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Abstract—The accurate, extended period prediction of
individual customer energy consumption is critical for
utility providers. Machine learning techniques, particu-
larly neural networks, have proven effective in predicting
household energy consumption by identifying correlations
and patterns. However, these predictions often generalize
across the entire dataset, neglecting the distinct behav-
iors of specific sub-groups. This paper presents an inno-
vative transformation architecture aimed at enhancing the
prediction of gas consumption for multiple households or
population subgroups concurrently. The adaptability of the
transformation layer to various neural network frameworks
allows for broader applicability. The model’s performance
is assessed based on prediction accuracy and efficiency.
Furthermore, as the transformation layer may introduce
private information during training, we also evaluate the
robustness of the model against inference attacks and its
resilience to Additive White Gaussian Noise (AWGN) and
adversarial examples. Our results demonstrate that the pro-
posed approach not only achieves parallel prediction with
high accuracy but also maintains the ability to forecast
consumption over an extended period without the need for
recent meter readings.

Index Terms—AIoT, extended period prediction, gas con-
sumption, machine learning, parallel processing, privacy
attack, subgroup, transformation.

I. INTRODUCTION

ENERGY management stands at the forefront of discussions
on sustainability and economic efficiency. The significance

of energy management is underscored by its potential to optimize
costs and ensure the judicious use of resources. As the global
community grapples with the challenges of climate change,
there is a marked shift towards carbon neutralization and the
adoption of green energy solutions. This transition is not only
essential for environmental preservation but also offers avenues
for economic growth and innovation. For instance, a study on
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green seaports [1] highlights the potential of integrating renew-
able energy sources into major infrastructural projects, lead-
ing to reduced emissions and enhanced operational efficiency.
Furthermore, pricing optimization strategies tailored for green
energy can incentivize its adoption and make it a more viable
alternative for consumers and industries alike [2], [3]. As the
world progressively moves towards a more sustainable future,
the role of energy management in shaping this trajectory cannot
be overstated.

Natural gas has emerged as a significant player in the global
energy mix. According to the International Energy Agency
(IEA), natural gas contributes to 23% of the world’s electricity
generation. This statistic highlights the growing reliance on
natural gas, especially as countries shift towards cleaner energy
alternatives to coal and oil. The rise in natural gas consumption
over recent decades can be traced back to several factors, in-
cluding technological advancements in extraction methods like
hydraulic fracturing and the global drive towards low-carbon
energy sources to combat climate change. As the emphasis
on sustainable and eco-friendly energy solutions grows, the
trajectory of natural gas consumption is expected to further rise
in the foreseeable future.

Additionally, in many countries (e.g., Singapore and USA),
piped natural gas is also commonly used as an energy source in
residential complexes and individual houses. In both industrial
and domestic settings, technological innovations are revolution-
izing the way we perceive and manage energy consumption.
A prime example of this is the smart meter. Traditionally, a
smart meter was an electronic device that recorded consumption
metrics like voltage and current [4]. Today, their purview has
broadened to encompass utilities like water, heat, and gas. These
advanced meters furnish detailed data that, when astutely ana-
lyzed, can bolster applications such as consumption forecasting
and user behavior analytics. Such insights assist utilities in op-
timizing production and distribution, and help users in planning
their consumption.

The pervasive adoption of smart meters has paved the way
for a more sophisticated approach to gas management, enabling
a dynamic equilibrium between supply and demand. In the
complex domain of industrial cyber-physical systems (ICPS),
precise energy consumption prediction for individual units is
pivotal for enhancing system efficiency and management. Dis-
crepancies between demand and supply can inflate costs and
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induce price volatility. Consequently, precise forecasting of gas
consumption is of paramount importance. Currently, machine
learning methodologies are progressively being leveraged to
augment system proficiencies in both residential [5], [6], [7], [8]
and industrial [9], [10] settings. To enhance accuracy further,
studies employing time-series data alongside recurrent neural
networks [11], [12] offer a promising avenue for achieving re-
fined short-term prediction resolutions. However, the discourse
at extended period and larger-scale forecasting remains scant.
This gap is primarily because extended period predictions ne-
cessitate data up to the forecasted period, which often remains
inaccessible.

Yet, a significant portion of existing models predominantly
centers on the collective behavior of broad population segments.
Such models often risk unintentionally overlooking the subtle
and distinct behaviours inherent to individual units or specific
sub-groups, a critical aspect in the multifaceted environment of
ICPS. Addressing these nuances individually would necessitate
resource-intensive model construction and maintenance. Addi-
tionally, the advent of smart meters, while beneficial, also raises
privacy concerns. Regulatory frameworks and policies have been
enacted by many countries to guide data custodians, prompting
them to adopt various learning techniques [3], [13], [14], [15] to
mitigate the risk of disclosing private user information. Hence,
privacy evaluations become paramount when sensitive informa-
tion is integral to system development. This paper endeavors
to address this open problem by emphasizing the prediction
of individual or subgroup behaviors, while ensuring stringent
privacy safeguards.

A. Contribution

Conventional gas consumption prediction methods often fall
short in analyzing extended period prediction, and individual
pattern behavior for multiple targeted parties within a given
system. Addressing this, our proposed transformation-based
machine learning system offers four key advantages:

– Multi-output prediction: The proposed transformation
layer reduces the low-level feature sharing and boosts
independent learning for sub-groups.

– Extended period prediction: The proposed system can
make predictions over extended periods since the actual
consumption data is used as training guide at output side
instead of a feature in the input matrix.

– Privacy inference protection: The sharing of low-level
features learnt from other sub-groups can safeguard the
private information from inference attack.

– Robustness: The transformation layer provides additional
protection against noise and adversarial examples.

The remainder of this paper is structured as follows: Section II
delves into the relevant literature and related works. Our pro-
posed framework is described in Section III. Section IV presents
the experimental results, validating the efficacy of our approach.
The paper culminates with concluding remarks in Section V.

II. RELATED WORK

Historically, time series models have been predominantly
used for natural gas consumption prediction. The advent of

smart meters has enabled the collection of high-resolution data,
shedding light on individual consumption patterns. This granu-
lar data, whether from domestic [5], [6], [7] or industrial [9],
[10] sectors, has paved the way for machine learning (ML)
techniques to enhance prediction accuracy and introduce novel
functionalities.

For instance, a comparative study in [24] evaluated six ML-
based methods, each considering different household properties
in London, to model in-building energy consumption. The find-
ings underscored the superior performance of non-parametric
methods, emphasizing the importance of non-linearity in cap-
turing core behaviors. To further enhance performance, [25]
introduced a hybrid algorithm-based model that amalgamates
the strengths of various individual models. While this model
boasts structural independence and achieves low errors across
multiple time scales, it is susceptible to overfitting, making it
less generalizable across different datasets.

In contrast, a neural network-based model presented in [26]
offers next-day gas consumption predictions. Despite its simplis-
tic architecture, this model underscores the potential of neural
networks in this domain, albeit with certain data preprocessing
and optimization prerequisites. An advanced iteration of this
neural network model [27] incorporated weather conditions,
enabling accurate predictions even in the absence of continuous
meter data.

A common limitation among the aforementioned models is
their treatment of training datasets as monolithic entities, thereby
overlooking individual variations. For instance, while the model
in [27] integrates multiple functional layers to enhance predic-
tion accuracy, the models in [11] and [12] adopted the recurrent
cell after convolution layer to acquire better prediction accuracy.
They primarily capture the aggregate behavior of all users in the
dataset of gas consumption. The recurrent implementation is
also hard to make prediction for a longer term objective. A new
model introduced in [8] highlighted the feasibility of achiev-
ing comparable accuracy by focusing on individual sub-group
properties rather than the entire dataset. However, this model did
not fully harness the efficiency-boosting potential. This gap is
addressed by our proposed model, which parallelizes predictions
across all sub-groups.

When models aim to incorporate advanced features like par-
allel processing, they must grapple with resource constraints
and escalating complexity. Conventional regression models [16],
[17] leverage linear correlations between time steps and employ
multiple output regressions to optimize resource usage. How-
ever, these models are hamstrung by their inability to capture
non-linear correlations and handle sequences of zeros, such as
during prolonged absences of homeowners. Recognizing the
significance of non-linear correlations, some researchers have
endeavored to enhance model efficiency by either constructing
multiple models or implementing multi-task learning (MTL) in
neural networks [28], [29]. Recent literature has documented the
proliferation of MTL applications across domains like Natural
Language Processing (NLP) [18], [19] and computer vision [23],
[30]. These models capitalize on shared low-level features to
bolster task performance. Nevertheless, when applied to parallel
processing, these models require a more independent analysis to
discern sub-group behaviors. Furthermore, as more information



TABLE I
SUMMARY OF RELATED WORKS

is incorporated to advance system objectives, sensitive data
involved during training can become susceptible to privacy
breaches. For instance, when tasks are processed together within
the same network as in MTL, sharing information between
tasks is inevitable; this makes sensitive information vulnerable
to inference attacks. Assessing privacy risks is critical, as the
pursuit of advanced system objectives should not compromise
privacy.

Table I encapsulates the constraints of existing methods and
underscores the advantages of our proposed approach.

III. METHODOLOGY

This section describes the proposed system, segmenting it
into its core components: dataset, network architecture, and
evaluation method. We further delve into privacy considerations
and the system’s resilience against challenges such as noise and
adversarial attacks.

A. Dataset

Similar to the system proposed in [27], we integrate weather
data, day of the week, and specific house-related metrics into our
input matrix to forecast gas consumption. This matrix merges
data from dwelling and weather sources. Our dwelling data
originates from Pecan Street [31], spanning almost two years of
gas meter readings (from September 2015 to July 2017) across
155 dwellings, inclusive of house-specific details. Concurrently,
our weather data is sourced from Kaggle [32], providing daily
weather records for the identical period.

Utilizing a dataset from real households enhances the prac-
ticality of our framework, establishing a realistic benchmark
for subsequent industrial applications. Nevertheless, this dataset
presents challenges, including inconsistencies, missing values,
and erroneous entries. To synchronize the granularity of our
weather and consumption data, we compute the daily consump-
tion by subtracting the day’s initial reading from its final one. We
omit entries with absent meter readings to avert training biases.
The approach for managing missing feature data is outlined in
Table II. Besides, to facilitate predictions over extended periods,
the actual consumption data is deliberately excluded from the

TABLE II
SELECTED FEATURES AND DESCRIPTION

input matrix. This approach addresses the challenge of requiring
data up to the forecasted period, which often remains unavail-
able. Instead, the actual consumption data serves as a guiding
reference on the output side during the training phase, enabling
the model to learn and predict future consumption patterns with-
out the immediate need for up-to-date input data. This method
ensures the model’s capability to generate long-term forecasts
while navigating the limitations posed by the unavailability of
future data. In the final stage of data preprocessing, to rectify
any anomalous entries, we removed records with missing or
incorrect meter readings, thus ensuring a robust training and
testing dataset. The dataset is then randomly partitioned, with
90% allocated for training and 10% for testing, to ensure thor-
ough training across all residences and minimize the risk of
overfitting. However, to simulate the data in a time-series format
with the challenges mentioned earlier, we took additional steps
to partition the dataset for the CNN-LSTM and CNN-BiLSTM
models. These steps will be discussed in detail in Section IV-A
for a comprehensive evaluation.

B. Network Architecture

In contrast to the large data volumes required for image rep-
resentation, the total number of chosen features in our scenario
amounts to only 16. To process multiple dwellings in parallel,
vector stacking presents several drawbacks:

– Producing a non-square input if the number of groups
doesn’t match the total number of selected features.

– Compelling the neural network to prioritize inter-
subgroup correlation if convolution operations are
involved.

– Exposing sensitive information, such as house ID.
To optimize efficiency and safeguard private data within the

data group, we introduce a novel system equipped with a trans-
formation layer. An appropriate linear transformation can fulfill
our objectives without altering the dataset’s properties. Given



data x traversing a feed-forward hidden layer, the output y is
expressed as:

y = σ(w · x+ b)

where σ is the activation function, w represents the weights, and
b is the bias.

With the transformation, the output data can be derived as:

x′ = Ax+ c

y′ = σ(w · (Ax+ c) + b)

where A is the transformation matrix and c is the bias vector.
Thus, we can achieve the objective with the new weights and

bias as:

y′ = σ(w′ · x+ b′)

where w′ = wA and b′ = w · c+ b.
Besides, the transformation matrix should maximize the in-

dependence between subgroups. Similar to the use in wireless
communications and signal processing, we use Fourier trans-
form to convert a time domain signal to its frequency domain
representation. Through transformation, multiple signals can be
transmitted together while preserving their information and not
interfere with each other. However, the output of Fourier trans-
formation and its inverse transformation contains the operation
of complex numbers. To achieve the real-valued transformation,
two dimension Discrete Cosine Transform (2D-DCT) is adopted
which is defined as:

Xk1,k2 =
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k = 0, . . . , N − 1. (1)

Here, xn1,n2 are the values at position n1 and n2 and k1 and
k2 are the indices of the DCT coefficients in the vertical and
horizontal directions. 2D-DCT decomposes the message signal
to a summation of different basis functions. This transformation
is applied to both axes to obtain the two dimensional transfor-
mation. As a result, the message signals are transferred to a
function summation with same matrix size that has the properties
of linearity, real values, as well as independence to each other.

To protect the private information, house ID in our specific
environment, we define a dictionary that will map the house
ID to the position where the post transformation message is
located. The arrangement of the matrix that contains all subgroup
information is set to size of 52 × 52. This is calculated based on
the boundary condition criteria defined in the equations below:

min
L

:

(
L

l

)2

≥ N, (2)

row =

⌊
i÷ L

l
× l, (3)

column =

(
i mod

L

l

)
× l. (4)

Algorithm 1: Message Signal Transformation and Mapping.

Here, L represents the number of mapping matrices, l denotes
the length of the message signal, i indicates the location index
number, and N is the total number of subgroups. Specifically,
in our scenario, the data corresponds to 155 dwellings and thus,
N=155. Also, the input message is composed of 16 elements,
organized in a 4 × 4 matrix, which sets l at 4. Applying these
values in (2), we determine L to be 52.

Algorithm 1 describes the detailed operations in the transfor-
mation layer. The computational complexity of the transforma-
tion layer depends on the total number of subgroups. A physical
system only needs to define the total number of subgroups
which contribute to O(n) complexity where n is the number
of subgroups. Fig. 1 illustrates the physical meaning of each
step in the transformation layer. The input data from each user
with 16 elements is mapped to a 4 × 4 block as an individual
message for the subgroup. We create a dictionary that has a
one-to-one mapping from subgroup data-id to a number that
ranges from 0 to 154. The mapped number is the location index
that defines where the message signal maps into the mapping
matrix. The position is described with index of row in (3) and
column in (4) to represent where the 4 × 4 matrix is placed.
Step 1 to step 3 is repeated for each subgroup to complete the
whole mapping matrix with all the subgroup messages. Then, the
mapping matrix undergoes a process of inverse discrete cosine
transform (IDCT) before being passed to the next layer. Since
the transformed signal after mapping is sparse under the current
set up, cross interference and aliasing is not discussed in this
work.



Fig. 1. Transformation and mapping of input signals. Step 1: con-
struct the 4 × 4 matrix with 16 elements of subgroup input information;
Step 2: apply 2D-DCT transformation on the 4 × 4 signal; Step 3: move
the message to the 52 × 52 mapping matrix based on the location index;
Step 4: apply inverse 2D-DCT to the 52 × 52 mapping matrix; Step 5:
pass the 52 × 52 signal to the convolution layer.

Overall architecture of the proposed system is shown in
Fig. 2. Convolutional layers are well known for their good
performance in the feature capturing task. The middle layers
consist of convolution layer, Rectified Linear Unit (LeakyRelu),
max pooling layer and average pooling layer. Fully connected
layer is attached to the end to perform the prediction task. To
improve the prediction accuracy of the proposed system, we
introduce another parameter as an input that intends to capture
the presence of an occupant in the dwelling. The parameters acts
as an indicator function that takes on a value of 1 if the dwelling
is occupied at that point of time, and 0 otherwise. This presence
indicator is generated from the input data based on the value
in the consumption column and the indicator’s value is 0 if the
reported consumption is 0, and the value is 1 otherwise.

C. Loss Function and Optimizer

The loss function and optimizer symbolize the features
learned from the data by updating the parameters via backprop-
agation in each iteration. In our proposed system, we adopted
both Mean Absolute Error (MAE) and the mean squared error
(MSE), which are defined as:

MAE Loss =
1
n

n∑
i=1

∣∣∣Yi − Ŷi

∣
(5)

and

MSE Loss =
1
n

n∑
i=1

(
Yi − Ŷi

)2
(6)

where Ŷi is the predicted output from the model for the i-th day
and Yi is the actual consumption of that day.

The MAE loss is more robust to outliers since it only compares
the absolute difference between the predicted value and actual
value. On the other hand, although MSE loss overloads penalties
on the extreme records with very high consumption, it is efficient
in finding optimal points and faster to achieve convergence.
During the parallel processing for multiple households, the total

loss function can be formulated as

LTotal =

N∑
i

ωi · Li (7)

where ωi and Li are the weight and loss associated with house-
hold i, respectively. Since all subgroups are designed to be
independent, ωi are the same for all subgroups. Adam opti-
mizer [33] is chosen to update model parameters rather than
Stochastic Gradient Descent as the optimizer to achieve a better
performance during the training stage.

D. Feature Scaling

Features with varying units necessitate appropriate scaling
when amalgamated to form the message signal. For instance,
weather metrics like precipitation are substantially smaller than
house footage in magnitude. A dominant feature can overshadow
the influence of other features. To counteract this under the
assumption that all selected features are equally impactful,
we preprocess data before the transformation stage, fitting the
features to a consistent scale using the weight vector λj . Addi-
tionally, signal amplification with factor A is employed during
the transformation to enhance the signal level, thereby bolstering
noise resistance. The overall transformed signal is:

Fj = A× F {λj ∗ f} (8)

where Fi and fi are the transformed and original feature j,
respectively.

E. Evaluation

The prediction performance is gauged using the Mean Ab-
solute Percentage Error (MAPE), MAE and MSE. MAPE is
defined as:

MAPE =
1
n

n∑
i=1

∣∣∣∣Yi − Ŷi

Yi

∣∣∣
. (9)

MAPE is involved in the evaluation since it better captures
the accuracy performance as compared to absolute difference,
similar to the comparison between MAE and MSE. When the
consumption is high, a small percentage error still produces a
higher error rate when absolute error calculation is used.

IV. RESULTS

This section discusses the evaluation of our proposed predic-
tion framework’s performance. We present results from experi-
ments conducted on both single-output and multi-output paral-
lel models, which predict multiple households simultaneously.
Both models were tested on an NVIDIA A5000 graphics card.

A. Performance

As discussed in Section III-A, outliers in the dataset can
originate from a variety of sources such as human behavior or
sensor malfunctions. An example includes instances where a
residence’s raw data might suggest an unrealistic consumption



Fig. 2. The architecture of the neural network in proposed system. Conv stands for convolution layer; pool stands for maxpooling layer; f stands
for number of filters; k stands for kernel size; s stands for stride.

Fig. 3. Raw daily gas consumption record for one dwelling.

TABLE III
TIME-AVERAGE PERFORMANCE SUMMARY

exceeding 1000 cubic feet of gas, as illustrated in Fig. 3. Remov-
ing these outliers is essential for stabilizing model performance
and hastening convergence.

Given the simplicity and efficiency of time-average predic-
tion, we conducted an experiment to evaluate the necessity of a
complex model for each household’s prediction task. Table III
summarizes the average performance of both 7-day and 30-day
average prediction methods for all households. Fig. 4 depicts
the discrepancy between actual consumption and the predicted
values for both methods. We observed significant differences

Fig. 4. Comparison between actual consumption and time-averaged
consumption prediction.

during periods of rapid consumption increase, where the pre-
diction methods failed to keep pace, highlighting the need for a
more sophisticated model to enhance prediction accuracy.

Table IV compares our method and its variations with the
CNN model from [27], as well as CNN-LSTM [11] and CNN-
BILSTM [12] models. The results reveal that our proposed
transformation layer approach, even when combined with other
data augmentation methods like the Gramian Angular Field
(GAF) image representation, effectively adapts to various net-
work architectures for parallel processing tasks. As explored in
Section II, several strategies exist for parallel processing. Multi-
Task Learning (MTL), for instance, relies on shared low-level
features, but different subgroups may interfere with each other’s
learning. Our transformation approach aims to keep signals as
independent as possible, reducing the influence on adjacent
signals. Another strategy involves populating data directly in
the subgroup space without transformation, which, although
simpler, sacrifices accuracy (as evidenced in Table IV) and
increases privacy risks.

As mentioned in Section II, LSTM and BILSTM are lever-
aged for time-series data processing to enhance accuracy. We
constructed CNN-LSTM and CNN-BILSTM models (details
in Table V ) for a comparative performance analysis. Inspired
by [11], we incorporated meter readings as an additional feature,



TABLE IV
COMPARISON OF MODEL PERFORMANCE ACROSS DIFFERENT IMPLEMENTATIONS

TABLE V
ARCHITECTURE OF CNN-LSTM AND CNN-BILSTM MODEL WITHOUT

TRANSFORMATION LAYER

using a 30-day interval to structure the dataset in a 30 × 17
format via a sliding window algorithm. For models incorporating
the transformation layer, we categorized households into four
groups based on their average usage from low to high and
arranged them sequentially on the time axis, as the network
processes data in a single dimension in the CNN layer. Conse-
quently, the input data for these models is resized to 120 × 17.
Since the dataset is not well-structured in a time-series format,
we employed three distinct methods to split the dataset for
training and testing, ensuring a comprehensive evaluation:

– Time-end method: Sampling the final 10% of the time
stamps from each household for testing.

– House-id method: Selecting 10% of households and using
all their data as testing samples.

– Random: Randomly selecting 10% of all data as testing
samples.



TABLE VI
ARCHITECTURE OF CNN-LSTM AND CNN-BILSTM MODEL WITH

TRANSFORMATION LAYER

Fig. 5. Distribution of data record per house id before window sliding
algorithm.

To illustrate that the proposed transformation layer is an inno-
vative approach rather than a mere data augmentation method,
we devised two architectures (as detailed in Table VI) for the
CNN-LSTM and CNN-BILSTM models:

– Single recurrent cell: Utilizes only one set of recurrent
cells but with four times the number of hidden units.

– Per group recurrent cell: Employs one recurrent cell per
group, maintaining the same number of hidden units.

The results did not surpass the accuracy of the CNN model
since the dataset does not strictly adhere to time-series data con-
ventions, characterized by numerous missing values in times-
tamps, as depicted in Fig. 5. The absence of consistent times-
tamps disrupts temporal correlations and confounds the network,
leading to comparable performances between LSTM and BIL-
STM implementations. We also found that the time-end method
outperforms others as it best retains the time-series charac-
teristics. Regarding the transformation layer, implementations
using per group recurrent cells outperformed those with a single

1∗ BILSTM will set bidirection=True and thus the hidden units will double.
2Per group recurrent implementation has one recurrent cell per group and thus

lead to 4 group of 128 hidden units.

TABLE VII
SPEED COMPARISON BETWEEN SINGLE-OUTPUT AND PARALLEL SYSTEMS

FOR NEURAL NETWORK PREDICTION

recurrent cell and were competitive with single-output imple-
mentations. Thus, we conclude that a strategic organization of
the architecture with the transformation layer enables parallel
processing capabilities in the model.

Table VII compares processing times across different con-
figurations. Without the recovery layer, our method achieves a
39-fold speedup when processing 155 dwellings concurrently.
This acceleration factor can reach up to 78 when the recovery
layer is incorporated. These results confirm that the proposed
approach can significantly enhance prediction efficiency, with
a minor 3% accuracy trade-off compared to a single-output
model [8].

Fig. 6 shows the MAPE performance for each dwelling for
both the single-output and multi-output parallel systems. Ex-
cluding outliers from the dataset significantly improves indi-
vidual predictions. This improvement is attributed to the fact
that, compared to the entire dataset, subgroups have fewer data
records, making them more sensitive to outliers.

B. White-Box Location Index Inference Attack

In this section, we address potential privacy risks associ-
ated with our system. While the transformation layer facilitates
parallel processing capabilities and allows the system to tailor
learning based on distinct subgroup behaviors, it incorporates
a location index to signify group identity, ensuring the model
retains this information throughout its processing. This design
aims to ensure that enhancements in system performance do not
compromise privacy integrity.

However, when attackers possess knowledge of the network
architecture and have access to a dataset, they could potentially
pinpoint the exact household from which the data originated by
accurately inferring the location index. This scenario is akin
to a Membership Inference Attack [34], where information
utilized during training retains its distinctiveness as a system
bias. Notably, the location index, introduced as a novel attribute,
maintains a direct link to individual dwelling identities. This
unique identifier aids the system in recognizing the subgroup,
thereby facilitating predictions based on collective subgroup be-
haviors. Consequently, when input data is accurately positioned,
the system is expected to exhibit the lowest error rate. The
primary attack strategy involves identifying the location index
that corresponds to the lowest error rate across all possibilities,
as outlined in Table VIII:

Î = argminI∈Θf {XI} (10)



Fig. 6. MAPE performance for individual dwellings, with marker size indicating data population.

TABLE VIII
ROBUSTNESS AND PRIVACY EVALUATION SCENARIOS: DESCRIPTION AND ASSUMPTION

where Θ is the collection of all possible location indices and
f{XI} represents the error value when the index is I . The attack
is summarized in Algorithm 2.

Executing the attack as described in Algorithm 2 reveals that
the attacker successfully acquires the correct location index in
45 out of 10,000 instances, indicating a 99% defense success
rate for the system Fig. 7. To further elucidate these findings,
we examined three specific attack instances, tracking the error
rates associated with each location index per round. The actual
location indices for these sampled attacks were 31, 68, and 146,
respectively, marked with a red star in our analysis. The graphical
representation of error rates correspond to the guessed location
indexes during these attacks, and as shown in Fig. 8, indicate
that the index correlating with the lowest error did not align
with the actual location index. This diminished effectiveness
of the attack method can primarily be attributed to the multi-
output system’s ability to learn not just individual behaviors but
also inter-subgroup dynamics concurrently. When the system is
provided with information from only one subgroup, its response
diverges from the biased imprint left during training, rendering

the multi-output method more robust against this category of
inference attacks.

C. Robustness Against Noise and Adversarial Examples

Our model’s robustness is evaluated from two perspectives,
as detailed in Table VIII. Firstly, we consider the inevitable
noise present in real-world systems. We assume that our system
operates in a communication channel that, while noisy, is free
from malicious attacks. Secondly, we address adversarial sam-
ples, which can be particularly detrimental to regression models.
To enhance robustness against such threats, we introduce an
interlayer, inspired by [35], to mitigate the impact of adversarial
examples. This interlayer involves a bit-drop step (to minimize
the influence of compromised bits) followed by a reconstruction
layer that amplifies major signals in the mapping matrix while
suppressing others.

We assume that attackers use the Fast Gradient Sign Method
(FGSM) to subtly alter the input, thereby misleading the neural
network without triggering abnormal system detection. The



Fig. 7. Defence rate against white-box location index inference attack.

Algorithm 2: White-Box Location Index Inference Attack.

Signal to Noise Ratio (SNR) quantifies the noise level in the
signal. The signal’s power is computed as:

Px =
1
N

n=0∑
N−1

|x[n]|2 (11)

where N is the total number of samples in the signal, and x[n]
signifies the nth signal in the sequence

TABLE IX
MAPE PERFORMANCE COMPARISON BETWEEN SINGLE-OUTPUT AND

MULTI-OUTPUT MODELS UNDER 0 DB GAUSSIAN NOISE AND FGSM ATTACK

This power can be converted to the dBW unit for easier
interpretation:

PdBW = 10logPx. (12)

Given that the minimum signal power from our test dataset is
approximately −9 dB, we set the noise power to −20 dB to
simulate a 11 dB SNR scenario. As shown in Table IX, the multi-
output model demonstrates resilience against noise. However, its
performance declines under adversarial attacks. Despite this, the
multi-output model outperforms the single-output model when
faced with FGSM attacks.

Adversarial samples are generated by adding a gradient to the
input, leading the neural network astray. The adversarial sample
can be formulated as:

xadv = x+ ε ∗ sign(�xJ(Θ, x, y)) (13)

where xadv is the adversarial sample, x is the original input,
y is the corresponding output after passing through the neural
network, ε is the multiplier to ensure that the perturbation
remains small, J is the loss function, and Θ are the parameters
in the neural network.

Fig. 9 contrasts the signal strength of clean signals
(Fig. 9(d)) with adversarial examples and additive Gaussian
noise. Fig. 9(a) demonstrates how the input changes when ε is set
to 0.005 and iterated for 10 loops. The system MAPE is 37.2 after
reconstruction. When ε and iterations are increased, we observe
that the MAPE increases to 43 as listed in Table IX. Different
sub-groups contribute to the gradient in different directions
during the iteration process. Thus, more effort is required before
the adversarial example becomes impactful to all subgroups.
Notably, the differences between original and adversarial signals
are relatively small compared to the input signal’s magnitude.
This makes it challenging for the system to distinguish adversar-
ial examples, potentially mistaking them for noise (Fig. 9(e)).
However, the distribution of these differences is not random,
unlike additive Gaussian noise. This unique distribution could
be leveraged in future research to detect adversarial examples.



Fig. 8. Exhaustive search results for index having house information and a set of meter readings for multi-output model. Sub-captions indicate the
data-id and the actual location index of the data. Vertical lines emphasize the specific index, while red stars signify the error rate associated with
each location index during the attack.

Fig. 9. Illustration of signal strength of adversarial samples, input signal and differences. x and y axis form the input matrix while z axis is the
signal strength.

D. Cost and Trade-Off

This section delves into the additional costs and considera-
tions associated with the proposed framework. By understanding
these aspects, we can better gauge the trade-offs during im-
plementation and identify the most suitable scenarios for our
method.

The proposed approach is particularly advantageous in two
situations:

1) Adequate Computation Resources: If there’s ample com-
putational power available, our method, which relies on
parallel processing, becomes highly feasible.

2) Fixed Data Rate from Various Subgroups: Our method
performs well when the system must handle a consistent



data rate from different subgroups, even if some of that
data consists of zeros. This ensures efficient resource
utilization and minimizes wastage.

To determine if a task is well-suited for our system, we can
estimate its performance rank using:

Rank =∝ Task similarity

(Feature sharing)(Task data rate)
. (14)

Here:
� Task Similarity: This metric evaluates whether tasks fall

within the same domain, for instance, predicting gas con-
sumption across different subgroups.

� Feature Sharing: This quantifies the extent to which low-
level features are shared among subgroups. A higher de-
gree of feature sharing reduces the independence between
subgroups.

� Task Data Rate: This pertains to the size of the subgroup.
A larger subgroup size restricts the total number of sub-
groups that can be processed simultaneously, especially if
computational resources are limited.

Given these factors, our method is especially beneficial when
computational resources are limited but the input sources are
numerous with a low data rate (e.g., smart meters and sensors).
Alternatively, it is also effective when the input has a moderate
data rate but fewer sources (e.g., small images).

Lastly, there’s an inherent trade-off between accuracy and
training cost. Our current model is designed to process data
from all dwellings continuously. However, if only partial sub-
group data is available, various subgroup combinations must be
considered, which can affect both accuracy and computational
demands.

V. CONCLUSION

This work introduced a novel approach to predict gas con-
sumption of individual households, learning from subgroups
within training data. In contrast to traditional single-output
models, the proposed multi-output model can parallelize the
prediction task to make an arbitrary number of simultaneous pre-
dictions. This prediction model, trained on weather conditions,
house details, and gas consumption data from 155 dwellings
over two years, demonstrated simplicity and resilience against
external influences in extended period prediction. Our results
highlighted several key findings:

� The proposed system delivers commendable prediction
accuracy, while also offering the unique capability of
making multiple concurrent predictions.

� The proposed system can make prediction over an ex-
tended period by using actual consumption data as a train-
ing guide while excluding it from the input matrix, thereby
addressing the challenge of unavailable future data.

� The proposed system exhibits robustness against noisy and
adversarial examples, ensuring reliable performance even
in less-than-ideal conditions.

� The proposed system safeguards the private information
that is used for training with a 99% success rate.

In essence, our proposed architecture lays a solid ground-
work for subgroup-based learning, especially when navigating
intricate design goals and the need for parallel processing of
analogous tasks. Building on the transformation concept and
subgroup learning strategy presented in this paper, future re-
search could delve into integrating more intricate networks and
value-based neural architectures, broadening the applicability of
our approach to a wider array of applications.
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