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Energy Efficient Transmission Strategies for Body
Sensor Networks with Energy Harvesting
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Abstract—This paper addresses the problem of developing
energy efficient transmission strategies for Body Sensor Networks
(BSNs) with energy harvesting. It is assumed that multiple
transmission modes that allow a tradeoff between the energy
consumption and packet error probability are available to the
sensor nodes. Taking into account the energy harvesting capa-
bilities of the nodes, decision policies are developed to determine
the transmission mode to use at a given instant of time in order
to maximize the quality of coverage. The problem is formulated
as a Markov Decision Process (MDP) and the performance of the
transmission policy thus derived is compared with that of energy
balancing as well as aggressive policies. An upper bound on the
performance of arbitrary policies, and lower bounds specific to
energy balancing and aggressive policies are derived.

I. INTRODUCTION

Many applications and services are expected to significantly
benefit from the monitoring and data collection services that
will be provided by BSNs. These include medical applications
such as diagnostic techniques, health and stress monitoring,
management of chronic diseases, and patient rehabilitation, as
well as non medical applications such as biometrics, activity
monitoring and learning, and sports and fitness tracking [1].

A major hurdle for the wide adoption of BSN technology
is the energy supply [2]. Current battery technology does
not provide a high enough energy density to develop BSN
nodes with sufficiently long life and acceptable cost and
form factor. Moreover, the relatively slow rate of progress
in battery technology (compared to computing and commu-
nication technologies) does not promise battery driven BSN
nodes in the near future [3]. Furthermore, replacing batteries
is simply not an option in some cases, such as implanted
BSN nodes. The most promising approach to deal with the
energy supply problem for BSNs is energy harvesting or
energy scavenging [1]. In this approach, nodes have an energy
harvesting device that collects energy from ambient sources
such as vibration and motion, light, and heat. However, to
improve the performance of energy harvesting BSNs to a level
that can be widely adopted, progress needs to be made both
in energy harvesting techniques and communication protocols.
Harvesting aware communication techniques that take into
account and exploit the energy harvesting characteristics are
particularly needed to optimize the operation of BSNs.
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This paper considers the problem of scheduling trans-
missions in BSNs with energy harvesting. The nodes are
assumed to have the ability to choose from a set of available
transmission modes, with each scheme consuming a different
amount of energy. However, each scheme has a packet error
probability that is a decreasing function of the energy used
on transmission. The paper then develops solutions to answer
the following question: which transmission mode should be
used for a given data packet so that the probability that the
node does not have any energy to report future events when
they occur is minimized while maximizing the likelihood of
data reports being correctly transmitted? While this paper is
structured around BSNs, our framework can be applied to any
wireless network based on energy harvesting devices.

This paper presents adaptive transmission policies that aim
to maximize the likelihood of sensor nodes detecting and
correctly reporting events of interest. The policies developed
exploit the nodes’ knowledge of its current energy level and
the state of the processes governing the generation of data and
battery recharge to select the appropriate transmission mode
for a given state of the system. The transmission scheduling
problem is then formulated as a MDP and the performance
of the solution thus obtained is compared with two other
strategies: energy balancing and aggressive. An upper bound
on the performance of any arbitrary policy is obtained along
with lower bounds for the energy balancing and aggressive
policies. Simulations are used to compare the performance of
the three policies.

The rest of the paper is organized as follows. Section II
presents an overview of the related work and Section III
describes the system model. Upper bounds on the performance
of arbitrary transmission policies are developed in Section IV
while Sections V and VI present bounds specific to the energy
balancing and aggressive policies. A MDP formulation of the
problem is presented in Section VII, simulation results are
presented in Section VIII and Section IX concludes the paper.

II. RELATED WORK

The use of energy harvesting has been proposed in the
general framework of wireless sensor networks (WSNs) as
well as for BSNs. However, existing results concerning the
communication techniques for energy harvesting networks are
limited. Furthermore, existing literature generally addresses
the problem in the context of large scale WSNs. The problem
of duty-cycling in general sensor networks with energy har-
vesting is considered in [5], [6]. In [7] it is shown that using
cooperative automatic repeat request (ARQ) protocols, sensor
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nodes can match their energy consumption to their energy
harvesting rate, thereby improving the throughput. The authors
of [8] address the problem of sensor activation with battery
recharging assuming temporally correlated events.

Existing work on energy aware communications for BSNs
focus on battery operated sensors and do not consider energy
harvesting [9], [10], [11]. The design requirements for BSNs
are considerably different from those of large scale sensor net-
works. This is due to the specific characteristics of BSNs, such
as traffic patterns, QoS requirements, and energy harvesting
methods. To the best of our knowledge, there is no prior work
on transmission policies for energy harvesting BSNs.

III. SYSTEM MODEL

The network is considered to consist of a single, special
device (e.g. cell phone or personal digital assistant) carried
by the patient that acts as the base station or gateway, and
a number of sensor nodes that are deployed on the patient’s
body. A star topology is assumed where each node directly
communicates with the gateway. The gateway collects the data
from all nodes and conveys it to the medical center or doctor.
Since the gateways are not as energy critical as the sensor
nodes (they have higher capacity batteries that are also easily
replaced or recharged), our focus is only on the sensors.

We consider a discrete time model with time slotted in
intervals of unit length. A slot is long enough to transmit one
data packet and at most one data packet is generated in a slot.
Each sensor node has a rechargeable battery and an associated
energy harvesting device. The energy generation process of the
node is modeled by a correlated, two-state process. In its on
state (i.e. when ambient conditions are conducive to energy
harvesting), the node generates energy at a constant rate of c
units per time slot. In the off state, no energy is generated. If
the node harvested energy in the current slot, it harvests energy
in the next slot with probability qon, with 0.5 < qon < 1, and
no energy is harvested with probability 1− qon. On the other
hand, if no energy was harvested in the current slot, energy
is harvested (not harvested) in the next slot with probability
1 − qoff (qoff ), 0.5 < qoff < 1. qon and qoff are assumed
to be greater than 0.5 to capture the positive time correlations
in the physical processes behind energy harvesting [3], [4].
The two-state energy harvesting model captures the ambient
characteristics governing the operation of vibration, motion
and light based based energy harvesting devices [1], [3], [4].
Our models may be easily extended to harvesting models with
additional states. To keep the analysis tractable, we assume that
the battery capacity of each node is infinite. This assumption
is relaxed in Section VII.

The process governing the generation of events (i.e. data
packets) that the sensor nodes report to the sink are also
governed by a correlated, two-state process. If an event is
generated in the current slot, another event is generated
(respectively, not generated) in the next slot with probability
pon (respectively, 1 − pon), 0.5 < pon < 1. Similarly, if no
event is generated in the current slot, an event is generated
(respectively, not generated) in the next slot with probability
1 − poff (respectively, poff ), 0.5 < poff < 1. This two

state model captures the transient physiological phenomena
associated with many medical conditions of interest to health
care professionals [12], [13]. Also, the assumption of atmost
one event per slot is justified because of the small data
packet size and sampling rates of physiological sensors. The
probability that there are i continuous time slots with events
is P [N = i] = (pon)i−1(1 − pon) and the average length of a
period of continuous events is

E[N ] =

∞
∑

i=1

i(pon)i−1(1 − pon) =
1

1 − pon

(1)

and the steady-state probability of event occurrence is

πon =
1 − poff

2 − pon − poff

. (2)

Similarly, the average length of a period without events is
1

1−poff
and πoff = 1−πon. Along the same lines, the average

length of a period with energy harvesting and the steady-state
probability of such events are 1

1−qon
and µon =

1−qoff

2−qon−qoff
,

respectively. Finally, the expected length of periods without
recharging and its steady-state probability are 1

1−qoff
and

µoff = 1 − µon, respectively.

In each slot, a node consumes δ0 units of energy to run
its circuits. Additional energy is expended if a node transmits
data. Each node is assumed to be able to communicate using
K transmission modes: “transmission mode i” consumes δi

units of energy on the modulation, coding and transmission
and achieves an expected packet error rate of 1−ρi. Each ρi

includes the effects of channel impairments like fading, and
collisions. We have δi >δj and ρi >ρj for 1≤ i< j ≤K, al-
lowing a tradeoff between the energy consumed and reliability.
For many medical applications it is more important to deliver
the most recent data without delay rather than queue them
behind retransmission attempts. In these scenarios, delayed
data loses much of its value in the presence of more recent
data. Since data is generated in continuous bursts in our model,
no retransmissions are attempted for packets with error. Also,
a node is considered available for operation if its available
energy is greater than δ0 + δK . If a node’s energy level falls
below this threshold, it moves to the dead state where it is
incapable of detecting and reporting events and stays there
until it harvests enough energy. A node does not spend any
energy in the dead state.

The communication strategy of a sensor node is governed
by a policy Π that decides on the transmission mode to be used
for reporting an event. The action taken by the node in time
slot t is denoted by at with at ∈ {0, 1, 2, · · · ,K} denoting
no transmission, and transmissions with mode 1, 2 and so
on, respectively. The decision may be based on the current
battery level of the node and the states of the recharge as
well as the event generation process, with the basic objective
of maximizing the quality of coverage, defined as follows.
Let Eo(T ) denote the number of events that occurred in the
sensing region of the sensor over a period of T slots in the
interval [0, T ]. Let Ed(T ) denote the total number of events
that are detected and correctly reported by the node over the
same period under policy Π. The time average of the fraction
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of events detected and correctly reported represents the quality
of coverage and is given by

U(Π) = lim
T→∞

Ed(T )

Eo(T )
. (3)

The models developed in this paper can be extended to cover
scenarios with packet priorities and QoS requirements by
appropriately changing the objective function.

IV. AN UPPER BOUND ON THE PERFORMANCE

This section presents an upper bound on the performance
of any possible operating policy (using a technique in [8]).
Let T1 be the number of slots in which a node was alive (i.e.
not in the dead state) over the period [0, T ] consisting of T
slots under the optimal policy ΠOPT . Let PS(t) denote the
success probability of the node at time slot t under policy
ΠOPT . PS(t) signifies the probability that an event occurs in
time slot t and is successfully reported given that the node
was not in the dead state in slot t. We define PS(t) = 0 if the
node is in the dead state in time t. The steady-state success
probability is denoted by P̄S and is

P̄S = lim
T→∞

T
∑

t=1

PS(t)

T1
. (4)

Since P̄S is the steady-state probability of detecting and
successfully reporting an event we also have

P̄S = lim
T→∞

Ed(T )

T
. (5)

Let ρt denote the probability that a transmission attempt in
slot t is successful and Et (Ec

t ) denote the event that a data
packet to be reported is (not) generated in slot t. We denote by
γi, 0 ≤ i ≤ K, the fraction of slots with data events in which
the policy takes action ai. The probability of successfully
detecting and reporting an event at time t + 1 is given by

PS(t) = P [Et, ρt | at] =
P [Et, ρt, at]

P [at]

=
1

P [at]
[P [Et, ρt, at|Et−1]P [Et−1]

+P [Et, ρt, at|E
c
t−1]P [Ec

t−1]
]

=
1

P [at]
[P [Et, ρt|at, Et−1]P [at|Et−1]P [Et−1]

+P [Et, ρt|at, E
c
t−1]P [at|E

c
t−1]P [Ec

t−1]
]

=

∑K
i=1γiρi

P [at]

[

ponP [at, Et−1]+(1−poff )P [at, E
c
t−1]

]

≤ pon

[

∑K
i=1 γiρi

]

[P [Et−1|at] + (1 − P [Et−1|at])]

= pon

∑K
i=1 γiρi. (6)

where the inequality results from the fact that 1− poff ≤ pon

for 0.5 < pon, poff < 1.0. Thus we have

P̄S ≤ pon

K
∑

i=1

γiρi. (7)

Let QS(t) denote the probability that an event occurs in time
slot t and a transmission is attempted for it (irrespective of

the outcome of the transmission) given that the node is alive
and let Q̄S denote the steady-state probability of such events.
Following along the lines of the derivation of PS(t), we have

QS(t) = P [Et | at] = ponP [Et−1|at]+(1−poff )P [Ec
t−1|at]

≤ ponP [Et−1|at] + pon(1 − P [Et−1|at]) = pon

and thus Q̄S ≤ pon. Also, P̄S ≤ Q̄S since P̄S is the steady
state probability of events being successfully reported while
Q̄S corresponds to all events for which transmissions are
attempted. We denote the available energy at the node at the
beginning of slot t by Lt and assume that the initial charge
in the node was L0. The expected charge level of the node at
slot T is then given by

E[LT ] = L0 + T1

[

µonc − δ0 − Q̄S

K
∑

i=1

γiδi

]

+ (T−T1)µonc.(8)

Rearranging the terms and using the facts that E[LT ] ≥ 0 and
P̄S ≤ Q̄S we have

lim
T→∞

T1

T
≤

µonc

δ0+Q̄S(
∑K

i=1 γiδi)
≤

µonc

δ0+P̄S(
∑K

i=1 γiδi)
.(9)

Now, as T → ∞, the number of event occurrences in the
interval [0, T ] satisfies

lim
T→∞

Eo(T )

T
= πon =

1 − poff

2 − pon − poff

. (10)

Combining Eqns. (5), (9) and (10) we have

U(ΠOPT ) = lim
T→∞

Ed(T )

Eo(T )
=

P̄S

πon

lim
T→∞

T1

T
(11)

≤

[

1

πon

]

P̄Sµonc

δ0 + P̄S(
∑K

i=1 γiδi)
. (12)

Differentiating U(ΠOPT ) with respect to P̄S we have

dU(ΠOPT )

dP̄S

=
µonc

πon

[

δ0

(δ0 + P̄S(
∑K

i=1 γiδi))2

]

> 0.

(13)
Thus U(ΠOPT ) is a non-decreasing function of P̄S . From
Eqns. (7) and (12) we then have

U(ΠOPT ) ≤

[

1

πon

]

pon(
∑K

i=1 γiρi)µonc

δ0 + pon(
∑K

i=1 γiρi)(
∑K

i=1 γiδi)

≤

[

1

πon

]

ponρ1µonc

δ0 + ponρKδK

. (14)

A. Fast Recharge Scenario

The bound provided in Eqn. (14) can be fairly loose if the
recharge rate of the node is fast compared to its discharge rate.
This fast recharge scenario is characterized by the condition
µonc > δ0 + Q̄S(

∑K
i=1 γiδi). This subsection evaluates a

tighter bound for these scenarios.
Result 1: In the fast recharge scenarios where µonc > δ0 +

Q̄S(
∑K

i=1 γiδi), the performance of any policy is bounded by

U(ΠOPT ) ≤
[(1 − poff )µonc + (pon + poff − 1)πonδ0] ρ1

πon[δ0 + (1 − poff )ρKδK ]
.

(15)
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Proof: The optimal policy should schedule its transmis-
sions such that it should have enough energy to be alive in all
slots in which events to be reported are generated. Consider
the fraction of slots T1 in which the node is alive. Then under
the optimal policy

T1P̄S = Tπonpon

K
∑

i=1

γiρi + (T1 − Tπon) (1 − poff )

K
∑

i=1

γiρi

(16)
because only Tπon of the slots can have an event with
probability pon while the remaining T1 −Tπon slots generate
events with probability 1 − poff . Now, the fast recharge
condition along with T ≥ T1 implies

Tµonc ≥ T1δ0+T1Q̄S

∑K
i=1γiδi ≥ T1δ0+T1P̄S

∑K
i=1γiδi

= T1δ0 + [T1(1 − poff ) + Tπon(pon + poff − 1)]
∑K

i=1 γiρi

∑K
j=1 γjδj . (17)

Rearranging the terms on the equation above gives

T1

T
≤

µonc − πon(pon + poff − 1)(
∑K

i=1 γiρi)(
∑K

i=1 γiδi)

δ0 + (1 − poff )(
∑K

i=1 γiρi)(
∑K

i=1 γiδi)
.

(18)
Using Eqn. (16), the quality of coverage of the optimal policy
is given by

U(ΠOPT ) = lim
T→∞

T1

T

P̄S

πon

= lim
T→∞

Tπonpon

∑K
i=1γiρi+(T1−Tπon)(1−poff )

∑K
i=1γiρi

Tπon

= (pon+poff −1)

K
∑

i=1

γiρi+
(1 − poff )(

∑K
i=1γiρi)

πon

lim
T→∞

T1

T
.

Substituting Eqn. (18) in the equation above then gives

U(ΠOPT ) <
[(1 − poff )µonc + (pon + poff − 1)πonδ0] ρ1

πon [δ0 + (1 − poff )ρKδK ]
(19)

which completes the proof.

V. ENERGY BALANCING POLICIES

The energy harvested by the node is used for two purposes:
running the sensing and other onboard electronics and for
communication. To utilize the available energy efficiently, one
strategy is to use an energy balancing (or energy neutral) pol-
icy, ΠEB , that assigns the fraction of slots γi such that the total
energy spent equals the energy generated, while maximizing
the likelihood of detecting and reporting events without errors.
This section develops and evaluates the performance of energy
balancing policies.

To develop an energy-balancing policy, we first consider the
behavior of the process governing the events to be reported.
This process strictly alternates between periods with events
(on state) and periods without events (off state). The instances
when the event process enters the off state can be considered
renewal instants of the event process state. The expected length
of a renewal period is given by

E[TR] =
1

1 − pon

+
1

1 − poff

=
2 − pon − poff

(1 − pon)(1 − poff )
. (20)

The expected energy generated in a renewal period is then

E[C] = µoncE[TR] = µonc
2 − pon − poff

(1 − pon)(1 − poff )
. (21)

Now, the node may not have enough energy to be alive in all
the slots in a renewal period and may thus be in the dead state
in those slots. Then, the maximum possible energy that may be
spent on running the on-board electronics of the node during
a renewal period of E[TR] slots is δ0E[TR]. The expected
amount of energy available for communications is thus at least

E[A] ≥ µoncE[TR]−δ0E[TR] = (µonc−δ0)
2 − pon − poff

(1−pon)(1−poff)
.

(22)
The expected number of events to be reported in a renewal
period is E[N ] as given in Eqn. (1) and the expected
number of events correctly reported in a renewal period is
E[N ]

∑K
i=1 γiρi. The number of events detected and correctly

reported in the period [0, T ] is then

Ed(T ) =

∑K
i=1 γiρi

1 − pon

T

E[TR]
. (23)

Also, since the steady state probability of event generation is
πon, the number of events generated in the period [0, T ] is
Eo(T ) = πonT . The performance of the policy is then

U(ΠEB) =

∑K
i=1 γiρi

πon(1 − pon)

1

E[TR]
=

K
∑

i=1

γiρi. (24)

To obtain a bound on the performance, arrange the ratios
ρi

δi
in decreasing order. Let φ be a function that maps the

transmission modes to their respective position in the ordered
list, i.e., φj denotes the transmission mode that is in the j-th
position in the ordered list. Also, we define i∗ as to denote
the mode with the best ratio of ρ

δ
, i.e.

i∗ = φ1 = arg max
1≤i≤K

{

ρi

δi

}

. (25)

Consider the set S = {s0, s1, s2, · · · , sκ} such that s0 = i∗

and

si = arg max
1≤j<si−1

{

ρj − ρsi−1

δj − δsi−1

}

. (26)

The number of elements in S (or κ) depends on the ρi’s and
δi’s of the various modes. Define

ν = arg min
si∈S

{

δsi
:

δsi

1 − pon

≤ E[A]

}

(27)

θ = arg max
si∈S

{

δsi
:

δsi

1 − pon

> E[A]

}

. (28)

We then have the following bound on the performance of any
energy balancing policy:

Result 2: The performance of an energy balancing policy
is bounded by

U(ΠEB) ≥















(µonc−δ0)(ρθ−ρν)−πon(δνρθ−δθρν)
πon(δθ−δν) δφ1

< E[A]
E[N ] <δ1

µonc−δ0

δφ1
πon

ρφ1

E[A]
E[N ] ≤ δφ1

ρ1
E[A]
E[N ] ≥ δ1

(29)
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where the relation for the last case holds with a strict equality,
i.e., U(ΠEB) = ρ1.

Proof: From Eqn. (24) the performance of any energy
balancing policy is equal to

∑K
i=1 γiρi. Thus the objective of

the policy should be to choose the γi so as to maximize the
expression in Eqn. (24) subject to the constraints on available
energy. A linear programming formulation (LP1) for obtaining
the γi that maximize the quality of coverage can be written as

LP1: maximize
∑K

i=1 γiρi

subject to
∑K

i=1 γi ≤ 1 and 1
1−pon

∑K
i=1 γiδi ≤ E[A]

We now consider the three cases and prove the result by
determining the optimal γi in each case.

Case I: (δφi
E[N ] < E[A] < δ1E[N ]) The expected number

of events to be reported in a renewal period is 1
1−pon

. Thus in
this case the energy available for communications is such that
all transmissions may be made using mode φi but not enough
to make all transmissions using mode 1. From Lemmas 1-4 in
the Appendix, we know that the optimal policy has

∑

i γi = 1,
γ0 = 0 and γi = 0 for i > ν. Let Πx

EB denote an energy
balancing policy that assigns {x0, x1, · · · , xK} fraction of the
slots to the various transmission modes, with

∑

i xi = 1. Then
consider the policy Πγ

EB that only uses modes ν and θ. Since
∑

i γi = 1 for the optimal policy, we consider γν + γθ = 1.
Also, from the energy balancing property

E[A]

E[N ]
= γνδν +γθδθ = (1−γθ)δν +γθδθ = γθ(δθ −δν)+δν .

(30)
Solving the equation above for γν and γθ gives

γθ =
E[A] − δνE[N ]

E[N ](δθ − δν)
γν =

δθE[N ] − E[A]

E[N ](δθ − δν)
(31)

To prove that Πγ
EB is the optimum energy balancing policy,

consider an arbitrary energy balancing policy Πα
EB that also

satisfies Lemmas 1, 2, 3 and 4, i.e.,
∑

i αi = 1, α0 = 0 and
αi = 0 for i > ν. However, policy α may use modes i other
than ν and θ such that i < ν. Due to the energy balancing
nature of policy Πα

EB , we have
ν

∑

i=1

αiδi =
E[A]

E[N ]
. (32)

Substituting the expression above in Eqn. (30), we have

γθ(δθ − δν) =
ν

∑

i=1

αiδi − δν ⇒ γθ =

∑ν
i=1 αiδi − δν

δθ − δν

.

The utility of policy Πγ
EB can then be written as

U(Πγ
EB) = γνρν + γθρθ =

∑ν
i=1 αiδi − δν

δθ − δν

(ρθ − ρν) + ρν .

(33)
The utility of policy Πα

EB is
∑K

i=1 αiρi. The utilities of
policies Πγ

EB an Πα
EB are then related by

U(Πγ
EB)−U(Πα

EB) =
∑ν

i=1
αiδi−δν

δθ−δν
(ρθ−ρν)+ρν−

∑ν
i=1αiρi

=(
∑ν

i=1αiδi−
∑ν

i=1 αiδν)ρθ−ρν

δθ−δν
+

∑ν
i=1αiρν−

∑ν
i=1αiρi(34)

=
∑ν−1

i=1 αi(δi − δν)ρθ−ρν

δθ−δν
−

∑ν−1
i=1 αi(ρi − ρν) > 0 (35)

where in Eqn. (34) we have used the fact that
∑K

i=1 αi = 1.
The inequality above results because we have, for all i < ν

ρθ − ρν

δθ − δν

>
ρi − ρν

δi − δν

>
αi(ρi − ρν)

αi(δi − δν)
. (36)

For arbitrary positive constants A, B, C, D, E and F , if
A
B

> C
D

and A
B

> E
F

, we have A
B

> C+E
D+F

. Thus,

ρθ − ρν

δθ − δν

>

∑ν−1
i=1 αi(ρi − ρν)

∑ν−1
i=1 αi(δi − δν)

(37)

and the result in Eqn. (35) follows. Thus the optimal energy
balancing policy only uses modes ν and θ. Using Eqn. (31) and
the expressions for E[A] and E[N ], the utility of the optimum
energy balancing policy is bounded by

U(ΠEB) = γνρν + γθρθ

≥

[

πonδθ−µonc+δ0

πon(δθ − δν)

]

ρν +

[

µonc−δ0−πonδν

πon(δθ − δν)

]

ρθ

=
(µonc − δ0)(ρθ − ρν) − πon(δνρθ − δθρν)

πon(δθ − δν)

which proves the result. Note that the values for γν and γθ in
Eqn. (31) are achievable because due to the energy balancing
nature of the policy, the node always has energy to transmit,
with probability one. To justify this result, consider each
sensor node as a queue where the arrivals correspond to the
energy harvested and the departures correspond to the energy
spent. Thus the node represents a G/G/1 queue (i.e. a single
server queue with arbitrary arrival and service distributions)
where the arrival rate equals the departure rate (due to the
energy balancing property). The results of [14], page 422, then
imply that the queue remains non-empty with probability one
and the expected queue length becomes unbounded. This in
turn implies that we always have enough energy to transmit
data with probability one.

Case II: (E[A] ≤ δφ1
E[N ]) In this case the available energy

is not enough to report all events with the transmission mode
with the highest ratio of ρ

δ
. If all packets are transmitted

using mode φ1, E[A]
δφ1

transmissions can be made resulting in

an objective function of E[A]
δφ1

(1−pon)ρφ1
. We prove the result

for this case using contradiction. Assume that there exists a
policy that assigns kφi

of the 1
1−pon

slots with data events to
transmission mode i, 1 ≤ i ≤ K, with at least one mode j > 1
with kφj

> 0, such that its objective function is greater than
that of the policy that uses mode φ1 for all transmissions. The
objective functions of the two policies then satisfies

kφ1

1−pon

ρφ1
+

kφ2

1−pon

ρφ2
+· · ·+

kφK

1−pon

ρφK
>

E[A]

δφ1
(1−pon)

ρφ1
.

(38)
Now,

ρφ2

δφ2

>
ρφi

δφi

for all 2 < i ≤ K. Thus we have

kφi
δφi

δφ2

ρφ2
> kφi

ρφi
2 < i ≤ K. (39)

Using the relation above in Eqn. (38) we have

kφ1
ρφ1

+

K
∑

i=2

kφi
δφi

δφ2

ρφ2
>

E[A]

δφ1

ρφ1
. (40)
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Now, in an energy balancing policy E[A] =
∑K

i=1 kφi
δφi

and

this in turn implies that kφ1
=

E[A]−
∑K

i=2
kφi

δφi

δφ1

. Substituting
this in Eqn. (40) we have

[

E[A]−
∑K

i=2kφi
δφi

δφ1

]

ρφ1
+

K
∑

i=2

kφi
δφi

δφ2

ρφ2
>

E[A]

δφ1

ρφ1

⇒
K

∑

i=2

kφi
δφi

δφ2

ρφ2
>

K
∑

i=2

kφi
δφi

δφ1

ρφ1
⇒

ρφ2

δφ2

>
ρφ1

δφ1

. (41)

This is a contradiction of the initial assumption of
ρφ1

δφ1

>
ρφ2

δφ2

and the proof is thus complete. Thus the policy should assign
transmission mode φ1 to all slots with data, as long as L ≥
δ0 + δφ1

. Thus in this case we have γφi
= 0 for i > 1 and

γφ1
=

E[A]

δφ1

1

E[N ]
≥

µonc − δ0

δφ1
πon

. (42)

The quality of coverage for this case is then given by

U(ΠEB) = γφ1
ρφ1

≥
µonc − δ0

δφ1
πon

ρφ1
. (43)

Case III: (δ1E[N ] ≤ E[A]) Transmissions using transmission
mode 1 are more likely to be successful and in this case the
node has enough available energy to make all transmissions
using this transmission mode. The solution to LP1 is thus
trivial: γ1 = 1 and γj = 0 for 2 ≤ j ≤ K. The quality
of coverage for this case is thus

U(ΠEB) = γ1ρ1 = ρ1. (44)

This completes the proof.

VI. AGGRESSIVE TRANSMISSION POLICIES

A transmission policy that uses transmission mode 1 for all
transmissions as long as the available energy L ≥ δ0 + δ1

is termed an aggressive policy ΠA. This section evaluates
the performance of aggressive policies. It is shown that the
performance of aggressive policies cannot exceed that of
energy balancing policies, i.e., U(ΠA) ≤ U(ΠEB). The
results of this section are primarily aimed at characterizing the
conditions under which an energy balancing policy reduces to
an aggressive policy.

As with energy balancing policies, the performance of an
aggressive policy can also be evaluated in terms of the renewal
process governing the event generation process. As before,
the expected length of a renewal period E[TR] and expected
energy available for communications during a renewal period
E[A] are given by Eqns. (20) and (22), respectively. Since γi =
0 for 2 ≤ i ≤ K in an aggressive policy, the expected number
of events correctly reported in a renewal period is E[N ]γ1ρ1.
The exact value of γ1 depends on the system parameters and
E[A]. The number of events detected and correctly reported
in the period [0, T ] is then

Ed(T ) =
γ1ρ1

1 − pon

T

E[TR]
. (45)

Since the expected number of events generated in the period
[0, T ] is Eo(T ) = πonT , the performance of the aggressive

policy is given by

U(ΠA) = lim
T→∞

Ed(T )

Eo(T )
=

γ1ρ1

πon(1 − pon)

1

E[TR]
= γ1ρ1.

(46)

A. Upper Bound on the Performance

We have the following upper bound on the performance of
an aggressive policy:

Result 3: The performance of an aggressive transmission
policy is bounded by

UL(ΠA) ≤

{

µon

δ0+δ1

[

c
πon

− δ0(1−pon)
1−poff

]

ρ1
δ1

1−pon
> E[A]

ρ1 otherwise
(47)

where the relation for the last case holds with a strict equality.
Proof: Case I:

(

E[A] < δ1

1−pon

)

. With µon representing
the steady state probability of a node’s battery being recharged
in a slot, the expected energy generated by the node in a
renewal period is given by µoncE[TR]. Now, the expected
duration of the off period of the event generation process in the
renewal period is 1

1−poff
and the expected charge generated

in this period is thus µonc
1−poff

. An energy of δ0 is expended by
the circuits in each slot during this period if the node is not
in the dead state. Thus the energy available to the node at the
beginning of the on period of the event process in the renewal
period is maximized if the µon

1−poff
slots with recharge occur

at the very end of the off period (since this minimizes the
number of slots in the off period in which the node may have
enough energy to be in the alive state). The energy expended
on the circuits in the off period is then at least µonδ0

1−poff
and the

energy available during the on period, E[D], satisfies

E[D] ≤ µoncE[TR] −
µonδ0

1 − poff

=
µonc(2 − pon − poff )

(1 − pon)(1 − poff )
−

µonδ0

1 − poff

. (48)

The expected number of slots in the on period where the node
has sufficient energy to transmit a packet, M , is then bounded
by

M ≤
µon

δ0 + δ1

[

c(2 − pon − poff ) − δ0(1 − pon)

(1 − pon)(1 − poff )

]

. (49)

The fraction of these M slots in which data is reported
correctly is ρ1M and the performance of the policy is then

U(ΠA) =
ρ1M

E[N ]
≤

µon

δ0 + δ1

[

c

πon

−
δ0(1 − pon)

1 − poff

]

ρ1.

(50)
Case II:

(

E[A] ≥ δ1

1−pon

)

. Since there is enough energy to
transmit all packets using transmission mode 1, the aggressive
policy in this case results in γ1 = 1. Thus

U(ΠA) = γ1ρ1 = ρ1 = U(ΠEB). (51)

This completes the proof.
Now, Case I in Claim 3 corresponding to E[A] < δ1

1−pon

subsumes Cases I and II in Claim 2 while Case II in Claim 3 is
equivalent to Case III of Claim 2. The results of Claim 3 and
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2 then lead to the following result comparing the performance
of the two policies:

Corollary 1: The performance of the aggressive and energy
balancing policies is related by

U(ΠEB)

U(ΠA)
≥























(µonc−δ0)(ρθ−ρν)−πon(δνρθ−δθρν)
c(1−poff )−δ0πon(1−pon) δφ1

< E[A]
E[N ] <δ1

×
(δ0+δ1)(1−pof )
ρ1µon(δθ−δν)

ρφ1
(µonc−δ0)(δ0+δ1)(1−poff )

ρ1δφ1
µon[c(1−poff )−δ0πon(1−pon)] δφ1

≥ E[A]
E[N ]

1 δ1≤
E[A]
E[N ]

(52)
where the relation for the last case holds with a strict equality.

B. Lower Bound on the Performance

We have the following lower bound on the performance of
an aggressive policy:

Result 4: The performance of an aggressive transmission
policy is bounded by

UL(ΠA) ≥

{

µonc−δ0

δ1πon
ρ1

δ1

1−pon
> E[A]

ρ1 otherwise
(53)

where the relation for the last case holds with a strict equality.
Proof: Case I:

(

E[A] < δ1

1−pon

)

. The energy available
for communications in this case is not sufficient to transmit
in all slots with events using transmission mode 1. Since the
policy always schedules transmissions with transmission mode
1, we have

γ1 =
1

E[N ]

E[A]

δ1
≥

µonc − δ0

δ1πon

. (54)

Then
U(ΠA) = γ1ρ1 ≥

µonc − δ0

δ1πon

ρ1. (55)

Case II:
(

E[A] ≥ δ1

1−pon

)

. Since there is enough energy to
transmit all packets using transmission mode 1, the aggressive
policy in this case results in γ1 = 1. Thus

U(ΠA) = γ1ρ1 = ρ1 = U(ΠEB). (56)

This completes the proof.
The sub-optimality of using transmission mode 1 in all slots in
cases I and II of Claim 2 implies that the performance of the
aggressive policy cannot exceed that of the energy balancing
policy. Finally we note that the performance of a policy that
uses a single arbitrary mode can also be modeled using the
derivations in this section.

VII. MARKOV DECISION PROCESS FORMULATION

The solution to the problem of assigning the transmission
mode for each slot so that the quality of coverage is maximized
can be also obtained by formulating it as a Markov Decision
Process. Denote the system state at time t by Xt = (Lt, Et, Yt)
where Lt ∈ {0, 1, 2, · · · } represents the energy available in
the node at time t. Et ∈ {0, 1} equals one if an event to be
reported occurred at time t and zero otherwise. Yt ∈ {0, 1}
equals one if the node is being charged at time t and zero
otherwise. As before, the action at time t is denoted by at ∈
{0, 1, 2, · · · ,K}.

The next state of the system depends only on the current
state and the action taken. Thus the system constitutes a
Markov Decision Process. The node gains a reward of one
with probability (w.p.) ρi if Et = 1 and at = i, 1 ≤ i ≤ K,
and a reward of zero w.p. one if Et = 1 and at = 0. The
reward function is then

r(Xt, at)=







ponρi if at = i, Lt ≥ δ0+δi and Et−1 =1
(1−poff)ρi if at = i, Lt ≥ δ0+δi and Et−1 =0
0 otherwise

(57)
where 1≤ i≤K. This reward function implies that the average
total reward of the MDP is the quality of coverage. Let gt and
lt be the energy gained and lost by the node in the interval
[t, t+1), respectively. Then

gt =

{

c w.p. Ytqon + (1 − Yt)(1 − qoff )
0 otherwise

(58)

lt =







δ0+δi w.p. [Etpon+(1−Et)(1−poff)]Ii(at) if Lt≥δ0+δi

δ0 w.p. I0(at) if Lt ≥ δ0 + δK

0 otherwise
(59)

where 1≤ i≤K and IA(at) represents the indicator function
that equals one only when at = A and zero otherwise. To
complete the MDP formulation, the next state of the system
Xt+1 = (Lt+1, Et+1, Yt+1) is

Lt+1 = Lt + gt − lt (60)

Et+1 =

{

1 w.p. Etpon + (1 − Et)(1 − poff )
0 otherwise

(61)

Yt+1 =

{

1 w.p. Ytqon + (1 − Yt)(1 − qoff )
0 otherwise

. (62)

The optimal solution can be computed by using the well
known value iteration technique [15]. The battery capacity of
the sensor node is assumed to be B. Since the induced Markov
chain is unichain, from Theorem 8.5.2 of [15], there exists a
deterministic, Markov, stationary optimal policy ΠMD which
also leads to a steady-state transition probability matrix. Con-
sidering the average expected reward criteria, the optimality
equations are given by [16]

h∗(X) = max
a∈{0,1,··· ,K}



r(X, a)+λ∗+

(B,1,1)
∑

X′=(0,0,0)

pX,X′(a)h∗(X ′)





∀X ∈ {(0, 0, 0), · · · , (B, 1, 1)} (63)

where pX,X′(a) represents the transition probability from state
X to X ′ when action a is taken, λ∗ is the optimal average
reward and h∗(i) are the optimal rewards when starting at state
i = (0, 0, 0), · · · , (B, 1, 1). For the purpose of evaluation, the
relative value iteration technique [16] may be used to solve
Eqn. (63).

VIII. SIMULATION RESULTS

In this section we use simulation results to compare the
performance of the three strategies and also to evaluate the
impact of various system parameters on the performance. The
simulations were done using a custom built simulator written
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Fig. 1. Comparison of the quality of coverage. Parameters used: qon = 0.75,
poff = 0.9, ρ1 = 0.9, pon = 0.6, ρ2 = 0.4
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Fig. 2. Comparison of the quality of coverage. Parameters used: qon = 0.75,
poff = 0.9, ρ1 = 0.9, pon = 0.7, ρ2 = 0.6,
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and δ0 = 1.

in C. All simulations were run for a duration of 5000000 time
units and used c = 2, δ1 = 2 and δ2 = 1. The results consider
a scenario with two modes so that the relationship between
various parameters can be easily observed.

Figures 1 and 2 compare the performance of the three
policies (labeled EB: energy balancing, AGG: aggressive and
MDP: Markov Decision Process) in terms of the quality of
coverage U as the recharge rate is varied by changing qoff .
Two scenarios corresponding to ρ1

δ1
≤ ρ2

δ2
and ρ1

δ1
> ρ2

δ2
are

considered. In both cases, the policy obtained by the MDP
outperforms the EB and AGG policies. In the case where
ρ1

δ1
≤ ρ2

δ2
the performance of the EB and AGG policies are

almost the same while the difference is larger in the other case.
The tightness of the theoretical bound depends on a number
of factors including the value of δ0. Figure 3 compares the
bound with the simulation results from the EB scenario for
three different values of δ0. We note that when the energy
spent on the circuits is small compared to the energy spent on
communications, the bound is fairly tight.

Figures 4, 5 6 and 7 compare the performance of the three
strategies in terms of two other metrics: the average number of
consecutive messages that are not successfully delivered by the
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Fig. 3. Effect of δ0 on the theoretical bound. Parameters used: qon = 0.75,
pon = 0.7, poff = 0.9, c = 2, ρ1 = 0.9, ρ2 = 0.6, δ1 = 2 and δ2 = 1.
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Fig. 4. Comparison of the average number of consecutive lost messages.
Parameters used: qon = 0.75, poff = 0.9, pon = 0.6, ρ1 = 0.9, ρ2 = 0.4
(

ρ1

δ1
> ρ2

δ2

)

and δ0 = 1.

node and the fraction of slots in which it is in the dead state.
The number of consecutive messages that are not delivered
by the node is important in certain medical applications. Note
that a measure of the overall fraction of messages that are
not delivered can be observed from Figures 1 and 2 where
the quality of coverage is the complement of the fraction of
messages that are lost. We observe that the performance of
the three strategies is quite close though AGG has the worst
performance. Also, while MDP performs better than EB when
ρ1

δ1
> ρ2

δ2
, EB outperforms MDP in the other case. While the

differences in the performances is more pronounced in the case
of the fraction of dead slots, a similar relationship is observed
in all the results. The smaller number of dead slots with EB
when ρ1

δ1
≤ ρ2

δ2
is because now EB transmits in more slots

using transmission mode 2. While this decreases the fraction
of dead slots, it does not necessarily result in better quality of
coverage, as can be seen from Figures 1 and 2.

Next, we explore the impact of various system parameters
on the performance of the communication strategies. For
purposes of illustration, we show the results for the MDP based
policy and the other policies follow the same trend. Figure 8
explores the effect of the recharge process on the performance
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Fig. 6. Comparison of the fraction of dead slots. Parameters used: qon =
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for the two cases of ρ1

δ1
≤ ρ2

δ2
and ρ1

δ1
> ρ2

δ2
by varying the

values of qon and qoff . While the performance improves as
qon increases or qoff decreases, qon has a greater impact on
the performance. This is because a larger qon increases the
charge available and thus allows more transmissions using
mode 1 (preferred in this case). Finally, Figure 9 evaluates
the impact of pon and poff on the performance. For higher
values of pon, poff has a smaller impact on the performance
since the number of events generated here is much higher than
the recharge events. As pon decreases, an increase in poff has
a greater effect on the performance.

IX. CONCLUSIONS

To facilitate the development of communication technology
to assist in the deployment of BSNs, this paper addressed the
problem of developing transmission strategies for BSNs with
energy harvesting. Three strategies for scheduling transmis-
sions at different energy consumption levels are considered and
bounds are obtained on the achievable performance. Simula-
tion results show that a strategy based on a MDP formulation
has better quality of coverage that both energy balancing and
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Fig. 8. Effect of qon and qoff on the quality of coverage for the MDP
based policy. Parameters used: pon = 0.7, poff = 0.9 and δ0 = 1.

aggressive policies. In certain scenarios, the energy balancing
policy may outperform the other two in terms of the number
of dead slots and the average number of consecutive messages
that are not reported correctly.

X. APPENDIX

For the case where (δφi
E[N ] < E[A] < δ1E[N ]), we have

the following results:
Lemma 1: The optimal energy balancing policy only uses

modes i with i ≤ i∗, i.e. γi = 0 for all i > i∗.
Proof: To prove this, we start with an arbitrary energy

balancing policy Πα
EB , i.e.

∑

i αi = 1 and
∑

i αiδi = E[A]
E[N ]

(that assigns a fraction αi of transmission slots to mode i) and
show that another energy balancing policy Πβ

EB exists such
that U(Πβ

EB) > U(Πα
EB), and βi = 0 for all i > i∗. Consider

a mode m > i∗. Given α, construct β′ by

βi =



















α0 +
(

1 − δm

δi∗

)

αm i = 0

αi∗ + δm

δi∗
αm i = i∗

0 i = m
αi otherwise

. (64)
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Note that
∑

i βi = 1 and
∑

i βiδi = E[A]
E[N ] and thus β is an

energy balancing policy. Let the difference in the utilities of
α and β be ∆β

α = U(Πβ
EB) − U(Πα

EB). Then

∆β
α =

[

αi∗ +
δm

δi∗
αm

]

ρi∗ − αi∗ρi∗ − αmρm

= αmδm

[

ρi∗

δi∗
−

ρm

δm

]

> 0.

since ρi∗

δi∗
> ρm

δm
for all i. Thus β does not use mode m, and

has better utility than α. We can repeat this procedure for
all m > i∗, and eliminate all such modes, meanwhile only
improving the utility.

Lemma 2: The optimum energy balancing policy sends all
packets, i.e. γ0 = 0.

Proof: We prove the lemma by starting from an arbitrary
energy balancing policy Πα

EB with α0 > 0. We then show
that an energy balancing policy Πβ

EB can be constructed such
that U(Πβ

EB) > U(Πα
EB) and β0 < α0. Furthermore, we will

show that by repeating this procedure, we will reach a policy
such that U(Πβ

EB) > U(Πα
EB) and β0 = 0.

Consider a mode m with δm

1−pon
> E[A]. We have two

cases:

Case I: If
αm ≥

δi∗

δm − δi∗
α0 (65)

then construct the energy balancing policy Πβ
EB such that

βi =















0 i = 0

αm − δi∗

δm−δi∗
α0 i = m

αi∗ + δm

δm−δi∗
α0 i = i∗

αi otherwise

. (66)

Note that
∑

i βi = 1 and
∑

i βiδi = E[A]
E[N ] and thus Πβ

EB is an

energy balancing policy. Policy Πβ
EB has better utility since

∆β
α =

δmδi∗

δm − δi∗
α0

[

ρi∗

δi∗
−

ρm

δm

]

> 0. (67)

Furthermore, we have β0 = 0, which completes the proof.

Case II: If
αm <

δi∗

δm − δi∗
α0 (68)

then construct the energy balancing policy Πβ
EB such that

βi =















α0 −
δm

δi∗
αm i = 0

0 i = m

αi∗ + δm

δi∗
αm i = i∗

αi otherwise

. (69)

Again,
∑

i βi = 1 and
∑

i βiδi = E[A]
E[N ] and thus Πβ

EB is

an energy balancing policy. Also, the policy Πβ
EB has better

utility since

∆β
α = αmδm

[

ρi∗

δi∗
−

ρm

δm

]

> 0. (70)

Furthermore, we have β0 < α0. Thus we have eliminated
transmissions using mode m, and reduced the number unsent
packets. We now pick a new mode m and continue this until
Eqn. (65) becomes true. Note that we cannot run out of modes
before Eqn. (65) becomes true because if that happens, we are
left with a combination of modes, all with δi

1−pon
< E[A], but

there are still unsent packets.
Lemma 3: The optimal energy balancing policy only uses

modes that belong to S, i.e. γi = 0 if i /∈ S.
Proof: Consider an arbitrary energy balancing policy

Πα
EB , with αi = 0, for i = 0 and i∗ + 1 ≥ i ≥ K (as a

consequence of Lemma 1 and 2. Now consider any mode m
such that m /∈ S and sj−1 < m < sj , with sj−1 and sj being
the (j − 1)-th and j-th elements of the set S. Now construct
another energy balancing policy Πβ

EB such that

βi =























αsj
+

δm−δsj−1

δsj
−δsj−1

αm i = sj

0 i = m

αsj−1
+

δsj
−δm

δsj
−δsj−1

αm i = sj−1

αi otherwise

. (71)

Note that
∑

i βi = 1 and
∑

i βiδi = E[A]
E[N ] and thus Πβ

EB is an
energy balancing policy. Also, β0 = 0 and we have divided the
transmissions using mode m in policy Πα

EB between modes
sj−1 and sj in policy Πβ

EB . The policy Πβ
EB has better utility

since

∆β
α = αm(δm − δsj−1

)

[

ρsj
− ρsj−1

δsj
− δsj−1

−
ρm − ρsj−1

δm − δsj−1

]

> 0

since
ρsj

−ρsj−1

δsj
−δsj−1

>
ρi−ρsj−1

δi−δsj−1

for all 1 ≤ i < sj−1. Thus we
can eliminate transmissions using mode m and improve the
utility. Repeating the process above, all modes that are not in
S can be eliminated.

Lemma 4: The optimum energy balancing policy does not
use any mode m with m ∈ S such that m > ν (recall that
ν = arg minsi∈S

{

δsi
:

δsi

1−pon
≤ E[A]

}

).

Proof: From Lemmas 1 and 3, the optimal energy balanc-
ing policy does not use any transmission modes greater than i∗

and modes that are not in S. Then consider an arbitrary energy
balancing policy Πα

EB with αsj
6= 0 and sj ∈ S and sj < ν.

Then pick a mode m such that m > ν and αm > 0. Note that
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such a mode m necessarily exists otherwise we would have
∑

i αiδi < E[A]
E[N ] . Then we have two cases:

Case I: If

αm ≥
δsj+1

− δsj

δm − δsj+1

(72)

then construct another energy balancing policy Πβ
EB such that

βi =























αsj+1
+

δsj

δsj+1

αsj
+

δsj+1
−δsj

δm−δsj+1

δm

δsj+1

αsj
i = sj+1

0 i = sj

αm −
δsj+1

−δsj

δm−δsj+1

αsj
i = m

αi otherwise

.

(73)
Note that

∑

i βi = 1 and
∑

i βiδi = E[A]
E[N ] and thus Πβ

EB is an

energy balancing policy. Now, policy Πβ
EB has better utility

since

∆β
α = αsj

[

δm−δsj

δm−δsj+1

(ρsj+1
−ρsj

)−
δsj+1

−δsj

δm−δsj+1

(ρm−ρsj
)

]

> 0.

since
ρsj+1

−ρsj

δsj+1
−δsj

>
ρi−ρsj

δi−δsj

for all 1 ≤ i < sj . Thus we
can eliminate transmissions using mode sj and improve the
utility. We can thus start the mode s0 and repeat the process
sequentially for s1, s2, · · · and so on for all modes si in S
that satisfy si > ν to arrive at the desired result.
Case II: If

αm <
δsj+1

− δsj

δm − δsj+1

(74)

then construct another energy balancing policy Πβ
EB such that

βi =























αsj+1
+ αm +

δm−δsj+1

δsj+1
−δsj

αm i = sj+1

0 i = m

αsj
−

δm−δsj+1

δsj+1
−δsj

αm i = sj

αi otherwise

. (75)

Note that
∑

i βi = 1 and
∑

i βiδi = E[A]
E[N ] and thus Πβ

EB is an

energy balancing policy. Now, policy Πβ
EB has better utility

since

∆β
α = αm(δm − δsj

)

[

ρsj+1
− ρsj

δsj+1
− δsj

−
ρm − ρsj

δm − δsj

]

> 0

since
ρsj+1

−ρsj

δsj+1
−δsj

>
ρi−ρsj

δi−δsj

for all 1 ≤ i < sj . Thus policy

Πβ
EB has higher utility that policy Πα

EB and we have βsj
<

αsj
. Now we can pick a new mode m and continue the process

above till Eqn. (72) is satisfied. Note that we cannot run out of
modes before Eqn. (72) becomes true because if that happens,
we are left with a combination of modes, all with δi

1−pon
<

E[A] such that all packets are transmitted and we are thus
left with extra energy. Thus by continuing the process, we can
eliminate transmissions using mode sj and still improve the
utility. We can thus start the mode s0 and repeat the process
sequentially for s1, s2, · · · and so on for all modes si in S
that satisfy si > ν to arrive at the desired result.
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