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Throughput Guarantee for Maximal Schedulers in Sensor Networks with
Cooperative Relays

Huijiang Li and Biplab Sikdar

Abstract—This paper addresses the question of throughput
guarantees through distributed scheduling in sensor networks
with relay based cooperative communications. We prove that in
a single frequency network with bidirectional, equal power com-
munication and low complexity distributed maximal scheduling
attains a guaranteed fraction of the maximum throughput region
in arbitrary wireless networks. We also show that the guarantees
are tight in the sense that they cannot be improved any further
with maximal scheduling. Simulation results are also provided
to show the performance of a distributed, maximal scheduling
algorithm under different network settings.

Index Terms—Maximal scheduler, wireless sensor network,
cooperative relay, throughput guarantee

I. INTRODUCTION

Communication technologies that use relays or cooperative
transmissions have received considerable attention, particu-
larly due to their ability to increase a wireless sensor network’s
(WSN’s) range and capacity [1]. Existing research has shown
that cooperative diversity gains can be achieved in distributed
WSNs where nodes help each other by relaying transmissions
[2]. This paper focuses on the performance of the scheduling
algorithm used to control the channel access at the medium
access control (MAC) layer in WSNs with cooperative relays.
We focus on the throughput guarantees that may be provided
by distributed schedulers for WSNs with cooperative relays
and prove that maximal schedulers can achieve a guaranteed
fraction of the maximum throughput region in arbitrary wire-
less networks.

The communication theory aspect of cooperative relaying,
such as energy efficiency, bit error rate, forwarding strategies
(e.g. decode and forward, amplify and forward) have been
widely investigated [2], [3]. However, the performance of
upper layer protocols, such as MAC layer schedulers, that
use cooperative relay based communication technologies has
not been investigated in detail. For wireless networks with-
out cooperative relays, [4] presents the maximum achievable
throughput region and an algorithm for attaining it, although
the centralized nature and computational complexity of the
scheduler limits its applicability. Instead, we focus on maxi-
mal scheduling, which is equivalent to solving the Maximal
Independent Set (MIS) problem in graph theory. While it is
known that a simple randomized distributed MIS algorithm for
an arbitrary graph of size n, including exchange of messages,
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can be done in time O(log2n) [5], [6], their performance in
terms of the achievable throughput in cooperative relay based
WSNs is unknown.

It has been shown in [7] that for wireless networks with
direct transmissions (i.e. no cooperative communications),
maximal scheduling is guaranteed to achieve a fraction of the
maximum throughput region and the fraction (of value 1/8) is
decided by the maximum “conflict degree” of the network. The
conflict degree of a transmitter-receiver pair (u, v) is defined
as the number of transmitter-receiver pairs that interfere with
(u, v) but not with each other. Using this notion of conflict
degree, we prove that in a network with cooperative relays, any
distributed maximal scheduling algorithm can achieve at least
1/10 of the maximum throughput region and this guarantee
cannot be improved any further. Finally we note that MAC
protocols focusing on the implementation details have been
proposed for cooperative communications [8]. Our contribu-
tion is that we characterize the attainable maximum throughput
region while considering a general maximal scheduler as the
baseline.

The rest of the paper is organized as follows. Section II
describes the network and conflict models and a performance
guarantee on maximal throughput scheduling is presented in
Section III. Simulation results are presented in Section IV.
Finally Section V concludes the paper.

II. NETWORK MODEL

We consider a network where sensors share a single fre-
quency and have the same transmission power. We consider a
WSN with simple cooperative communication and a discrete
memoryless three-terminal relay model as in [1]. Every session
I with a packet transmission involves three nodes: the source
S, the destination D and the relay R. Thus a session may be
represented as a 4-tuple (I, S,D,R). The distance and channel
gains between two nodes i and j are represented by d(i, j)
and λi,j respectively.

A discrete slotted-time model is assumed where each slot
is long enough so that a source and a relay can cooperatively
transmit a single packet to the destination. The message
exchanges among the source, relay and destination are con-
sidered to be bi-directional; the source broadcasts the data to
the destination and the relay; the relay retransmits the data
to the destination, and the destination replies with an ACK if
it successfully receives the packet. The decode-and-forward
relay strategy is assumed in this paper [3].

We model a wireless network as a graph G = (V,E), where
V is the set of nodes (i.e. sensors in the network) and E is
the set of links. If sensor A is in the transmission range of
sensor B, then A is B’s neighbor. By assuming bidirectional
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symmetric communication, B is A’s neighbor too. If A and
B are neighbors, there is a link (A,B) ∈ E. We denote the
neighborhood of A as NA, defined as the set of nodes that
are in A’s transmission range. In addition, it is assumed that
each node has a single transceiver (transmitter/receiver), thus
each node can only participate in one session at a time. Then
a session (Ii, Si, Di, Ri) is successful when none of the nodes
in this session is participating in other sessions and if none
of the neighbors of Si, Di, and Ri transmit in this slot. The
conflict set of session Ii is then,

C(Ii) = {Ij : Ij shares a common node with Ii,

(Sj , or Rj or Dj) ∈ (NSi ∪NDi ∪NRi)}. (1)

If Ij ∈ C(Ii) and Ii ∈ C(Ij), sessions Ii and Ij are also
defined as neighbors.

III. MAXIMAL SCHEDULING PERFORMANCE GUARANTEE

Let the number of sessions in conflict set C(Ii) that can
be scheduled at the same time (but not with session Ii) be
defined as the conflict degree of conflict set C(Ii). Denote the
maximum conflict degree in the network as K(N ). It is proved
in [7] that for the single frequency, bi-directional, equal-power,
two-terminal communication network model (i.e. no relays),
the performance of an arbitrary maximal scheduling algorithm
is guaranteed to achieve 1/K(N ) of the maximum throughput
region. In this paper we extend this result for networks with
cooperative relays and note that the extension is non-trivial.
Further, we show that for a three-terminal relay network, at
least 1/10 of the maximum throughput region is attained. We
also show that this guarantee cannot be improved because
there exist network topologies where at most 1/10 of the
maximum throughput region is achieved.

In a wireless network N , let λi be the arrival rate of session
Ii, i = 1, · · · , N . Define �λ as the N -dimensional arrival rate
vector whose components are the arrival rates of the sessions.
A network is said to be stable if the arrival rate of each session
equals its departure rate. The throughput region of a maximal
scheduling policy πMS , denoted as ΛMS , is the set of arrival
rate vectors such that the network is stable under πMS . Also,
an arrival rate vector �λ is said to be feasible if it falls in the
throughput region of some scheduling policy. The maximum
throughput region of the network N is the set of all feasible
rate vectors from all possible policies and is denoted by Λ.
We then use the following result from [7]:

Theorem 1 [7]: In any wireless network N , if �λ ∈ Λ in N ,
then �λ/K(N ) ∈ ΛMS in N .

The formal proof is detailed in [7] for two terminal commu-
nication networks and all statements hold for networks with
cooperative relays. The theorem states that, for any wireless
network N , at least 1/K(N ) of the maximum throughput
is guaranteed given any maximal scheduling policy. For an
arbitrary session Ii in N , there are at most K(N ) sessions
in Ii ∪C(Ii) that can be scheduled simultaneously. Thus, the
sum of departure rates and the sum of the feasible arrival rates
for Ii ∪ C(Ii) is at most K(N ). For an arrival rate vector
�λ/K(N ), the sum of arrival rates for Ii ∪ C(Ii) is at most
1. With maximal scheduling, one session is always scheduled
among Ii ∪ C(Ii). Thus, with �λ/K(N ), the departure rates
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Fig. 1. A session (I0, S0, R0, D0) in the Euclidean plane, showing the
division of Area#1, · · · , Area#7, the sectorization of b(S0) and b(D0),
and the location of other nodes.

are greater than or equal to the arrival rates and the network
is stable.

We now state and prove the main result of this paper that
quantifies K(N ) and thus the guaranteed throughput region
for maximal scheduling.

Lemma 1: For any wireless network N with relay usage,
if the same frequency and equal power are used in nodes, and
bi-directional communication is involved, then K(N ) ≤ 10.

Proof: Let the transmission range of each sensor be dmax.
In a two-dimensional Euclidean plane, the neighborhood area
of a node A is equivalent to the closed circle centered at A
with radius dmax, denoted as b(A). The coverage area of any
session (I0, S0, D0, R0) is then the union of the areas b(S0),
b(D0) and b(R0), as shown in Fig. 1. If a session Ij ∈ C(I0),
at least one terminal of session Ij falls in the coverage area of
session (I0, S0, D0, R0). Thus to find the maximum K(N ),
it is sufficient to find the maximum number of nodes that can
be contained in b(S0)∪ b(D0)∪ b(R0), such that the distance
between any two of these nodes is greater than dmax.

Without loss of generality (wlog), we can assume that node
S0 and D0 lie on the x axis. For the sake of convenience, we
divide b(S0)∪b(D0)∪b(R0) into 7 sub-areas, labeled Area#1
through Area#7 in Fig. 1. For example, b(S0) = Area#1 ∪
Area#4 ∪ Area#6 ∪ Area#7. Area#1 is the area where
b(S0) does not intersect with either b(D0) or b(R0); Area#4
is the area where b(S0) intersects with b(R0) but not with
b(D0); Area#6 is the area where b(S0) intersects with b(D0)
but not with b(R0); and Area#7 is the area where b(S0)
intersects with both b(D0) and b(R0). We use Un to denote
the number of nodes lying in Area#n. We first formulate the
following geometric facts, statements and intermediate results:

U1 + U2 +

7∑

n=4

Un ≤ 8, U1 +

7∑

n=3

Un ≤ 8,

7∑

n=2

Un ≤ 8 (2)

U1+U4+U6+U7 ≤ 5, U2+
7∑

n=5

Un ≤ 5,
5∑

n=3

Un+U7 ≤ 5 (3)

U1 + U4 ≤ 4, U2 + U5 ≤ 4 (4)

U2 + U6 ≤ 4, U3 + U4 ≤ 4 (5)
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U3 + U5 ≤ 4, U1 + U6 ≤ 4 (6)

where Eqn. (2) is proved in Lemma 3 of [7] and states that
in the coverage area of any two-node session, there can be
at most 8 nodes that are in conflict with the session but not
with each other. Eqn. (3) follows the geometric argument and
Lemma 18 of [7] and states that at most 5 nodes can be located
in a circle (b(S0), b(D0), or b(R0)) such that the distance
between any two nodes is greater than the radius. The two
inequalities in Eqn. (4) are based on the fact that b(S0) and
b(D0) intersect with each other with the distance between S0

and D0 satisfying |S0D0| ≤ dmax and the region b(S0)\b(D0)
is covered by 4 π/3 sectors. The same arguments hold for
b(D0)\b(S0). Also as shown in the proof of Lemma 3 in [7],
the two equalities in Eqn. (4) can not be achieved at the same
time. Similar arguments hold for Eqn. (5) and (6) as well. The
rest of the proof proceeds in two steps.
Step 1: We prove by contradiction that the number of nodes
not interfering with each other in Area#1 ∪ Area#2 ∪
Area#3 is at most 8:

U1 + U2 + U3 ≤ 8. (*)

Since each scenario with U1+U2+U3 ≥ 9 can be reduced to a
scenario with U1+U2+U3 = 9 by eliminating some sessions,
it suffices to consider only the scenarios with U1+U2+U3 = 9.

Contradicting assumption: U1 + U2 + U3 = 9. (A1)

Definition 1: Consider a session (Ii, Si, Di, Ri). For each
session in C(Ii) but not in conflict with each other, choose
one of its terminals that falls in the coverage area of session
Ii. Denote the set of chosen nodes by U , and let U = |U|.
Given a node A ∈ U , A ∈ b(x) and A /∈ b(y) with
x, y = {Si, Di, Ri} and x �= y, define the distance from
A to b(y) as min{|AB| : B ∈ U , B ∈ b(y), y /∈ b(x)}. The
smaller the distance, the closer node A is to disk b(y).

Since 0 ≤ Un ≤ 4 for n = 1, 2, 3, at least two areas
have 3 or more nodes. Because of symmetry, wlog, we can
assume that Area#1 and #2 are the two areas with 3 or more
nodes. Then we divide b(S0) and b(D0) into six π/3 sectors
respectively as shown in Fig. 1 with the dashed lines.
case (i): U1 = U2 = 3. Thus U3 = 3 by assumption A1.
Let S1, S2, S3 be the nodes on Area#1, with S1 being the
closest to b(D0) and S3 being the closest to b(R0). Similarly,
let D1, D2, D3 be the nodes on Area#2, with D1 being the
closest to b(S0) and D3 being the closest to b(R0). Finally,
let R1, R2, R3 be the nodes on Area#3, with R1 being the
closest to b(S0) and R2 being the closest to b(D0). Note that
the distance between any two nodes is greater than dmax and
the angle subtended at S0 or D0 by any two nodes in adjacent
sectors is greater than π/3. Then S3 can only be on either
sector W3S0W4 or sector W4S0W5 and D3 can only be on
sector U3D0U4 or sector U4D0U5.

To obtain the maximum value of U1 + U2 + U3, we can
assume that S1 is on sector W1S0W2 (Argument: Since
U1 = 3 and Area#1 is covered by four π/3 sectors,
whatever be the spread of the three nodes S1, S2, S3, at
least one node falls on either sector W1S0W2 or sector
W4S0W5. Due to symmetry, wlog, we can assume that there
is one node on sector W1S0W2.). Now, choose the point

Sp1 to make S0S1Sp1D0 a parallelogram, choose Rp1 to
make S0R0R1Rp1 a parallelogram, and choose Rp2 to make
D0R0R2Rp2 a parallelogram. First we claim that,

∠Sp1D0D2 > π/3,∠Rp1S0S2 > π/3,∠D2D0Rp2 > π/3 (7)

∠S1S0W1 + U1D0Sp1 = π/3. (8)

To see these, wlog, we can assume that D1 has a smaller y-
coordinate than S1. If node D1 lies outside the parallelogram
or on the line Sp1D0, ∠Sp1D0D2 > ∠D1D0D2 > π/3.
If node D1 lies inside the parallelogram S0S1Sp1D0, to
see that ∠Sp1D0D2 > π/3, we choose Dp1 such that
S1Sp1Dp1D1 is a parallelogram, as shown in Fig. 1. We then
have |Sp1Dp1| = |S1D1| > dmax. Join Dp1 with D0 and D2.
By construction, D1Dp1 is parallel to the x axis. Then D2

must have a y-coordinate lower than D1 or Dp1 since it is
easy to see that there is no point in sector U2D0U3 with y-
coordinate higher than D1 or Dp1 and whose distance from
D1 is greater than dmax. Also, by construction, |D1Dp1| =
|S1Sp1| = |S0D0| ≤ dmax. Then it is easy to see that Dp1

must lie outside b(D0). Thus line segment Sp1D2 intersects
with line segment D1Dp1. In triangle D1Dp1D2, |D1D2| >
dmax ≥ |D1Dp1|, and thus ∠D1Dp1D2 > ∠Dp1D2D1. Since
∠Sp1Dp1D2 > ∠D1Dp1D2 > ∠Dp1D2D1 > ∠Dp1D2Sp1,
in triangle Sp1Dp1D2, we have |Sp1D2| > |Sp1Dp1| > dmax.
Since S1 is in sector W1S0W2, it follows that Sp1 must lie
on sector U1D0U2. Since both Sp1 and D2 are in b(D0), we
have ∠Sp1D0D2 > π/3.

Similarly, we have ∠Rp1S0S2 > π/3 and ∠D2D0Rp2 >
π/3. Then, since ∠S1S0W1 = ∠Sp1D0U2 and ∠U1D0Sp1 +
∠Sp1D0U2 = π/3, and we have Eqn. (8).

Next, we claim that,

∠R1R0R2 < 2π/3. (9)

To see this, extend the line S0R0 to point E1 and line D0R0

to point E2. Then,

∠R1R0R2 = ∠R1R0E1+∠E2R0R2−∠E2R0E1

= ∠Rp1S0E1+∠E2D0Rp2−∠S0R0D0

= ∠Rp1S0R0+∠R0S0D0+∠S0D0R0

+∠R0D0Rp2−π

= π−∠Rp1S0W3−∠U3D0Rp2. (10)

To show ∠R1R0R2 < 2π/3, it is enough to show that

∠Rp1S0W3 + ∠U3D0Rp2 > π/3. (11)

Since ∠Rp1S0S2 > π/3 (from Eqn. (7)), Rp1 can only lie in
sector W3S0W4 or sector W4S0W5. If it is in sector W4S0W5,
∠Rp1S0W3 > π/3, and we have Eqn. (11). Similarly, if Rp2

is in sector U4D0U5, we have Eqn. (11). On the other hand, if
Rp1 lies in sector W3S0W4 and Rp2 lies in sector U3D0U4,
since ∠S2S0S1g > π/3 and ∠Rp1S0S2 > π/3, we have
∠W4S0Rp1 + ∠S1S0W1 < π/3. Thus,

∠Rp1S0W3 = π/3− ∠W4S0Rp1 > ∠S1S0W1. (12)

Additionally, since ∠S2S0S1g > π/3, we have ∠W3S0S2 +
∠S1S0W1 ≤ π/3. Since ∠S3S0S2 = ∠S3S0W3 +



4 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

∠W3S0S2 > π/3, we have

∠S3S0W3g > ∠S1S0W1.

Likewise, we have

∠U3D0Rp2 = π/3− ∠Rp2D0U4 > ∠U1D0Sp1. (13)

∠U3D0D3 > ∠U1D0Sp1. (14)

Combining Eqns. (12), (13) and (8), we have

∠Rp1S0W3 +∠U3D0Rp2 > ∠S1S0W1 +∠U1D0Sp1 = π/3.
(15)

However, by assumption we must have U3 = 3. Thus
there is a third node, say R3, in Area#3, which satisfies
∠R1R0R3 > π/3 and ∠R3R0R2 > π/3 at the same time.
However, this is a contradiction with Eqn. (9). Thus, if
U1 = U2 = 3, U3 ≤ 2 and U1 + U2 + U3 ≤ 8.

Case (ii): U1 = 3, U2 = 4. Let S1, S2 and S3 be the nodes in
Area#1 with positions as defined for case (i). Since U2 = 4
and Area#2 is covered by four sectors, each sector contains
exactly one node. Let D1 be on sector U1D0U2, D2 be on
sector U2D0U3, D3 be on sector U3D0U4 and D4 be on sector
U4D0U5. Similar to Eqn. (7) we then have,

∠Rp2D0D3 > π/3. (16)

From Eqns. (14) and (16),

∠U3D0Rp2 = ∠U3D0D3+∠D3D0Rp2 > ∠U1D0Sp1+π/3.
(17)

Substituting Eqns. (12), (17) and (8) into Eqn. (10), we have

∠R1R0R2 < π/3. (18)

However, based on our assumption, |R1R2| > dmax, which
contradicts Eqn. (18). Thus, if U1 = 3 and U2 = 4, U3 ≤ 1
and U1 + U2 + U3 ≤ 8.

Since the equalities in Eqn. (4) cannot be achieved at the
same time (i.e. b(S0)\b(D0) and b(D0)\b(S0) cannot each
contain 4 nodes at the same time), there is no case where
U1 = U2 = 4. Therefore, for any case, U1+U2+U3 ≤ 8 holds.

Step 2: Following Eqn. (*) and constrains in Eqns. (2) to (6),
we now traverse the cases for all possible values of U1 to
show that K(N ) ≤ 10 always holds.
Case (i): U1 = 4. Then U7 ≤ 1 by Eqn. (3), U4 = U6 = 0
by Eqn. (4) and (6), and U2 + U3 ≤ 4 by Eqn. (*). Then we
have the following scenarios:

1) If U2 ≤ 1, K ≤ 10 since U3 +U4 +U5 +U7 ≤ 5 from
Eqn. (3).

2) If 3 ≤ U2 ≤ 4, U3 ≤ 1. Then K ≤ 9 < 10 from Eqn.
(2).

3) If U2 = 2, U3 ≤ 2 and U5 ≤ 1 since the equalities
in Eqn. (4) cannot be achieved at the same time. Thus
K ≤ 4 + 2 + 2 + 1 + 1 = 10.

Case (ii): 0 ≤ U1 ≤ 2. Since
∑7

n=2 Un ≤ 8 by Eqn. (2),
K ≤ 2 + 8 = 10.
Case (iii): U1 = 3. Then U2 + U3 ≤ 5 by Eqn. (*). Then
we have the following scenarios as all possible U2 and U3

combinations.
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Fig. 2. Example of a network with K(N ) = 10.

Note that bidirectional symmetric communication is con-
sidered in this article and with the defintion of the conflict
set (Eqn. (1)), in the context where we are looking for the
maximum conflict degree, the role of source, destination or
relay is equivalent and interchangable while Theorem 1 will
still hold. Thus, in the Euclidean plane model of a session, the
result concluded for a scenario of U1 = u, where 1 ≤ u ≤ 4,
will hold for cases of U2 = u and U3 = u, vice verse.

1) U2 = 4, U3 ≤ 1. Cases can be broken down as in Case
(i) U1 = 4 and the result K ≤ 10 holds.

2) U2 = 3, U3 ≤ 2 or U2 ≤ 2, U3 = 3. These scenarios
are similar to Case (ii). If U3 ≤ 2, since U1 + U2 +∑7

n=4 Un ≤ 8 by Eqn.(2), we have K ≤ 2 + 8 = 10.
In the same way, if U2 ≤ 2, K ≤ 10.

3) U2 ≤ 1, U3 = 4. Since U3 = 4, K ≤ 10 can be proved
in the same way as in Case (i) U1 = 4.

In conclusion, maxK(N ) ≤ 10 for all possible cases.
Next we show that the performance guarantee is tight by

demonstrating the existence of a network with K(N ) = 10.
Lemma 2: There exists a wireless network with relay usage

that uses a single frequency with equal power in all nodes and
bi-directional communication such that K(N ) = 10.

Proof: We prove the result using construction. An ex-
ample network with K(N ) = 10 is shown in Fig. 2. To
construct the network, consider a session (I, S,D,R) with
|SD| = |SR| = |DR| = dmax. Let Bi, Ai,Mi, i = 1, · · · , 10
be the transmitter, receiver, and relay respectively of session
Ii.

The nodes Bi, i = 1, · · · , 8 are located respectively
at the edges of b(Si) ∪ b(Di) ∪ b(Ri) as shown. Thus,
Ii ∈ C(I). Specifically, ∠B1SD = 117◦ and ∠B1SB2 =
∠B2SB3 = ∠B3SR = 61◦. Thus, |B1B2| = |B2B3| >
dmax. Also, we have ∠B4RS = 120◦ and ∠B4RB5 = 61◦.
Thus, |B4B5| > dmax. Finally, we have ∠B8DS = 116◦,
∠B8DB7 = ∠B7DB6 = 61◦ and ∠B6DR = 62◦. Thus,
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Algorithm 1 Maximal Scheduling Algorithm
1: loop
2: {# comment: at each time slot, one single phase}
3: Each undecided session Ii chooses a random number

r(Ii) ∈ (0, 1) and sends it to all its neighbors.
4: If r(Ii) < r(Ij) for all sessions in C(Ii), session Ii is

picked to be scheduled and informs all its neighbors.
5: If one of Ii’s neighbor is scheduled, Ii decides not to

transmit.
6: If all sessions reach their decisions, the scheduling is

done. Otherwise, enter the next phase.
7: end loop

|B8B1| > dmax, |B8B7| = |B7B6| > dmax.
We now show that |B3B4| > dmax and |B5B6| > dmax.

Denote one of the intersection points of b(S) and b(R) as
K1 (the other is D). Then SRB4K1 is a parallelogram and
|B4K1| = dmax. Thus in triangle K1B3B4, ∠B4K1B3 > π/2
and |B4B3| > |B4K1| = dmax. Similarly, |B5B6| > dmax.

Next, suppose b(B1) and b(B8) intersect with each other
at point K2 as shown. Choose A10, B10 and M10 such that
none of them is in b(B1) or b(B8). More specifically, let
A10 and B10 lie on the line K2R with |A10K2| = ε1 and
|A10B10| = ε2. Then we have |B1A10| > dmax, |B8A10| >
dmax, |B1B10| > dmax, |B8B10| > dmax, |B1M10| > dmax

and |B8M10| > dmax. In the same way, construct A9, B9

and M9. Let |B9R| = ε3 and |A9R| = ε4. Choose ε1, ε2, ε3
and ε4 small enough such that that |B10B9| > dmax. Thus,
Ii, i = 1, · · · , 10 do not conflict with each other and can be
scheduled at the same time, but all are in the conflict set of
session I , so K(N ) = 10.

IV. SIMULATION AND RESULTS

In this section we present simulation results to evaluate the
throughput achieved by maximal scheduling under different
networking conditions. The simulations were done using a
simulator written in C. All simulations were run for a duration
of 10000 time units and each result shown is the average
of 10 simulation runs with different seeds. A packet size
of 256 bytes is assumed, unless otherwise noted, and 16-
QAM (quadrature amplitude modulation) is used by the source
and relay nodes. For our simulations, we consider a simple,
distributed collision-free maximal scheduler based on the well
known solution for maximal independent sets [6]. We use the
randomized distributed algorithm shown in Algorithm 1 which
for a graph of size n, has a time complexity O(log2n) [6].
Note that in this algorithm multiple sessions contend for the
transmission using a random access mechanism and distributed
information is allowed to be updated in the same time slot.

To evaluate the throughput, for each packet we first check
if the transmission was successful or not by using the bit error
rate (BER) associated with the transmission. For every session,
we assume that the channels between the sensors are mutually
independent Rayleigh fading channels with average channel
powers λS,D, λS,R and λR,D [3]. We use the log-distance path
loss model where P (receiver) = P (transmitter)/dα, where
d is the distance between the transmitter and the receiver and α
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Fig. 3. Per slot throughput compared with direct transmission in networks
with 200, 400, 1100, and 2000 nodes. Two packets are transmitted in each
slot with direct transmission.
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Fig. 4. Per slot throughput compared with direct transmission in networks
with 200, 400, 1100, and 2000 nodes. The modulation data rate with direct
transmission is half of that with relay usage.

is the path loss exponent. Typical values of α equal 2 for free
space and 2.7 ∼ 3.5 for urban areas [9]. In our simulations, α
is set to 3. Finally, we assume equal power allocation between
the source and the relay. If the power budget for a transmission
is PmW , then we assume that the source and the relay each
consume P/2mW . Assuming that the signal at the destination
is combined by using maximal ratio combining, we use the
closed form expressions for the BER of Decode-and-Forward
relaying for phase-shift keying (PSK) or QAM given in [3] to
evaluate the probability that a packet is successfully delivered.

A. Results

We simulate a network where nodes are randomly dis-
tributed in a 2000m×2000m square region. We assume a noise
level N0 = −90dBm and transmission range dmax = 100m.
We also assume saturated traffic conditions where in every
time slot, each node always has a packet to send. A scheduled
transmission is counted only if it is successfully decoded using
the BER calculations.
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Fig. 5. Per node throughput in for two different relay selection policies in
networks with 200 and 400 nodes.

Figure 3 compares the network throughput per slot of
networks using relays and direct transmissions, with 200, 400,
1100 and 2000 randomly distributed nodes. If a source has
multiple relays to choose from, it picks one randomly in each
slot. Each slot is assumed to be long enough so that the packet
is broadcast to the relay and the relay is able to re-encode and
transmit the data to the destination. For direct transmissions
without relays, we assume that a source is able to transmit
two packets in a slot of same length, for a given data rate.
From Fig. 3, we observe that when relays are used, as the
node density increases, the network throughput increases (but
not necessarily the throughput per node due to higher channel
contention). We also note that as the transmission power
increases, the throughput saturates and the improvement slows
down as the size of the network increases. For networks with
200 nodes, direct transmissions outperform relays over the
power range considered. As the network size increases, relays
achieve better throughput than direct transmissions when the
transmission power is low. The power range where relays have
better throughput increases (but saturates) as the size of the
network increases. One of the reasons behind this is that in a
network with sparse node density, there are much fewer three-
terminal links compared to two-nodes links. However, at high
node densities, the difference in the number of available links
decreases and almost every node in the network has at least
one neighbor that may relay its transmissions.

Figure 4 also compares the network throughput per slot
for relays and direct transmissions. However, here direct
transmissions use a lower data rate modulation compared to
the relays. Specifically, 16-QAM is used by both the source
and the relay for cooperative communication, while 4-QAM
is used if the source transmits the packet on its own. Thus
in a slot, a single packet is transmitted by both relays and
direct transmissions. Compared to Fig. 3, we observe that
the throughput of direct transmissions saturates faster as the
transmission power increases and the network with relays
achieves a slightly wider power range where it outperforms
the network with direct transmission.

Figure 5 compares the performance of two different strate-
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Fig. 6. Per node throughput for different packet lengths in a network with
200 nodes.

gies that may be used by source nodes to pick the relay nodes.
Instead of randomly picking a relay in each slot as considered
in Figs. 3 and 4, we consider another policy where the source
always chooses the relay that has the smallest calculated BER.
It can be seen that choosing the relay with the lowest BER
increases the throughput. However, this also leads to a faster
battery consumption in the selected relays, as compared to
random relay selection.

Figure 6 shows the impact of the packet size on the through-
put in a 200 node relay based network. At relatively smaller
transmission powers, the throughput per node decreases as the
packet size increases due to the higher packet error rate. When
the transmission power is high enough, the packet error rate is
negligible for all packet sizes and the throughput is limited by
the requirement to pick conflict-free sessions for transmission.

Finally we note that the scheduling algorithm used in
the simulations is a general maximal scheduling algorithm.
The throughput and fairness can possibly be improved by
more sophisticated schedulers that take into account additional
information such as the network traffic etc..

V. CONCLUSIONS

While a number of cooperative communication schemes
have been proposed for wireless networks, the performance
of upper layer protocols under such communication paradigms
is largely unknown. This paper considers the problem of the
achievable maximum throughput region of maximal schedulers
in WSNs with cooperative relays. We show that distributed
maximal scheduling algorithms can achieve a guaranteed frac-
tion of the maximum throughput region in arbitrary wireless
networks. It was also shown that the guarantees are tight in the
sense that they cannot be improved any further with maximal
scheduling.
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