially private data and anonymized data. The accuracy
of synthetic data is better or comparable to that of original
data, which is shown in Fig. 5.

2) Accuracy Versus Learning Rate (Different Datasets):
We have performed the same experiments on two different
datasets: Employee datasets [36] and German credit datasets
[37]. The employee dataset contains 4653 instances with the
independent variables- Education, Joining year, City, Payment
tier, Age, Gender, Ever benched, Experience in Current Do-
main, and Leave or Not (will leave the company or not), which
is a target column. The German credit data dataset contains
1000 instances with the features- Checking status, Duration,
Credit history, Purpose, Credit amount, Savings status, Em-
ployment, Installment commitment, Personal status, Other par-
ties, Residence since, Property magnitude, Age, Other payment
plans, Housing, Existing credits, Job, Num dependents, Own
telephone, Foreign worker and class (good or bad credit risks)
a classification column. We first performed differential privacy
by adding different types of noise to the original data at the
gradient level. We then anonymized the original data using
k-anonymization. Finally, we have created the synthetic version
of the original data. Then, we compared the accuracy of origi-
nal data, differential privacy, anonymized data, and synthetic
data. we have found that synthetic data has better accuracy
than original data, differentially private data, and anonymized
data. This shows that synthetic data can be used instead of
original data, ensuring privacy without compromising accuracy.
A comparison of the accuracy of the employee data is shown in
Fig. 6, and the accuracy comparison of the credit data is shown
in Fig. 7.

3) Accuracy Versus Learning Rate (Different GAN Model):
We have generated synthetic data from three different GAN
models: CTGAN, DGAN, and ACTGAN. We have observed
that ACTGAN gives better accuracy than other GANs and even
better than the original data, as shown in Fig. 8.

VII. CONCLUSION

Differential privacy and anonymization ensure data privacy.
However, the data generated by these techniques have low
prediction accuracy, limiting its utility for various applications.
Synthetic data, when generated properly, can retain the essential
characteristics of the original data while omitting or modifying
identifying details, providing more flexibility, better privacy
guarantees, and maintaining more utility for machine learning
models. However, very little work has been done to evaluate
the utility of synthetic data for different model parameters.
We have addressed this important issue in our work by gen-
erating synthetic data through ACTGAN, which is a synthetic
dataset that is more representative and comprehensive. We have
then performed a thorough performance analysis of the utility
of synthetic data in comparison to differentially private and
anonymized data for different learning rates, network archi-
tectures, and datasets from varied domains. We have found
that synthetic data has higher utility (prediction accuracy) than
differentially private and anonymized data and comparable ac-
curacy to that of original data. This shows synthetic data is
promising PETs for various applications.

VIII. FUTURE SCOPE

This study measures the precision of models under different
learning rates when disturbances are introduced. However, it
does not evaluate the extent of data leakage or privacy infringe-
ment in the models, except for a qualitative analysis of the sit-
uation. Therefore, further research could focus on determining
the degree of privacy infringement.
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