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Abstract—With the expected explosion in the number of de-
vices in the Internet-of-Things (IoT), the availability of spectrum
for these devices to connect to the network is a challenging
problem. A possible solution to this problem is the use of op-
portunistic machine-to-machine (M2M) communications where
IoT devices exploit idle periods of primary users (i.e. users with
higher priority on spectrum usage) to transmit their data. The
feasibility of such opportunistic M2M communication depends
on the temporal characteristics of the availability of unused
spectrum. Considering the unlicensed bands where Wi-Fi devices
are the primary users, we present a BMAP/G/1/nK queue
based model to characterize the duration and frequency of the
periods available for opportunistic M2M communications. Our
results show that M2M devices may co-exist with W-Fi networks,
and even in Wi-Fi networks with high loads, there are adequately
long and frequent idle periods that can be used to support
opportunistic M2M communications.

Index Terms—Wi-Fi, white spaces, M2M communications, IoT.

I. INTRODUCTION

Spectrum is a scarce and expensive resource in wireless
communication. Current efforts aimed at developing access
technologies for M2M communications consider the use of
both licensed and unlicensed spectrum. Solutions being pro-
posed and implemented in the licensed spectrum for M2M
devices include efforts such as those by 3GPP (3rd Gener-
ation Partnership Project) for LTE (Long Term Evolution) to
allow large scale M2M communication [1]. However, licensed
spectrum based access technologies may not be cost-effective
for many scenarios and thus they have not achieved wide-
spread acceptance by the industry as well as the research
community. On the other hand, unlicensed spectrum such as
the ISM (industrial, scientific and medical) bands are free of
licensing costs. However, there is a proliferation of devices
and technologies such as Wi-Fi, ZigBee and Bluetooth in
these bands and thus it is expected that the implementation
of M2M communication technologies in these bands will face
challenges related to interference, spectrum management, and
co-existence. However, even though existing unlicensed ISM
bands in most places are usually already occupied by devices
(e.g. Wi-Fi), these devices may not be active at all times
and such bands are occasionally heavily underutilized, even in
urban areas [2]. In this paper we study the possibility of using
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unlicensed ISM bands for opportunistic M2M communication
in presence of other technologies, with specific focus on Wi-Fi.
The objective of this paper is to develop an analytic model to
characterize the duration and frequency of appearance of silent
periods in Wi-Fi networks that may be used for opportunistic
M2M communications. The model and its results are expected
to serve as validation of the feasibility of opportunistic M2M
communication and facilitating the development of practical,
opportunistic MAC protocols for M2M devices.

In the notion of opportunistic communication considered
in this paper, users are classified in two groups: primary and
secondary. Primary (Wi-Fi) users are given first priority for
using the spectrum and when the primary users are idle, i.e.,
when the spectrum is unused, secondary (M2M) users may
use the spectrum for opportunistic communication. Thus the
performance of primary users is not affected and the overall
network utilization is increased. We call the periods when
the spectrum is unused as the “white spaces”. Whether these
white spaces are useful for opportunistic communication or
not depends on their statistical characteristics, such as their
frequency of occurrence, the duration of white spaces, and the
time between two successive occurrences of white spaces. For
opportunistic M2M communication to be feasible, there should
be white spaces that are adequately long and such white spaces
should occur sufficiently frequently. To evaluate the feasibility
of opportunistic M2M communication, this paper develops an
analytic model for statistically characterizing the white spaces
when the primary users are Wi-Fi devices.

While various technologies such as Bluetooth, ZigBee and
Wi-Fi are the common occupants of the ISM bands, Wi-Fi
is the most prevalent. Not only is its coverage range larger
that the others, it also offers higher data rates and Wi-Fi is
often the preferred means of network access in homes and
offices. Consequently, this paper assumes that the primary
users of the ISM band use Wi-Fi for their channel access.
With Wi-Fi devices as the primary users, the white spaces are
the times when none of the Wi-Fi nodes in the network have
any data to transmit. If Wi-Fi devices have packets to transmit
in their medium access control (MAC) layer queues and are
thus engaged in their channel access mechanism, the M2M
nodes refrain from transmissions as they may interfere with
the backoff or transmissions of Wi-Fi nodes.

To evaluate the feasibility of opportunistic M2M communi-
cation in the presence of Wi-Fi traffic, this paper develops an
analytic model to characterize the statistical properties of the
white spaces. The model is based on characterizing the activity
of the Wi-Fi network using a queueing model and modeling the
white spaces as the periods when the queue is empty. Using the
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versatile batch Markovian arrival process (BMAP) to model
the arrivals at the Wi-Fi nodes, we use a BMAP/G/1/nK
queue to model the behavior of the aggregate network. The
model presents closed form expressions for the length of white
spaces, number of white spaces per unit time, the fraction
of time the channel is idle, and the expected length of busy
periods for a Wi-Fi network with both downlink and uplink
traffic. The accuracy of the proposed model has been verified
using extensive simulations. Our results show that even at
high loads (e.g. network load of 0.9) white spaces occur
frequently (more than 100 per second) and are sufficiently
long (longer than 1 ms) to accommodate opportunistic M2M
communications.

The rest of the paper is organized as follows. Section II
presents the related work and Section III presents the model
for characterizing white spaces in Wi-Fi networks. Section IV
presents simulation results to verify the proposed model and
discusses the application of our model for developing oppor-
tunistic protocols for M2M communication. Finally, Section
V concludes the paper.

II. RELATED WORK

Channel access mechanisms for M2M communication in-
troduce a number of challenges including those of scalability,
spectrum usage and co-existence, and quality of service issues
[3]. A majority of the existing work is focused on the use
of dedicated spectrum for M2M communications, including
both licensed and unlicensed bands [4], [5], [6], [7]. M2M
communications based on exploiting unused spectrum and
the use of cognitive protocols have been proposed in [8],
[9]. Unlike this paper’s focus on the ISM bands and Wi-
Fi networks, the cognitive protocols in [8], [9] are based on
exploiting TV white spaces. These protocols require advanced
antenna system for their operation and users are informed
about unused resources by centralized controllers.

Along the lines of this paper where the objective is to model
the white spaces in Wi-Fi network for opportunistic M2M
communications, a model for Wi-Fi white spaces is presented
in [10] for exploitation by ZigBee applications. The model
presented in [10] is empirical and obtained by analyzing traffic
traces collected under lightly loaded network conditions. This
model may not be valid in scenarios such as offices, or homes
with streaming multimedia traffic where Wi-Fi access points
are considerably loaded. Additionally, the white spaces are
modeled as a Pareto distribution in [10], and can only consider
white spaces longer than 1 ms. In contrast, this paper considers
more realistic network scenarios and can accommodate heavily
loaded networks. In [11] and [12], a simplistic model for Wi-
Fi white spaces is developed that only considers the downlink
traffic from the access point (AP) to the nodes. In this model,
there are no collisions in the Wi-Fi network and the AP
can transmit without any competition for channel resources
since the Wi-Fi devices do not send any packets. In contrast,
this paper considers both uplink and downlink traffic in the
Wi-Fi network. The presence of uplink traffic changes and
complicates the model since we now have collisions and the
resulting backoffs in the network, and the characteristics of
the white spaces change significantly.

Finally, we note that unlicensed ISM bands may be used by
heterogeneous devices and access technologies, and existing
literature has investigated their coexistence under various
scenarios. A MAC protocol that detects idle times in Wi-
Fi transmissions and uses them for ZigBee transmissions is
proposed in [10]. In [13] a mechanism for ZigBee transmis-
sions is proposed where ZigBee devices periodically mute
Wi-Fi devices by broadcasting fake-PHY preamble headers.
In [14] the authors propose a method for sending clear-to-
send (CTS) messages from an access point to block Wi-
Fi transmission so that ZigBee devices can complete their
communication cycles. These protocols do not utilize existing
Wi-Fi white spaces; rather, they block the Wi-Fi traffic to
facilitate M2M communication. Also, these protocols do not
provide any characterization or insights into the duration and
frequency of the white spaces. The objective of this paper is
to address the problem of characterizing the white spaces in
a Wi-Fi network, evaluate their feasibility for opportunistic
M2M communications, and provide insights that can facilitate
more efficient use of Wi-Fi white spaces.

III. MODEL FOR WI-FI WHITE SPACES

The white spaces in a Wi-Fi network correspond to the
times when there are no transmissions in the network. The
medium in a Wi-Fi network is idle when none of the nodes
in the network have any packets to transmit, or when the
transmissions are stifled due to the IEEE 802.11 protocol (e.g.
when nodes are in backoff, short interframe spaces (SIFS)
and distributed coordination function interframe spaces (DIFS)
periods). The IEEE 802.11 protocol induced periods of silence
are fairly short (of the order of few tens of micro-seconds)
and not long enough to be utilized for opportunistic M2M
communications. Consequently, our model only considers the
idle times that occur when the MAC layers queues at all the
devices (i.e. nodes and AP) in the network are empty.

To evaluate the distribution of the white spaces, this section
presents a model that characterizes the states of the MAC
layer queues of the devices in the Wi-Fi network. We consider
a Wi-Fi network with n nodes: one AP and n − 1 users.
The (uplink) traffic generated at each node as well as the
(downlink) traffic at the AP are modeled as batch Markovian
arrival processes. Unlike simple arrival processes such Poisson
processes, BMAPs can effectively account for batch arrivals.
In addition, BMAPs can model dependent inter-arrival times,
non-exponential inter-arrival times, and correlations in the
batch sizes. BMAPs have also been shown to accurately model
a wide range of traffic including voice, video and long range
dependent traffic [15]. Note that arrival processes such as
phase type processes, Markov modulated Poisson processes
(MMPPs), and interrupted Poisson processes are special cases
of BMAPs.

While the traffic arrivals at the devices are independent,
their service process (i.e. the transmissions) are correlated
because they share the medium as per the rules of the IEEE
802.11 MAC protocol. Since a white space corresponds to the
time when the queues at all the devices are empty, we model
the activity of the entire network using a single, finite buffer
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queue. The model uses BMAPs to account for the arrivals at all
the devices, and a general service time distribution h(t) (based
on the behavior of the IEEE 802.11 MAC protocol) with
mean 1

µ . The buffer size at each of the nodes and the AP is
assumed to be K packets. The model has a single server since
in a shared medium controlled using the IEEE 802.11 MAC
protocol, only one node may successfully transmit at any time.
Thus, we model the overall system using a BMAP/G/1/nK
queue and this section obtains the distributions necessary to
obtain the steady-state distribution of the queue length, and
uses it to characterize the white spaces. Also, in this paper we
assume that all packet losses are caused by collisions and there
are no channel errors. This is to keep the analysis tractable and
focus our attention on the MAC layer behavior.

A. Arrival Model

This paper uses BMAPs to model the traffic arrival process
at each device in the network due to their versatility. A BMAP
is a continuous-time Markov chain with an arbitrary number
of states, m, and an irreducible underlying Markov process,
and we denote its infinitesimal generator, D, using a m×m
matrix [16]. In each state, the sojourn time is exponentially
distributed with parameter λi, with λi ≥ −Dii. At the end of
a sojourn time, the process transitions from the current state
i to state j and that transition may or may not correspond to
an arrival epoch. The transition to state j occurs without an
arrival with probability pi(0, j), 1 ≤ j ≤ m, j 6= i and with
probability pi(k, j), k ≥ 1, 1 ≤ j ≤ m, the transition to state
j comes with a batch arrival of size k. We have,

m∑
j=1
j 6=i

pi(0, j) +

∞∑
k=1

m∑
j=1

pi(k, j) = 1. (1)

A BMAP can then be represented using a set of matrices
Dk, k ≥ 0 which are defined as

(D0)ii = −λi, 1 ≤ i ≤ m,
(D0)ij = λipi(0, j), 1 ≤ i, j ≤ m, j 6= i,

(Dk)ij = λipi(k, j), k ≥ 1, 1 ≤ i, j ≤ m,

with
∑∞
k=0Dk = D. We denote the stationary distribution of

this Markov process by π and it is given by

πD = 0, πe = 1,

where e is an unit column vector of dimension m. The average
arrival rate λ for the BMAP is then given by,

λ = π

∞∑
k=1

kDke. (2)

The matrix generating function of the BMAP arrival process
is given by

D(z) =

∞∑
k=0

Dkz
k, for|z| ≤ 1. (3)

The arrival process at each node and the AP is modeled
as an independent BMAP with generator matrix D(l), 1 ≤
l ≤ n, with D(n) representing the arrival at the AP and D(l),

1 ≤ l ≤ n − 1, representing the arrivals at the nodes. The
aggregate arrival process in the network is the superposition
of the n BMAPs and this aggregate process is also a BMAP.
The generator matrices for the aggregate process are given by

Dk = D
(1)
k ⊕D

(2)
k ⊕ · · · ⊕D

(n)
k , ∀k = 0, 1, 2, · · · (4)

where ⊕ denotes the Kronecker-sum, defined as

A⊕B = (A⊗ IB) + (IA ⊗B),

and ⊗ represents the Kronecker-product, defined as

A⊗B =

a11B a12B · · · a1mB
...

...
. . .

...
an1B an2B · · · anmB

 .
The interested reader is directed to pages 2-4 of [16] for an
excellent tutorial on BMAPs.

B. Service Time Distribution

In this section we obtain the service time distribution of
packets in the Wi-Fi network. Since we are modeling the entire
network as a single queue, the service time is defined as the
time required by the network to transmit a packet, irrespective
of the device which transmits the packet. In this queueing
model for the network, the service time starts as soon as a
packet is transmitted (assuming at least one of the devices in
the network has packets to send) and ends when a packet is
successfully transmitted in the network. The service time of a
packet thus comprises of protocol related times such as DIFS,
SIFS and back-off intervals, time spent in collisions, as well
as the time taken to transmit the data and acknowledgment
(ACK) packets in the channel. We next present a detailed
derivation of the service time in the Wi-Fi network. The
analysis proceeds in two steps. First we consider the individual
queue at each device in the network. Next we use parameters
from the individual queues to develop a model that considers
the entire network as a single queue and thereby calculate the
distribution of the white spaces.

In the Wi-Fi network, when a node generates an uplink
packet to be sent or the AP receives a downlink packet to
be forwarded to the nodes, the packet enters the MAC layer
queue at the respective device. The devices then contend for
the channel using IEEE 802.11’s CSMA/CA protocol [17].
As per this protocol, a node first senses the channel before
transmitting. If the channel is sensed idle for the duration of a
DIFS period, the node can immediately transmit the data (or
RTS) packet. However, if the channel is observed to be busy,
the device goes into backoff. The discrete-time, exponential
backoff mechanism in Wi-Fi works as follows: If the channel
is sensed to be busy, it initializes a backoff counter, BC, with
a random integer value uniformly distributed between 0 and
CWmin−1 (called the contention window). This value of the
backoff counter is denoted by

BC = U [0, CWmin − 1] (5)
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where U [a, b] denotes a discrete uniform random variable
between a and b. The backoff counter is in units of back-
off slots and is decremented whenever the channel is ob-
served to be idle, and frozen when the channel becomes
busy. A node may proceed with a transmission when the
backoff counter reaches 0. In case the transmitted packet
experiences a collision, the contention window is doubled to
[0, 2CWmin − 1] and BC is re-initialized with a random
value within this window. In case of successive collisions,
the contention window keeps doubling till it reaches an upper
limit denoted by CWmax. Thus, the upper limit on the con-
tention window after γ unsuccessful transmission attempts is
given by: min {CWmax − 1, 2γCWmin − 1}. Once a packet
is successfully transmitted, the contention window is reset to
[0, CWmin − 1].

Let the probability that a transmission attempt by node u
is unsuccessful, i.e., the probability of a collision be denoted
by pu for 1 ≤ u ≤ n. pu is a conditional probability and
represents the probability of collision of a packet that is
being transmitted. As in existing literature, we assume that
the collision probability is independent of the node’s backoff
stage [18], [19]. Consider an arbitrary packet at node u that
is contending for transmission. Then, the probability mass
function (pmf) of the upper limit on the contention window,
CW is given by

P (CW =W ) =

{
pγ−1u (1− pu), for W = 2γ−1CWmin−1
pru, for W = CWmax − 1

(6)
where r = log2(CWmax/CWmin) and 1 ≤ γ ≤ r [19]. The
probability that the back-off counter for the packet takes on a
value x, BC = x, 1 ≤ x ≤ CWmax, is then given by [19]:

P (BC = x) =



[∑r−1
γ=0

pγu(1−pu)
2γCWmin

1 ≤ x ≤ CWmin

+
pru

CWmax

][∑r−1
γ=y

pγu(1−pu)
2γCWmin

2y−1CWmin + 1 ≤

+
pru

CWmax

]
x ≤ 2yCWmin

pru
CWmax

2r−1CWmin + 1 ≤
x ≤ CWmax

(7)
where 1 ≤ y < r. The collision probability at any node u
can be expressed in terms of the average backoff window.
In the saturated traffic case where each packet is backlogged
immediately, each packet starts out with a contention win-
dow of [0, CWmin − 1]. The transmission is successful with
probability 1 − pu and the average number of backoff slots
experienced such a packet is (CWmin−1)/2 . With probability
pu(1 − pu) the first transmission fails and the packet is
successfully transmitted in second attempt (using a contention
window of [0, 2CWmin − 1]) and the average number of
backoff slots in the second attempt is (2CWmin − 1)/2.
Proceeding along these lines for packets that need further
attempts before they are successfully transmitted, the average
number of backoff slots experienced by packets at node u is

given by [19]:

Wu = (1− pu)
CWmin − 1

2

+pu(1− pu)
2(CWmin − 1)

2
+ · · ·

+pru(1− pu)
2r(CWmin − 1)

2

+pr+1
u

2r(CWmin − 1)

2

=
1− pu − pu(2pu)r

1− 2pu

CWmin − 1

2
. (8)

While the equation above assumes saturated traffic conditions
at each node, it may also be used for relating the collision
probability to the average window size for non-saturated cases
with a slight modification. When the devices in the network
have non-saturated traffic conditions, arrivals at a node with an
empty queue may be transmitted immediately if the channel
is idle, and thus it is not necessary that all packets experience
backoff at least once. Let ρu, 1 ≤ u ≤ n, denote the utilization
of the queue at node u. Then the average number of backoff
slots experienced by an unsaturated node is approximated as
ρuWu to compensate for the times when the packets do not
experience any back-off.

The arrival process at each node is a BMAP and we denote
the average packet arrival rate at node u by λu, as given by
(2). Also, we denote the the packet service rate of node u
by µu packets per unit time and the queue utilization at a
node is then given by ρu = λu/µu. To evaluate the collision
probability experienced by the packets at a node, we consider
a tagged node that transmits in a given slot. This transmission
from the tagged node experiences a collision if one or more
of the remaining n − 1 nodes also transmit in this slot. Let
P (SE)j denote the probability that node v does not transmit
in an arbitrary slot. Then the probability that the transmission
from the tagged node (say node u) experiences a collision is
given by

pu = 1−
n∏
v=1
v 6=u

P (SE)v. (9)

Note that the expression above uses the commonly used
decoupling approximation which assumes that the decision to
transmit or not in a slot by a node is independent of similar
decisions by other nodes [18], [19]. We use the notation QE to
denote “queue empty” and QNE to denote “queue not empty”.
P (SE)u is then given by

P (SE)u = P (SE|QE)uP (QE)u + P (SE|QNE)uP (QNE)u

= 1 · (1− ρu) + ρuP (SE|QNE)u.

In the expression above, P (SE|QE)u = 1 since if a queue
is empty, it does not transmit. Also, the probability that the
queue at node u is empty is given by P (QE)u = 1−ρu. Now,
a queue may be non-empty in a slot due to two reasons: it is
backlogged with packets or if the queue started off as empty
but a packet arrived during the slot. Of these, the probability of
the second case is quite small since we are only interested in
stable queues (i.e. with bounded arrival rates) and the duration



5

of a backoff slot is orders of magnitude smaller than packet
transmission times. Since the probability that backlogged node
u transmits in an arbitrary slot is 1

Wu
, the probability that it

does not transmit in a slot is Wu−1
Wu

. Then, P (SE|QNE)u

can be approximated by Wu−1
Wu

. We then have,

P [SE]u = 1− ρu + ρu
Wu − 1

Wu

= 1− ρu

Wu

. (10)

Combining (8),(9) and (10), the conditional collision proba-
bility at node u is given by

pu = 1−
n∏
v=1
v 6=u

(
1− ρv

(
1− 2pv

1− pv − pv(2pv)r
2

CWmin − 1

))
.

(11)
To evaluate the pu’s using the expression above, we need to
obtain the utilization at each node, which in turn depends on
the average service time at each node. To evaluate the average
service time at node u, we first note that each packet at the
node, on average, spends ρuWu slots in backoff. Also, due to
the long term fairness of the exponential backoff mechanism,
on an average

∑n
v=1,v 6=u ρv transmissions from other nodes

occur between two transmissions from tagged node u. These
transmissions add

∑n
v=1,v 6=u ρvTs,v seconds to the service

time at node u, where Ts,v is the average transmission
time of a packet at node v. Also, each packet transmission
attempt by node u results in a collisions with probability
pu. Then, before a packet is successfully transmitted, on an
average it experiences pu/(1 − pu) collisions. Similarly, the
average number of collisions experienced by the transmissions
from other nodes is

∑n
v=1
v 6=u

ρvpv/(1 − pv), and these add∑n
v=1
v 6=u

ρvTc,vpv/(2(1 − pv)) seconds to the service time of

the tagged packet at node u. Here, Tc,v denotes the expected
duration of a collision at node v and the factor of 2 in the
denominator reflects the first degree approximation that each
collisions involves only two nodes. Adding all the contributing
components, the expected service time at node u is given by

1

µu
=

n∑
v=1
v 6=u

ρvTs,v +

n∑
v=1
v 6=u

ρvTc,v
pv

2(1− pv)
+ ρuWuδ

+ Ts,u + Tc,u
pu

2(1− pu)
(12)

where Wu is given by (8) and δ is the duration of a backoff
slot. Using ρu = λu/µu in the expression above and rearrang-
ing the terms, we get,

ρu =

∑n
v=1
v 6=u

ρv

(
Ts,v + Tc,v

pv
2(1−pv)

)
+ Ts,u + Tc,u

pu
2(1−pu)(

1
λu
−Wuδ

) .

(13)
The values of ρu and pu, 1 ≤ u ≤ n, can then be obtained by
solving (11) and (13) simultaneously.

C. Network Model: Aggregate Queue

The white spaces in a Wi-Fi network are defined as instances
when the Wi-Fi network is idle and in our model, these
correspond to the instances when the MAC layer queues of
all nodes in the network are empty. Since each node in the
network has BMAP arrivals and a finite buffer space of K,
they may be modeled as a BMAP/G/1/K queue. Let p0u
denote the probability that the queue at node u is empty at an
arbitrary instant with

p0u = 1− ρu. (14)

Then an approximation of the probability that the system is
idle, p0, is given by

p0 =

n∏
u=1

p0u. (15)

This approximation may be inaccurate in many scenarios since
the operation of the queues at the nodes is not independent.
The nodes share a common medium and the transmissions
from one node affect the service times, and thus the queue
length distributions of other nodes. To develop a more accurate
characterization of the probability that the system is idle and
use it to develop a model for the white spaces, we now present
a model that looks at the combined behavior of all nodes in
the network.

To model the combined behavior of all the nodes, the
operation of the network is modeled using a single queue.
The arrivals at this queue correspond to the aggregate of the
arrivals at all nodes. As discussed in Section III-A, the arrival
process at each node is modeled as an independent BMAP
and the aggregate arrival process considering the arrivals at
all nodes is given by the superposition of n BMAPs, which
in turn is also a BMAP as given by (4). The service time
of the aggregate queue corresponds to the time between two
consecutive successful transmissions in the network (irrespec-
tive of the nodes that transmit the packets) for cases when
a successful transmission leaves behind a non-empty system.
For example, if node u completes a successful transmission
at time t1 and the next successful transmission in the network
is completed by node v at time t2, the service time for the
packet in the aggregate queue is considered as t2− t1. In case
a transmission leaves behind an empty system, the service
time is the duration from the next arrival to the system and
the first subsequent successful transmission. Since each node
in the network is assumed to have a buffer of size K, the
buffer space of the aggregate queue is taken to be nK. This
approximation does does not affect the accuracy of the model
for the white spaces since white space calculations are largely
unaffected by packet loss rates. Finally, since only one packet
may be successfully transmitted in the network at any time,
the aggregate model for the network models the system using
a BMAP/G/1/nK queue.

To model the service time distribution of the aggregate
queue, we consider the possible events between two successful
transmissions. After a successful transmission in the network,
there are two possibilities: either the aggregate queue becomes
empty (AQE) (i.e. none of the nodes in the network has
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any packet to send) or it is not empty (AQNE) (i.e. at least
one node has a packet to send). If the aggregate queue is
empty, this marks the beginning of a white space. The white
space ends with the arrival of the first packet in the net-
work (irrespective of the node) and this packet is transmitted
immediately since the channel is idle. This packet does not
experience a collision because the probability of arrival events
at two or more nodes at the same instant is zero. On the
other hand if the aggregate queue is not empty, one or more
nodes in the network have packets to send and these nodes
resume their backoff process. A transmission attempt is made
in the network after one (or more, in case of identical backoff
counters) of the nodes decrements its backoff counter to zero.
Since nodes unfreeze their backoff counters and resume their
backoff, we call the number of backoff slots till the first node
decrements its counter to zero as the residual backoff. Also,
let Ts and Tc denote the expected transmission time of an
arbitrary packet in the network and the expected duration of
an arbitrary collision, respectively. As described in Section
III-B, a transmission attempt may result in a collision, and
multiple collisions may be observed in the network before a
packet is successfully transmitted. Then, the average service
time for a packet in the network, 1/µ, is given by

1

µ
= TsP (AQE) + [Ts + Backoff time

+ Collision time]P (AQNE).

Let pc denote the conditional probability that an arbitrary
packet transmission in the network experiences a collision.
Then with probability (1 − pc) there is no collision and the
packet is transmitted successfully after its residual backoff.
With probability pc(1−pc) a packet is transmitted after exactly
one collision, and in general, the number of collisions before
the transmission is successful has a geometric distribution
with parameter pc. Let TRB denote the expected residual
backoff after a collision or a successful transmission. Then,
the expression for the expected service time in the network
can be written as

1

µ
= Ts(1− ρ) + [(1− pc)(Ts + TRB)

+pc(1− pc)(Ts + TRB + Tc + TRB)

+p2c(1− pc)(Ts + TRB + 2(Ts + TRB) + · · ·
+pνc (1− pc)(Ts + TRB + i(Ts + TRB) + · · · ] ρ

where ρ is the utilization of the aggregate queue and thus
Pr[AQE] = 1−ρ. Simplifying the expression above, we get,

1

µ
= Ts + ρTRB + (1− pc)ρ(Tc + TRB)pc

[ ∞∑
ν=1

νpν−1c

]
= Ts + ρTRB + (1− pc)ρ(Tc + TRB)pc

1

(1− pc)2

= Ts +
ρ(TRB + pcTc)

1− pc
. (16)

In the IEEE 802.11 MAC protocol, packets are discarded after
they fail a certain number of retransmission attempts. In the
equation above, we have relaxed this rule in order to keep the

expressions simple, since in most practical scenarios, this limit
is not reached.

The residual backoff time between two transmission at-
tempts is the minimum of the backoff counters of all the
nodes who have packets to send. Characterizing the exact
distribution of the residual time is intractable since different
nodes may be in different stages of their backoff. As an
approximation, we note that all nodes that are in backoff
would have chosen their backoff counter from a window of
at least [0, CWmin − 1]. For n uniformly distributed random
variables in the range [0, CWmin − 1], the average separation
between the random variables is (CWmin − 1)/(n + 1).
Thus, we approximate the expected residual backoff time as
TRB = (CWmin − 1)δ/(n+ 1).

Now, the aggregate packet arrival rate into the network is
λ =

∑n
u=1 λu. Then, using ρ = λ/µ in (16), we get

ρ =
Ts

1
λ −

TRB+pcTc
1−pc

. (17)

Thus the probability that the aggregate queue is empty is given
by,

p0 = 1− Ts
1
λ −

TRB+pcTc
1−pc

. (18)

The conditional collision probability pc in the expression
above is the probability that an arbitrary transmission in the
network experiences a collision. This probability is given
by the weighted average of the collision probabilities at the
individual nodes and can be expressed as

pc =

∑n
u=1 λupu

2
∑n
u=1 λu

(19)

where the factor 2 in the denominator corresponds to the first
degree approximation that only two nodes are involved in a
collision.

To complete the model, we note that the packet sizes
may vary across nodes and thus the packet transmission
times and duration of collisions may also vary. The expected
transmission time of an arbitrary packet in the network, Ts, is
then given by

Ts =

∑n
u=1 λuTs,u∑n
u=1 λu

. (20)

For simplicity, the expression above assumes that there are
either no losses in the network, or that all nodes have the
same loss rates. This approximation does not cause significant
errors since we are considering a stable system where the
overall arrival rate into the system is smaller than the service
rate. To evaluate the duration of an arbitrary collision in the
network, we note that in a co-located network (where all nodes
are in each other’s transmission range) as assumed in this
paper, collisions occur when two or more nodes transmit at the
same time (or within a backoff slot duration). The collision
ends (i.e. the channel becomes idle) when the node with the
longer transmission time ends its transmission. Therefore in
the aggregate queue, the duration of a collision is the largest
transmission time among the packets involved in collision.
Given that a packet from node u experiences a collision,
the probability that node v is the other node involved in the
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collision is λv∑n

α=1,α 6=u
λα

. The expected length of a collision

involving node u is then given by

Tc,u =

[
1∑n

α=1,α 6=u λα

]
n∑

v=1,v 6=u

λvmax {Ts,u, Ts,v} . (21)

To obtain the expected duration of an arbitrary collision in
the network, Tc, we first note that the expected number of
collisions per unit time experienced by node u is given by

Cu = λu
pu

1− pu
where pu can be obtained using (11) and (13). Again, the
expression above assumes that the overall system is stable.
The expected duration of a collision is then given by

Tc =

[
1∑n

v=1 Cv

] n∑
u=1

CuTc,u. (22)

D. Duration of White Spaces

Using the queueing models developed in Sections III-B and
III-C, we now develop a model for the duration of white spaces
in the Wi-Fi network. The white spaces in the Wi-Fi network
correspond to the instances when the aggregate queue is empty.
Let FWS(t) = P (WS ≤ t), t ≥ 0, denote the cumulative
distribution function (CDF) of the duration of the white spaces.
To obtain this distribution, we first define the CDF of the
duration of the white spaces conditioned on the state of the
arrival process. We define u∗(t, j|i) as the probability that the
idle period of the BMAP/G/1/nK queue is less than t and
the phase of the arrival process at the start of subsequent busy
period is j, given that the phase of the arrival process at the
end of the preceding busy period was i. Thus,

u∗(t, j|i) = P (WS < t, j|i) ∀ i, j ∈ 1, 2, · · · ,mn. (23)

The conditional CDFs u∗(t, j|i), 1 ≤ i, j ≤ mn, are then used
to form a mn×mn matrix U∗(t). The transform of U∗(t) is
given by [20]:

U∗(s) = [sI −D(0)]−1(D(1)−D(0)) (24)

where I is an mn×mn identity matrix. From (3), we have,
D(0) = D0 and D(1) − D(0) = D1 + D2 + D3 + · · · .
Numerical methods such as the procedure presented in [21]
may be used to invert the transform in (24) and obtain the
conditional probabilities u∗(t, j|i). The CDF of the duration
of white spaces is then given by

P (WS < t) = U∗(t)eπ (25)

where e is an unit column vector. Interestingly, from (25) we
observe that the duration of white spaces is independent of
the service time distribution. This in turn implies that the
duration of the white spaces does not depend on the packet
lengths or the transmission rate. An intuitive explanation for
this is that a white space starts when there is no packet in the
queue, and when the white space will end is independent of
the service time as no packet is being served. The white space
ends when the next packet arrival occurs which is determined
by the arrival process. The arrival process is independent of

the packet length and transmission rate and thus so is the
duration of white spaces. However, the time instants when a
white space starts is dependent on the service time since a
white space starts when all the packets are served. Hence, the
number of white spaces starting in an unit of time is dependent
on how fast packets are served (as can be see in (28)) but
once a white space starts, the time instant when it will end is
dependent only on the arrival process.

E. Expected Duration of White Spaces

Using the derivative of (24), the matrix E[U∗(t)] of con-
ditional expected durations of the white spaces is given by

E[U∗(t)] = (−1) d(U
∗(s))

ds

∣∣∣∣
s=0

= ((−D0)
−1)2(D(1)−D0).

(26)
Unconditioning using the steady state probabilities of the ar-
rival process, the expected duration of a white space, E[WS],
is given by

E[WS] = E[U∗(t)]eπ = ((−D0)
−1)2(D(1)−D0)eπ.

(27)
Let NWS denote the average number of white spaces in unit
time. Since p0 denotes the probability that the aggregate queue
is empty, the fraction of time the medium is idle in any interval
is also p0. Then the expected number of white spaces in unit
time can be obtained by dividing p0 by E[WS]. Thus

NWS =
p0

((−D0)−1)2(D(1)−D0)eπ

=

[
1− Ts

1
λ −

TRB+pcTc
1−pc

]
1

((−D0)−1)2(D(1)−D0)eπ
.

(28)

F. Expected Length of Busy Periods

While the duration and frequency of white spaces are
important indicators of the feasibility of opportunistic commu-
nications, another important factor is the expected length of
busy periods in the Wi-Fi network. The busy period durations
represent the time between successive periods for opportunistic
communications and thus affect the delays experienced by
M2M communications. Let NBP denote the number of busy
periods in an interval of unit time. Since each idle period is
followed by a busy period and vice versa, on an average, the
number of busy periods in any interval is equal to number of
idle periods. Thus we have

NBP = NWS . (29)

Let E[BP ] denote the average duration of a busy period. Since
there are NBP busy periods on average in an unit of time, and
the fraction of time the queue is busy is ρ = 1− p0, E[BP ]
is given by

E[BP ] =
1− p0
NWS

=

(
Ts

1
λ −

TRB+pcTc
1−pc

)
[NWS ]

−1
. (30)
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IV. SIMULATION RESULTS

This section presents simulation results to verify the model
presented in the previous section and uses the results to
provide insights into the white spaces in Wi-Fi networks. The
simulations were performed using the NS3 simulation tool.
The topology considered in the simulations considers a Wi-Fi
network with one AP and four users, using the IEEE 802.11g
protocol with a transmission rate of R = 18 Mbps. Such a
scenario reflects typical homes and some office environments.
Each simulation was run for 3600 seconds, and each result is
averaged over 5 runs.

The traffic at each Wi-Fi node in the network is generated
as per a 2-state BMAP. Simulations were conducted for two
scenarios. In the first scenario, denoted by A1, the uplink and
downlink traffic have the same packet size of 1500 bytes, and
the downlink arrival rate is twice the uplink rate. In the second
scenario (A2), the downlink packet size is 1500 bytes but the
uplink packet size is 500 bytes and the downlink packet arrival
rate is equal to that of the uplink. For both scenarios, the traffic
arrival rate is varied (while maintaining the uplink to downlink
ratio) to create scenarios with a range of traffic loads. Note
that for both scenarios, the data transmitted in the downlink is
more than that in the uplink, reflecting typical usage scenarios.
The two scenarios illustrate the impact of packet sizes and
traffic arrival rates on the white spaces, while maintaining the
asymmetry in the uplink and downlink traffic.

To evaluate the accuracy of the BMAP/G/1/nK queueing
model for the wireless network, we first compare the simula-
tion results for the fraction of time the channel is idle with that
from the analysis, as given by (18). Figures 1 and 2 show the
simulation and analytic results for p0 for scenarios A1 and A2,
respectively, for various values of the overall traffic intensity.
We note that there is a close match between the analytic and
simulation results. We also compare the analytic expression
for the average service time as given in (16) with those
obtained using simulations and Figure 3 shows the results.
The average service time of packets in scenario A2 is smaller
than those in scenario A1 because of smaller uplink packets.
We note the close match in the simulation and analytic results,
demonstrating the ability of the proposed model to characterize
the impact of collisions and backoffs on the service times.

The CDF of the duration of white spaces, for various values
of ρ, is shown in Figure 4 for scenario A1. As expected,
white spaces of longer duration occur more frequently when
the network utilization (or packet arrival rate) is lower. For
example, in Figure 4, the probability that the duration of a
white space is less than 5 ms is 0.4 when ρ = 0.1 and is 0.98
when ρ = 0.8 (which also shows that for moderate to low
loads, a large fraction of the white spaces are longer than 5
ms). Figure 5 shows the CDF of the duration of white spaces
for the second scenario (A2). We observe that the distribution
curves are steeper in this case as compared to Figure 4. This
is due to the fact that for the same overall network utilization,
there are more uplink packets in scenario A2 as compared
to A1. A larger number of packets results in more frequent
transmissions, which in turn reduces the likelihood of longer
white spaces.
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Fig. 1. Comparison of values of p0 obtained through simulations and the
proposed model for scenario A1.
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Fig. 2. Comparison of values of p0 obtained through simulations and the
proposed model for scenario A2.
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Fig. 3. Average service time experienced by a packet in the aggregate queue.

To evaluate the feasibility of opportunistic M2M communi-
cations using white spaces in Wi-Fi networks, next we consider
the likelihood of white spaces greater than 1 ms, keeping in
mind the small packet sizes and data rates of typical M2M
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Fig. 4. CDF of the duration of white spaces (WS) for scenario A1.
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Fig. 5. CDF of the duration of white spaces (WS) for scenario A2.

devices (e.g., it takes 0.78 ms to transmit a 50 byte packet at
512 kbps). Figure 6 shows P (WS > 1 ms) as a function of ρ
for scenarios A1 and A2. It can be seen that even at high loads
of ρ = 0.8, 32% of the white spaces are longer than 1 ms in
scenario A2. On the other hand, P (WS > 1 ms) is 43% at
ρ = 0.8 in scenario A1. The reason behind this difference is
that for the same ρ, many small sized packets (in scenario A2)
interrupt the white spaces more frequently than fewer larger
sized packets (in scenario A1). Thus, the probability that the
duration of a white space is greater than 1 ms is lower for
smaller size packets for the same overall traffic intensity. This
can also be noted from Figure 7 which shows the average
duration of white spaces, DWS , for different values of ρ.
As expected, the duration of white spaces decreases with
increasing traffic. The differences between scenarios A1 and
A2 can be attributed to the larger number of uplink packets
which divide the white spaces more often in case of scenario
A2.

In order to accommodate a given number of M2M nodes,
there should be sufficient number of white spaces for the
M2M nodes to transmit data. Figure 8 shows the average
number of white spaces per second as a function of ρ. The
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Fig. 6. P (WS ≥ 1 ms) for different values of ρ.
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Fig. 7. Average duration of white spaces for different values of ρ.
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number of white spaces per unit time first increases as the
network utilization increases, before decreasing again. This
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Fig. 9. Comparison of average duration of white spaces (DWS ) with only
downlink traffic and with both downlink and uplink traffic.
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Fig. 10. Comparison of average number of white spaces (NWS ) with only
downlink traffic and with both downlink and uplink traffic.

occurs because when the load is low, the idle periods in the
Wi-Fi network are longer, but the number of idle periods is
small. As the traffic load increases, the idle periods are inter-
rupted more often by frequent transmissions of Wi-Fi packets.
This decreases the average duration of white spaces but the
number of white spaces increases. This also explains why the
number of white spaces is larger in scenario A2 which has a
larger number of uplink packets. However, as the load keeps
increasing, the Wi-Fi network stays busy for longer periods
of time. This in turn decreases both the average duration and
number of white spaces. However, even at high loads, white
spaces of sufficiently long duration occur frequently enough
to support opportunistic M2M communications. For example,
when ρ = 0.9 in scenario A1, the average duration of a white
space is 1.01 ms and the average number of white spaces is
110 per second.

To determine the effect of the addition of uplink traffic on
the white spaces and to highlight the importance of the model
presented in this paper over that proposed in [12] (with only
downlink traffic), we also conducted simulations in which only

downlink traffic was present. These results are compared with
those from scenario A2, and the simulations for both cases has
an equal number of downlink packets while scenario A2 also
had (the same number of) uplink packets. Figure 9 shows the
average duration of white spaces for the case with only down-
link traffic, and where both downlink and uplink traffic are
present. The x-axis of the figure shows the number of downlink
packets per second. As can be seen from Figure 9, at low
loads, the average duration of white spaces is almost halved
in the presence of uplink traffic. This is because at low loads,
a majority of the packets find the MAC layer queue empty and
the channel idle on arrival, and are transmitted immediately
without any waiting in the queue. Thus the transmission of
most packets results in the termination of an ongoing idle
period. Since there are twice as many packets in scenario A2
as compared to the scenario with only downlink traffic, there
are twice as many interruptions. Thus the average duration
of white spaces is approximately halved and the number of
white spaces per unit time is doubled, as shown in Figure
10. However, as the load increases, an increasing number of
packets arrive at busy queues and the average duration of white
spaces reduces. Also, since the overall number of packets is
larger in scenario A2, the load is higher as compared to the
scenario with only downlink traffic. Consequently, the number
of idle periods starts decreasing at a lower downlink packet
arrival rate as compared to the scenario with only downlink
traffic. From Figures 9 and 10 we can see that the addition
of uplink traffic can significantly affect the characteristics of
white spaces.

A. Discussion

The model proposed in this paper and its results show that
opportunistic communication is a viable option for supporting
M2M devices. There is some initial work in this direction
and protocols have been proposed that, to various degrees,
exploit silent periods in Wi-Fi networks for transferring M2M
data. In the protocol proposed in [14], the Wi-Fi AP sends a
CTS packet to block Wi-Fi nodes from transmitting (upto 32
ms), in order to allow ZigBee based devices to communicate
with lower bit error rates. Similarly, in the protocol proposed
in [13], ZigBee devices periodically mute Wi-Fi nodes by
broadcasting fake-PHY preamble headers. However, these are
not protocols that utilize naturally occurring silent periods in
the Wi-Fi network. Instead, Wi-Fi devices are forcibly kept
silent and this may significantly increase their packet delays.
The protocol in [10] uses predictions of the duration of white
spaces to determine the frame size of ZigBee transmissions,
with the objective of ensuring that ZigBee transmissions
complete within the white space and thus avoid interference
with Wi-Fi transmissions.

The significance of the proposed model in the context
of opportunistic M2M communications is two-fold. First, it
provides a means for validating the feasibility of opportunistic
M2M communication for a given Wi-Fi network scenario.
Second, the characterization of the white spaces provided by
the model may be used in real time to facilitate the operation
and scheduling of opportunistic M2M communications, while
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maintaining a desired level of service for the Wi-Fi users.
For example, the CDF of the duration of white spaces may
be used to determine the duration for which M2M devices
may transmit when a white space starts, while keeping the
likelihood that the transmission will not stifle a new Wi-Fi
packet below a desired threshold. The development of such
protocols is beyond the scope of this paper but present an
interesting avenue for exploration.

Finally, we note that a number of other alternatives for
M2M communication in the unlicensed band exist or are being
developed, such as IEEE 802.11ah, ZigBee, and Bluetooth 4.0.
In contrast to the network model considered in this paper,
these protocols treat M2M devices on par with other users in
the network. Consequently, the network performance observed
by the other users is directly impacted by the M2M data
transmissions. In scenarios where it is desired to provide
a separation in the services provided to M2M devices and
other users (e.g. in a home with human users), opportunistic
communications provide a viable alternative.

V. CONCLUSION

This paper addressed the problem of evaluating the feasi-
bility of opportunistic M2M communications in the license-
free ISM bands. The paper presented an analytic model to
evaluate the feasibility of a scenario where Wi-Fi devices are
the primary users of the spectrum and M2M devices exploit
the idle periods in the Wi-Fi network to transmit their data.
Using a BMAP/G/1/nK queue to model the overall Wi-Fi
network, we characterized the distribution of the duration of
white spaces and their frequency. Our results show that white
spaces occur frequently and are sufficiently long to support
opportunistic M2M communications.
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