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Abstract—This paper focuses on enhancing the cybersecurity of
cyber-physical systems, with a particular emphasis on the False
Data Injection (FDI) attack within the Demand Response (DR)
mechanism in smart grids. DR seeks to introduce flexibility in
consumers’ electricity consumption through dynamic pricing or
financial incentives, aiming to optimize the equilibrium between
supply and demand. The vulnerability of DR to FDI attacks
becomes particularly evident when considering its reliance on
accurate demand data. In emphasizing the importance of fortifying
DR’s security against FDI, the Ensemble and Transfer Adversarial
Attack (ETAA) based on Adversarial Machine Learning (AML)
techniques is proposed. This method facilitates the injection of
false data with reduced detectability by existing neural network-
based detection method. With the general framework of ETAA,
any gradient-based adversarial attack method can be integrated
to achieve enhanced attack transferability across diverse detection
models. To counteract such attacks, the training process of de-
tection models is refined through three key steps: Gaussian noise
injection, latent feature combination and probability margin en-
largement. Evaluation results demonstrate that the ETAA method
executes FDI attacks with a higher success rate compared to
benchmark methods. Furthermore, defensive training contributes
to elevating the performance of detection models, ensuring higher
standard accuracy, and reducing the success rate of AML attacks.
This paper underscores the critical need to enhance the security
of DR mechanisms to mitigate the impact of sophisticated FDI
attacks on the robustness of smart grids.

Index Terms—Smart grid, cyber-physical security, demand
response, false data injection, adversarial machine learning,
adversarial data, defense of adversarial data.

I. INTRODUCTION

A smart grid exemplifies a cyber-physical system that seam-
lessly integrates traditional power systems with modern commu-
nication and information technologies, utilizes real-time data for
monitoring and control, and leverages advanced technologies
to optimize the efficiency and reliability of electrical power
systems. The Demand Response (DR) scheme is a key compo-
nent in the progression of smart grids, playing a central role in
proactively aligning power supply with demand and mitigating
power fluctuations. DR implements time-based rates, such as
Day Ahead Pricing, Time-of-Use rates, and Real-Time Pricing,
or by offering various financial incentives. These measures
are designed to motivate customers to adjust or reduce their
electricity consumption during peak hours. In such initiatives,
both wholesale market electricity costs and retail rates are
reduced [1]. The integration of DR into smart grids not only
brings forth innovative energy management capabilities but also
exposes it to potential cyber-attacks that could compromise its
integrity and reliability [2]. Embarking on this transformative
journey, the vulnerability of the Demand Response mechanism
to sophisticated cyber threats, particularly False Data Injection
(FDI) attacks, becomes a critical consideration.

The FDI attack represents a prevalent cyber threat to contem-
porary cyber-physical systems. Attackers can employ FDI attack
to modify necessary data by directly injecting fabricated data,
compromising smart meters, or manipulating data transmission
to induce varying degrees of consequences. Potential impacts
encompass power flow fluctuations and inaccurate power flow
analyses [3]. More severe outcomes, such as surpassing op-
erational limits and breaching safety constraints, may lead to
overloads, power failures, and blackouts. These attacks not
only pose significant economic risk to power companies but
also adversely impact downstream industries and consumers.
Research has explored Deep Learning (DL) neural network-
based approaches to enhance the efficacy of FDI attack detection
in smart grid systems when compared to conventional mathe-
matical and statistical detection methods. However, Adversarial
Machine Learning (AML) techniques have the capability to
exploit carefully crafted data, disrupting the network-based
detection model and compromising the defense against FDI
attacks. When the false data provided to a DL-based detection
model is carefully manipulated, the model may be led to gener-
ate inaccurate predictions for that data, influencing subsequent
decision-making. In response to this pressing concern, this paper
seeks to contribute to the enhancement of cybersecurity, with
a specific focus on securing the DR mechanism against FDI
attacks.

A. Related Work

1) Demand Response Schemes: DR schemes predominantly
rely on the interactions between a power utility company and
its customers to fulfill both their current and future power
demand requirements. Users are primarily presented with two
main programs: incentive-based and price-based programs. In
incentive-based DR programs, customers receive remunerations
for reducing their demand, while in price-based programs,
customers encounter varying electricity costs at different time
intervals [4]. The typical process flow in price-based programs
is shown in Fig. 1. The procedure commences as the power
company communicates the original unit price to consumers at
a specified time, typically a day ahead. Prices vary by time slot,
with higher rates during peak hours. Consumers strategically
plan their electricity usage considering factors such as starting
times and durations, aligning them with the fluctuating prices
with the help of Home Energy Management System. An ag-
gregator may gather demand forecast data, transmitting it to the
power company, which then adjusts prices through optimization
functions. This iterative process concludes at an optimal point
where both the power company and consumers accept the price,
leading to the calculation of bills based on actual electricity



Fig. 1. Distributed DR communication sequence.

usage from devices following the predefined schedule. Several
DR optimization methods have been introduced. The work in [5]
proposes algorithms to maximize retailer profits and minimize
the combined residential costs when plug-in electric vehicles are
considered. Similarly, [6] has assessed rule-based and machine
learning-based control algorithms for the implementation of
demand response strategies in the residential sector and demon-
strated their positive contribution to the reduction of electricity
usage and utility generation cost.

As demonstrated in [7] and [8], attackers can exploit strategic
FDI attacks to gain financial advantages within real-time-based
pricing DR schemes. These discoveries emphasize the essential
importance of establishing timely detection mechanisms for
such attacks in the implementation DR schemes. Specifically,
in [9], the integration of Conventional Neural Network and
Spectral Residual is introduced for the detection of false data in-
jection attacks. Nevertheless, it is noteworthy that the network-
based model is vulnerable to targeted adversarial data, rendering
it susceptible to compromise.

2) Adversarial Machine Learning: AML methods can gen-
erate fake data in a non-linear and more complex way, which
has better performance in eluding identification than traditional
data-driven methods like the random matrix approach for grid
measurements in [10] and the linear attacked model for DC
motor output in [11]. The inception of AML can be traced back
to the work in [12], involving imperceptible small alterations to
input image pixels and deceiving the network into producing
inaccurate output labels. The resulting adjusted input data is
termed an adversarial example. The application of AML extends
seamlessly to power systems, as highlighted in [13], which
explores the vulnerabilities of DL models to AML attacks and
proposes the Saliency Map Attack to state estimation. The
potential risks of AML attacks on load forecasting networks are
scrutinized in [14], emphasizing the exploitation of historical
data. The earlier work in [15] introduced a novel iterative
FGV method for generating adversarial data specifically for
DR application. While iterative methods such as Basic Iter-
ative Method (BIM) and Momentum Iterative Fast Gradient
Sign Method (MIM) [16] have advanced attack capabilities
by incorporating momentum from previous steps, their efficacy
diminishes when applied to models beyond the intended target,
resulting in a lower success rate. These methods often gen-
erate adversarial data from a single substitute model, lacking
assurance in transferability to unknown models. The work in
[17] explored improving attack success rates by using ensemble

methods. However, the sequential generation of adversarial data
from various models hinders attack generalization. Additionally,
existing approaches typically employ the same type of network
for both data generation and attack detection, which further
reduces the attack transferability. Therefore, this paper enhances
the generalization of attacks by employing a parallel ensemble
and transfer updating process, utilizing fused entropy loss to
generate false data injected into DR demand data.

3) Defense from Adversarial Data: Adversarial training is
the most common defensive choice in existing works. In
adversarial training, the model is trained with an augmented
dataset that includes additional adversarial data, enabling the
model to learn latent patterns associated with adversarial inputs.
The PGD-AT [18] is a representative method of adversarial
training, employing BIM perturbations in data modification dur-
ing training. Another variations of adversarial training is [19],
which trains the model with adversarial data slightly crossing
the decision boundary. However, these methods only rely on a
single model structure and use only the modified data as training
data. Therefore, the information in original data are missed, and
the trained model would not successfully classify attack data
from various other unknown inputs. Moreover, [20] introduces
noise generated from gradients to the hidden layer output to
improve the model robustness. Although this method further
improved the classification accuracy, it lacks generalization.

Besides adversarial training, ensemble training that involves
the incorporation of adversarial data from multiple models has
been published. The work in [21] exemplifies this approach by
using many pre-trained models to prepare the training data.
Another study [22] develops a sequential ensemble compris-
ing an autoencoder, convolutional-recurrent, and feed-forward
model to identify any energy theft. Nonetheless, these methods
have the potential risks of overfitting to the training data,
especially in scenarios where the diversity within the normal
data is restricted. The adaptive diversity promoting regularizer to
encourage diversities of non-maximal predictions from different
models utilized in [23] acts as another example for ensem-
ble training. However, this regularizer requires much more
computational cost. Building upon existing works, this paper
introduces a novel adversarial training process, an ensemble-
based method aimed at improving model performance against
adversarial data. The processes of noise injection and feature
combinations work together to address the abovementioned
drawbacks in existing methods.

B. Proposed Attack and Defensive Training

First, this paper proposes the Ensemble and Transfer
Adversarial Attack (ETAA). This method introduces a sophis-
ticated approach for generating adversarial data to be injected
into demand data for DR application, strategically reducing de-
tectability by existing neural network-based detection methods.
The proposed ETAA method tackles the challenges related to
transferability and stealthiness present in current methodologies.
It does so by employing an ensemble strategy to minimize
disparities among various models and integrating a zero-mean
projection to enhance the stealthiness of the adversarial attack.
Next, to counteract false data generated from adversarial attacks,



Fig. 2. General framework of the proposed attack (red box) and defense (blue box) methods.

Defensive Training is introduced. This approach utilizes the en-
semble concept in model construction, incorporating processes
of noise injection and a larger probability margin. These pro-
cesses solve the issues of overfitting and help to further improve
the classification accuracy. Evaluation results demonstrate that
the ETAA method allows for a more generalized adversarial
attack with a higher success rate. Defensive Training is shown
to be effective in creating a model with superior robustness and
the ability to defend against adversarial samples compared to
benchmark adversarial training methods. The overall framework
of the proposed methods are illustrated in Fig. 2. In the normal
scenarios users provide the benign demand data to the utility
company and the data are classified by the detection model as
normal or attacked data before further DR optimization process.
The detection model is the Deep Learning network trained
by the utility company using historical data. However, there
are chances that attackers or malicious users can provide false
demand data with purposes like energy theft and disrupt normal
processing. The proposed ETAA method is highlighted in the
red box to conduct the generation of false data. To improve the
security of the DR scheme and capture these finely produced
adversarial data, the Defensive Training method is proposed and
highlighted in the blue box.

This paper makes the following principal contributions:

• This paper signifies impactful research in the analysis of
adversarial FDI attacks within the cybersecurity framework
of DR schemes.

• A generalized adversarial attack is proposed for generating
false demand data in DR schemes, demonstrating improved
transferability across various detection models, named as
Ensemble and Transfer Adversarial Attack.

• The Defensive Training is introduced to enhance the ro-
bustness of the detection model against adversarial false
data.

• Simulation based evaluation is performed to illustrate the
superior performance of both the proposed ETAA method
and Defensive Training compared to existing benchmark
methods specifically in terms of attack success rate and

classification accuracy.
The rest of the paper is organized as follows. Section II is the

methodology part to describe the details of ETAA to generate
adversarial data. Section III explains the process of Defensive
Training. Section IV presents the evaluation and comparison
results. Finally, Section V gives a summary of this paper.

II. ADVERSARIAL ATTACK

A. Adversarial False Data Injection Attack

The proposed method to perform the FDI attack is to only
change the demand data. The goal is to generate adversarial
false demand data that can bypass the detection from neural
network-based model such as the method in [9]. Note that
attacking the communication link for dropping packets or
launching denial-of-service attacks etc. is not the focus of
this paper. The conventional statistical Bad Data Detection in
power systems are not considered, as this work stands as a
pioneering effort to illuminate the susceptibilities associated
with implementing network-based FDI detection within a DR
scheme. If the demand data is falsified and used for further DR
optimization, the outcome will change and result in problems
like the power supply and demand imbalance, energy theft
and even blackouts. For example, as shown in the analysis in
[8], an adversary can achieve significant bill cost reductions
with a small amount of demand changes, e.g., 1% of demand
manipulation can lead an average of 10% bill reduction for
the attacker. The emphasis of the proposed attack method
lies exclusively on generating adversarial demand data and
assessing the performance of various network-based models
when exposed to well-tuned adversarial data. Consequently, the
goal is to design a method to fortify the model against such
adversarial challenges and to correctly capture those adversarial
false data.

Utilizing identical configurations as presented in [9], [15],
a complete day of 24 hours is divided into 48 time slots,
with each slot spanning a duration of 30 minutes. Hence, the
vector D = [d1, d2, · · · , dn] represents the collected demand



Fig. 3. Ensemble and Transfer Adversarial Attack framework.

forecasts without attacks, where n is 48. The demand forecasts
with modified false data are denoted as D̂ = [d̂1, d̂2, · · · , d̂n].
Attackers aim to increase the values at any random time slot
i, leading to d̂i ≥ di. As assessed in [7], the adversary
ensures a successful and significant cost benefit of bill reduction
by injecting values that increase by more than 0.1% of the
overall demand. Consequently, the modified demand data is
still labeled as normal (“0”) if this 0.1% increment is not met.
The demand value vector is labeled as attacked (“1”) whenever
there is at least one time slot with a value increment greater
than 0.1%. Given a network fθ responsible for classifying
the demand values D, the prediction output is denoted as
fθ(D). Furthermore, for stealthy adversarial data injection, it is
advantageous to maintain the sum of modified demand forecasts
close to the normal demand forecasts. Mathematically, the FDI
attack is formulated as:

max : D̂ (1)

subject to : fθ(D̂) = normal, (2)

:
∑

(D̂) =
∑

(D). (3)

B. Gradient AML Attacks

Gradient-based method is the most common way to generate
adversarial data where the gradient of the targeted label’s loss
with respect to the input data of a DL network is computed.
Then, the data is moved along the gradient ascent or descent
direction. The popular gradient-based methods include:

1) FGSM: Fast Gradient Sign Method is a single-step
method. The gradient is calculated with respect to the input
and the sign of that gradient is added to the data to get the
adversarial data. The formula is:

D′ = D + ϵ · sign(∇DL(fθ(D), Y )). (4)

There is an updating factor ϵ to control the amount of changes
and the loss L(fθ(D), Y ) is any loss function that takes the

input D and target label Y . Function ∇D is the general process
to get the gradients with respect to D.

2) BIM: This Basic Iterative Method is an extension of
FGSM by making the update steps to be iterative. This can
help to further modify the data to get a higher attack success
rate than singe-step modification. The formula is:

D′
i+1 = D′

i + ϵ · sign(∇D′
i
L(fθ(D

′
i), Y )). (5)

3) MIM: The Momentum Iterative Method further accumu-
lates the previous gradients before current step. The formula is:

gi+1 = µ · gi +
∇D′

i
L(fθ(D

′
i), Y )

∥∇D′
i
L(fθ(D′

i), Y )∥
, (6)

D′
i+1 = D′

i + ϵ · sign(gi+1). (7)

The momentum of the computed gradients at current i-th
iteration is gi. The percentage of the momentum gradient to
be used is controlled by the factor µ.

C. Ensemble and Transfer Adversarial Attack

In the common adversarial methods, obtaining a substitute
model for the target is typically required to generate adversarial
data. The efficacy of the attack on unseen black-box models
(where the attacker conducts the attack without the knowledge
of the target model) hinges on the transferability of the gener-
ated adversarial data. Due to disparities in the structures and
parameters of substitute and black-box models, such attacks
cannot guarantee successful outcomes. Hence, the proposal of
ETAA aims to narrow the gap in gradient directions between
the white-box model (where the attack knows complete infor-
mation about the target model) and black-box models, thereby
enhancing the transferability of generated adversarial data and
increasing the success rate of the attack.

The detailed framework of the ETAA method is shown in
Fig. 3. The input to the method is denoted as x. This value
is updated to x1 from the ensemble and transfer process in an



“update step”. At first the Cross Entropy loss is calculated for
both ensemble and transfer parts. Then the loss is summed to
further obtain the perturbations that are necessary to be added
to the data. There can be N iterations of “update step” to
produce the final adversarial data xn. Details of the compu-
tations of loss and perturbations are explained in remaining
parts. Within each “update step”, the merged gradient direction
is determined through the combination of two components: the
ensemble part and the transfer part. The ensemble part has m
selected models from a pool of diverse models. The remaining
unselected model is used in the transfer part. It is noted that
any other DL network may be selected for the model pool.
It highlights the advantage of generalization of the proposed
method. For illustrative purposes, the ETAA method utilizes a
pool of 5 models, namely Conventional Neural Network (CNN),
Multi-Layer Perceptron (MLP), Radial Basis Function (RBF),
Long Short-Term Memory (LSTM), and Gated Recurrent Unit
(GRU). These models are chosen as representatives due to their
widespread usage in deep learning networks for classification
tasks [23]. Consequently, 4 randomly selected models serve
as ensemble models, while 1 model functions as the transfer
model. Since the ETAA method is a general framework, it
is easy to implement with any gradient-based AML method.
For the remaining parts, the details of the ETAA method are
explained by using the Basic Iterative Method as an example.

1) Ensemble Part: The objective of the ensemble component
is to systematically investigate a broad spectrum of gradient
information from various established models, aiming to generate
adversarial data with greater generalization. Typically, lever-
aging a larger number of models enhances the exploration of
diverse gradient directions, contributing to an elevated transfer
attack rate. The ensemble part is designed to simulate a white-
box attack by knowing complete information of targeted models
to generate adversarial data. By employing randomly selected
ensemble models, a collective loss is computed. As shown in
Fig. 3, an input x is passed into ensemble models simultane-
ously, and the ensemble logits logitsens are obtained as:

logitsens(x) =

4∑
m=1

(wm · logitsm(x)). (8)

The logitsm(x) are the logits output from each model. Here, the
weighting factor is wm for each model and

∑4
m=1(wm) = 1.

To get the average logits of the ensemble models, wm is set to
1/4 for all models. Next, the Cross Entropy Loss is calculated:

Lens(x) = −Y · log(softmax(logitsens(x))). (9)

The loss from this ensemble part is therefore obtained as
Lens(x). At the same time, another loss is obtained from the
transfer part.

2) Transfer Part: This is the part to further improve the
gradient information searching. In this part, the remaining
model acts as the black-box model and is marked as mtf .
The input is x and the output logits of this transfer model are
logitstf (x). Next, the transfer loss is:

Ltf (x) = −Y · log(softmax(logitstf (x))). (10)

For the gradient-based attack, the data is updated by moving
along the gradient direction which has the maximized loss with
respect to the input. The total loss to compute the gradient is:

L(x) = Lens(x) + Ltf (x). (11)

Therefore, the perturbation to be applied to the input x is the
gradient of this loss with respect to the input itself:

δ = ϵ · sign(∇xL(x)). (12)

And then, the adversarial data is updated:

x1 = x+ δ. (13)

Since the ensemble models and transfer model are selected
randomly in each step, different combinations of white-box and
black models are achieved by increasing the N . By iteratively
looping through the “update step”, the gaps of the gradient
information between various models are narrowed. Therefore,
the final adversarial data xn has better attack performance in
terms of transferability.

D. Zero-mean Projection

To further craft the adversarial data, the sum of the generated
xn should be kept as close as possible to the original data
sum as shown in Equation (3). To achieve this goal, for any
time slot whose value is increased by a certain degree, there
must be values to be decreased by the same amount in other
time slots. Therefore, the perturbations δ is projected onto a
hyperplane of zero-mean before adding to x directly. The zero-
mean hyperplane is defined as the plane whose elements are
denoted as a and the average of a is zero: vTa = 0. The vector
v is another vector of the same length as a and has all ones,
and it can be seen as the normal of the zero-mean hyperplane.
Therefore, the projection of perturbation δ is:

δ′ = δ − δT v

||v||2
· v. (14)

During the “update step”, every obtained perturbation is pro-
jected to get the modified δ′. Equation (13) is also updated to
be:

xi+1 = xi + δ′. (15)

This projection process is done in each step, to ensure the
stealthiness of the generated adversarial data.

III. ADVERSARIAL DEFENSE

Since the PGD-AT method [18] is the representative work and
is regarded as the critical standard way to do the adversarial
training, this method is implemented first as an exploration
of the possible defense solutions to the adversarial attack in
DR applications. After that, a new ensemble-based adversarial
training process to further improve the general classification
accuracy and increase the true positive rate is proposed. This
method is named as Defensive Training.

PGD-AT considers minimizing the maximum loss of the
worst-case samples for a given model in adversarial training.
The BIM attack was used to create the adversarial samples to
solve the inner maximization problem. The model is trained to



be robust to adversarial samples by minimizing the outer loss.
The adversarial samples are generated using:

xt+1 = Πx+S(x
t + α · sign(∇xL(fθ(x), y))) (16)

where t is the current step and Πx+S is the projection of the
adversarial data to be bounded by x+S. S is the allowed range
of changes. Then, instead of using both adversarial and original
samples for training, PGD-AT only uses adversarial samples in
training.

A. Defensive Training

The proposed method to address the adversarial samples
contains three major processes: the random noise injection to
the input, the latent feature combination, and the probability
margin regulation. The overall process is shown in Fig. 4.

1) Noise Injection: This idea introduces a higher level of
variability in the positive samples to allow the model to learn
more latent features about them. The reason of keeping negative
samples (“normal” labeled data) unchanged is that less attention
to the variations of the negative samples is required but more
strict examination on the positive samples and their similar
copies is important. It is better to let the model classify
the data that have even minor differences from the known
positive samples to be positive as well. Thus, Gaussian noise
is selected because it is a good approximation for the natural
noise and unknown distributions. Since the samples fed into
the model have been standard scaled based on data mean and
variance, the Gaussian noise N(µ, σ2) should have the mean
µ ∈ [0, 1]. To make the noise have a narrow peak around µ, the
variance σ2 should be small. The training data after scaling is
represented as X . Motivated by the aforementioned zero-mean
hyperplane in the generation of adversarial data, both positive
noise and negative noise will be sampled from Gaussian noise
and subsequently incorporated into the positive samples. There
are a total of 48 values in X and the noise would be:

n1 = [n1,1, n1,2, ..., n1,24] ∈ N [µ, σ2], (17)

n2 = [n2,1, n2,2, ..., n2,24] ∈ N [−µ, σ2], (18)
n0 = [n1, n2]. (19)

µ is defined based on how much variability is to be given to the
values of positive samples. Next, 24 noise values are sampled
from the Gaussian distribution of mean µ and another 24 noise
values are sampled from the Gaussian distribution of mean -µ.
The variances are the same. n0 contains all the selected values
and the mean of this vector is expected to be 0. The crafted
adversarial copy Xadv of training data is:

Xadv = X + noise (20)

noise =

{
0, if Y = 0

n0, if Y = 1
(21)

where X is the original sample. Y = 0 is the case of a negative
sample and Y = 1 is the case of a positive sample. The set of
X and Xadv will be used to calculate the forward propagation
logits of a given model.

2) Features Combination: Existing ensemble-based training
methods focus on using the output directly from separate
networks to make the final classification or using data generated
from separate networks to augment the training dataset. But
it is the latent feature spaces in networks that contain more
higher-dimension information about the input data, which can
be used to make better predictions. Therefore, instead of just
adding outputs of “0” or “1” from more networks to modulate
the final classification, the latent features from different models
are utilized. In this paper, the CNN, MLP and GRU networks are
used for illustration. However, more networks are acceptable to
enhance the performance because more features are exploited by
adding other models that make the trained defense model more
robust when it encounters new data. Taking the input data to
be X during the training phase, the output after certain hidden
layers can be denoted as ψ. As Fig. 4 shows, each network
could have its own operational layers to manipulate the data
processing and each will have a dense layer to produce the
latent feature output. For CNN network, the output is ψCNN

with a length of a. Similarly, ψMLP with length of b and
ψGRU with length of c are the feature outputs from MLP and
GRU, respectively. Then, these outputs are concatenated into
a vector as ψt, and the length of ψt is d = a + b + c. This
ψt is fed into a dense layer to get the final output logits. The
loss function is derived from the logits and the parameters of
these networks are updated at the same time during the training
backpropagation. Each network uses the same loss to modify
itself, and all networks are related to the others rather than being
independent.

3) Probability Margin: Similar to general adversarial train-
ing, the Cross Entropy loss of the training data is used for
backpropagation. However, since the variant of the positive
samples from noise injection are created, the losses are:

logits = fdef (X), logitsadv = fdef (Xadv) (22)
L1 = LCE(logits, Y ), L2 = LCE(logitsadv, Y ) (23)

where fdef is the defense model to be trained and LCE is to
compute the Cross Entropy loss. Then, the total loss from the
original samples and adversarial samples is L = L1 + L2.

Besides this, a regulation factor to each L1 and L2 loss during
the forward propagation is applied. The output logits of the
defense model are passed through a sigmoid activation to get a
value p in a form of the probability in the range of [0,1]:

p = σ(logits). (24)

This p represents the probability of a given input to be a
positive sample (adversarial attacked sample). In the case of
input data to be Xadv , the output probability is denoted as
padv . To let the model be robust to variations in data and make
correct classification with higher confidence, the margin of the
probabilities made by the model should be as large as possible.
Intuitively, when the model gets the output p or padv to be
opposite to the real label, the loss corresponding to each p and
padv will be penalized more. Therefore, a regulation factor r is
introduced to each loss:

r = (1− 2 · Y ) · (P − Y ) (25)



Fig. 4. Defensive Training process.

where Y is the true label of the data and P is the probability
output of the data. For an adversarial copy of data Xadv , P
is padv and for an original data X , P is p. As Equation (25)
shows, if the output probability P is exactly the same as the
true label Y , r will be 0 which is appropriate since for a totally
confident and correct classification, the loss is 0. The smaller
the probability margin, the more loss the model would apply.
Overall, the loss function now becomes:

LT = r1 · L1 + r2 · L2 (26)
= (1− 2Y ) · (p− Y ) · LCE(fdef (X), Y )+

(1− 2Y ) · (padv − Y ) · LCE(fdef (Xadv), Y ).
(27)

In summary, the defense model is trained by computing the
custom loss in the forward propagation and updating the model
parameters based on this loss in backpropagation.

IV. RESULTS

To capture the stochastic natures of DR processes when
running the experiments, real-life data is used in this paper.
The dataset employed for the evaluation is the Pecan Street
Dataset, as utilized in [9], [15]. The energy consumption data is
extracted and aggregated from randomly selected devices from a
total of 168 houses in Austin, Texas between June and August
2017. This random choice of demand patterns from different
houses helps to overcome the limitations of data from single
house at a single time. Furthermore, to examine the performance
of ETAA, adversarial false demand data are generated based
on randomly sampled data from those demand patterns. This
implies that the attack could happen to any demand data at
any time. Existing BIM and MIM adversarial methods with
various single substitute models are also replicated for com-
parison with the proposed method. Both white-box and black-
box scenarios are simulated to show the transferability of the
adversarial data. Furthermore, the proposed defense method, in
conjunction with models trained using the PGD-AT approach, is
employed to classify adversarial data generated by ETAA meth-
ods, thereby showcasing their respective performances. This

assessment helps to evaluate the defense capabilities against
adversarial data. From the perspective of conducting attacks
on the detection model, a lower accuracy and higher False
Negative Rate (FNR) on adversarial data classification indicate
better results of attack. Other than those, two more metrics
are computed. The first metric is the Attack Success Rate
(ASR). It is the percentage of the generated “attack” class
data that has been classified to be “normal” among all the
generated adversarial data: ASR = FN

n , where n = 10000,
and FN represents the number of data falsely classified as
“normal” when they actually belong to the “attack” class. For
a more successful adversarial attack, a higher value of the ASR
is desired, indicating that a greater proportion of adversarial
instances has successfully evaded detection by the model. The
second metric is the difference in demand sums between the
adversarial demand and the normal demand. The average of
the differences for all samples are calculated and denoted
as SD. A smaller SD value signifies a greater resemblance
between the adversarial data and the original data, highlighting
the impacts of the zero-mean projection as elaborated in the
previous section.

A. Attack Results

The generated adversarial false demand data from ETAA
method are illustrated in Fig. 5. The x-axis is the 48 time
slots that equal to 24 hours and y-axis is the demand power.
Some generated adversarial false demand data are randomly
selected and plotted. They are all positive samples and labeled
as “attack”. The figure shows that the generated adversarial
attack data follows the original demand pattern and there
are more introduced false peaks between time slot 30 to 40.
Moreover, this figure demonstrates the modifications introduced
by the ETAA method, showcasing diversity in the generated
adversarial data.

1) Attack Success Rate: Table I shows all the values of ASR
when using adversarial data generated from each method to



TABLE I
THE ATTACK SUCCESS RATE (%) OF GENERATED ADVERSARIAL DEMAND DATA

No. Method Substitute Model White-box Models Black-box Models
CNN MLP RBF LSTM GRU Average CNN-E MLP-B GRU-B Average

1 CNN 69.72 19.33 16.97 35.45 34.00 35.09 19.44 25.38 27.85 24.22
2 MLP 14.83 44.10 16.45 24.00 23.38 24.55 12.21 24.27 22.43 19.64
3 BIM RBF 52.21 66.88 87.49 72.53 76.3 71.08 57.32 71.08 72.81 67.07
4 LSTM 22.12 15.8 11.94 64.86 31.76 29.30 7.32 18.99 30.41 25.01
5 GRU 23.13 22.62 20.43 45.38 58.52 34.02 17.01 32.51 32.61 32.10
6 CNN 99.39 11.72 8.52 36.70 33.17 37.90 13.27 14.93 26.53 18.24
7 MLP 11.53 58.32 14.05 25.52 22.92 26.47 9.15 19.68 22.42 17.08
8 MIM RBF 53.96 71.61 96.26 82.08 85.45 77.87 60.09 77.61 82.33 73.54
9 LSTM 28.50 22.86 22.03 95.19 67.21 47.16 11.69 30.96 60.89 34.51

10 GRU 29.07 23.35 22.07 79.16 98.88 50.51 12.02 35.73 60.41 36.05
11 ETAA with BIM - 88.36 88.28 87.43 88.56 88.53 88.23 56.23 80.09 85.08 73.8
12 ETAA with MIM - 91.24 91.35 89.31 91.72 91.81 91.12 57.29 83.2 87.68 76.06

Fig. 5. Some ETAA generated adversarial samples.

attack white-box and black-box detection models. The high-
est ASR value under each setting is made bold. It can be
seen that the highest average ASR for both white-box and
black-box settings are obtained using the ETAA method with
MIM updating process. The highest average white-box ASR
is 91.12% and the highest average black-box ASR is 76.06%.
It is expected to see almost all independent MIM methods
to have highest ASR when executing the white-box attacks
because the generated adversarial data are finely crafted using
the identical detection model as the substitute model. However,
the ETAA can also obtain the highest ASR of 91.35% when the
detector model is MLP. In the black-box scenario, where the
detection model differs in layer structure and parameters from
the substitute model, ETAA with MIM process achieves the
highest ASR of 83.2% for MLP-B and 87.68% for GRU-B. This
underscores the versatility of the ETAA method in generating
adversarial data for external models. The ensemble and transfer
components in ETAA contribute to minimizing differences in
gradient directions among various models, ensuring enhanced
attack transferability of the generated adversarial demand data.

Specifically, Table II shows the summarized results of gen-
erated adversarial data attacking against black-box models. The

metrics under BIM and MIM methods are averaged to provide
the direct comparison that shows the advances of the proposed
method. The lowest accuracy, highest ASR and highest FNR are
made bold, which correspond to the most successful adversarial
attack on black-box models. It is seen that the method outper-
forms the BIM and MIM methods in generating the adversarial
false demand data against the detection models with higher
success rate to mislead the models, with the lowest accuracy of
23.4%, highest ASR of 76.06%, and highest FNR of 83.04%.

TABLE II
THE ADVERSARIAL ATTACK RESULTS IN BLACK-BOX SETTING

Method Accuracy(%) ASR(%) FNR(%)
BIM 51.10 33.63 46.45
MIM 63.52 35.88 36.39

ETAA-BIM 25.04 73.80 83.04
ETAA-MIM 23.40 76.06 82.72

2) Difference in Sum of Demand: Table III shows the results
of SD values of each method, with the smallest value made bold.
The ETAA with MIM process has the smallest value of 9.49kW
and the ETAA with BIM process has a comparable value of
9.84kW. This shows that the projection of perturbations to
the zero-mean hyperplane can help to constrain the adversarial
data to have the smallest changes in the sum of demand data,
and thus to ensure the stealthy attack. It can be noted that
although the MIM process with a substitute RBF model can
achieve the highest ASR of 60.09% when attacking the black-
box CNN-E model, the SD value is much larger than the ETAA
method. Therefore, from the results, it can be concluded that
the ETAA method is able to generate adversarial data that has
higher attack transferability while also allowing the attack to be
imperceptible.

Moreover, the relationship between values of SD and ASR in
both white-box and black-box settings are displayed in Fig. 6
and Fig. 7. The legend number corresponds to the No. in Table
I and Table III for an easier visualization. In both Fig. 6 and Fig.
7, the 1st, 2nd, 6th and 7th cases get the relatively small values
for SD about 50kW. However, their corresponding ASR values
are still smaller compared to the others. This demonstrates
that achieving a smaller SD for adversarial false data through
existing methods does not necessarily guarantee a more success-
ful adversarial attack. The effective exploitation of underlying



TABLE III
THE SUM DIFFERENCE (KW) OF GENERATED ADVERSARIAL DATA

No. Method Substitute Model SD(kW)
1 CNN 43.33
2 MLP 56.84
3 BIM RBF 63.67
4 LSTM 234.17
5 GRU 192.66
6 CNN 55.91
7 MLP 35.09
8 MIM RBF 55.71
9 LSTM 346.09
10 GRU 353.33
11 ETAA with BIM - 9.84
12 ETAA with MIM - 9.49

Fig. 6. Correlation between SD and ASR in white-box setting.

Fig. 7. Correlation between SD and ASR in black-box setting.

demand data characteristics is crucial for generating successful
adversarial data, an aspect in which the proposed method has
proven its proficiency. The adversarial data generated by ETAA
exhibits superior performance in attacking detection models, as
evident in both the ASR and SD values.

B. Defense Results

To comprehensively analyze how different levels of injected
Gaussian noise influence the performance and robustness of
the defense method, means of 0.2, 0.5, and 0.8 are applied.
These values help to a wide range of possible noises. By
introducing these varying noise levels, the method’s ability to
maintain accuracy and reliability under diverse and challenging
conditions is evaluated. The Defensive Training models trained
from those mean values are denoted as DT−0.2, DT−0.5 and
DT−0.8. Additionally, the comparison between separate black-
box detection models trained using the benchmark PGDAT
method and the proposed approach is conducted. The learning
curve of the proposed Defensive Training method is shown
in Fig. 8. The selection of Gaussian mean does not exert a
significant impact on the training loss and accuracy of the
training dataset. However, it does result in increased fluctuations
in the accuracy of the validation dataset. Nevertheless, the plots
illustrate that the proposed training method has converged ef-
fectively to obtain high validation accuracy using the improved
loss function.

1) Trained Models: The performance of trained detection
models are summarized in Table IV. The metrics indicate
that the detection model generated by the proposed method
exhibits comparable performance to the model derived from an
existing method. It effectively predicts regular demand data in
the absence of adversarial input, demonstrating high accuracy.
Thus, in common scenarios, the proposed method’s model can
continue to operate reliably.

2) Defense against Adversarial Data: Table V shows the
results when the adversarial data generated from the ETAA
method is used to attack the new models. The best value of
each metric is made bold. The accuracy denotes the overall
classification accuracy of predictions on adversarial data, and
a higher accuracy is indicative of better performance. From a
defensive standpoint, a lower ASR is preferred as it signifies
a more effective detection model. The proposed defensive
training, incorporating a noise mean of 0.2, achieves the highest
accuracy at 78.28%, surpassing the CNN-PGDAT accuracy
of 76.27% by 2%. This indicates this model’s proficiency in
correctly classifying a significant number of both positive and
negative samples. In terms of ASR, the defensive training model

TABLE IV
PERFORMANCE OF DETECTION MODELS ON CLEAN TEST DATA

Model Accuracy(%) Precision(%) Recall(%) F1(%)
CNN-PGDAT 97.93 95.47 64.78 77.18
MLP-PGDAT 97.87 94.63 64.13 76.45
GRU-PGDAT 97.89 92.85 65.89 77.08

DT-0.2 97.88 91.18 67.33 77.43
DT-0.5 98.01 94.12 67.72 78.50
DT-0.8 98.02 94.82 66.94 78.47



TABLE V
ATTACK RESULTS ON DEFENSIVE MODEL

Model Accuracy(%) ASR(%) Precision(%) Recall(%) FNR(%) TN FP FN TP
CNN-PGDAT 76.27 21.55 96.99 76.53 23.42 579 218 2155 7048
MLP-PGDAT 61.28 37.47 97.76 59.29 40.72 672 125 3747 5456
GRU-PGDAT 67.16 30.92 96.95 66.40 33.59 605 192 3092 6111

DT-0.2 78.28 18.14 95.43 80.29 19.71 438 360 1814 7390
DT-0.5 70.41 26.90 96.03 70.77 29.23 529 269 2690 6514
DT-0.8 54.76 43.80 97.08 52.41 47.59 653 145 4380 4823

Fig. 8. Model loss and accuracy during the defensive training phase.

Fig. 9. Scatter plot of precision and recall when facing adversarial data.

records the lowest value at 18.14%, showing its ability to
identify more positive samples. The number of missed faults is
another important value and the FNR indicates the performance
of actual positives that are incorrectly identified as negatives.
From this table, the proposed method with noise mean of 0.2
obtains the lowest FNR of 19.71%. It shows that the proposed
Defensive Training has the smallest number of missed positives.
The noise injection and the feature concatenation processes
have successfully captured the underlying characteristics of
any attack data and classified them correctly. Additionally, the
notable recall of 80.29% underscores the proposed method’s
capability to accurately identify adversarial data. The highest

precision, at 97.76%, is achieved by the MLP-PGDAT model,
representing the percentage of true positives among detected
positives. However, this model demonstrates lower overall accu-
racy and higher ASR, indicating worse performance in correctly
classifying adversarial data. In addition, the proposed method
can obtain a precision value of 97.08%, which is close to the
highest value. In summary, the proposed method outperforms
the other methods with increased accuracy and reduced ASR,
highlighting the success in defending against the adversarial
false data.

Moreover, Fig. 9 depicts the relationship between precision
and recall, providing a clear understanding of the trends. The
plot highlights a trade-off inherent in the proposed Defensive
Training method: as the noise mean value increases, precision
rises while recall decreases. Conversely, with a smaller noise
mean value, precision decreases while recall increases. When
the mean of the noise increases from 0.2 to 0.8, the precision
exhibits an increase of 1.65%, whereas the recall experiences
a substantial decline of 25.88%. Moreover, there is a notable
decrease in accuracy, dropping significantly from 78.28% to
54.76% as the mean noise is raised from 0.2 to 0.8. If the
noise mean is too high, the model may start to overfit to the
noise rather than learning the underlying patterns in the data.
This could result in poor generalization to unseen adversarial
data. Therefore, the selection of this parameter hinges on the
objective of obtaining more precisely classified attacked data or
identifying a greater number of potential adversarial instances.

V. CONCLUSION

In conclusion, the integration of DR schemes into smart grids
represents a pivotal aspect of modern cyber-physical systems.
These schemes, designed to align power supply with demand
and optimize energy efficiency, are susceptible to emerging



cyber threats, particularly FDI attacks where demand data are
manipulated. Thus, this study presents a multifaceted approach
to enhance the security related to the defense against FDI attacks
in DR. The ETAA method is introduced, leveraging AML tech-
niques to generate adversarial data for injection into DR demand
data. ETAA addresses challenges related to transferability and
stealthiness by employing ensemble and transfer strategies and
zero-mean projection. Simulations of the attacks have demon-
strated that ETAA enhances attack transferability and yields a
higher attack success rate. Furthermore, the Defensive Training
method, incorporating noise injection, feature combination, and
a regulated probability is introduced as means to safeguard
the model against adversarial data. The model trained using
the proposed method attains higher classification accuracy and
successfully identifies more true adversarial data compared to
the benchmark method. The innovative nature of the proposed
solutions positions this work as a key contributor in paving the
way for the secure and widespread implementation of Demand
Response in the evolving landscape of smart grids.
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