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A Quasi-species Model for the Propagation and
Containment of Polymorphic Worms

Bradley Stephenson Member, IEEE and Biplab Sikdar Member, IEEE

Abstract—Polymorphic computer worms are characterized by their ability to change their byte sequence as they replicate and
propagate, thereby aiming to thwart intrusion detection systems (IDSes). In this letter, we propose a model based on coevolution
of biological quasi-species to characterize the propagation of polymorphic worms and the effect of IDSes on their dynamics. The model
is used to derive the conditions required for the IDS to contain the worm. The model is validated using simulations.
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1 INTRODUCTION

Polymorphic techniques, which allow a worm to change
its byte sequence with every instance, are increasingly
being used to disguise worm payloads and attempt to
bypass both signature and anomaly based IDSes. The
objective of this letter is to develop a model for the
propagation of polymorphic worms in the presence of
a dynamic IDS. The model is then used to obtain: (1) the
necessary conditions for the IDS to contain the spread of
the worm and (2) the conditions governing the growth
of various strains of the worm.

Understanding polymorphic worms remains a diffi-
cult and largely open problem. Existing papers on poly-
morphic worms either focus on developing mechanisms
to detect them [1], [2], [3], [4], [5], [6], [7], [8] or study
techniques they may use to evade the IDS [9], [10],
[11], and not on modeling issues. On the other hand,
papers that focus on developing propagation models for
worms and other malware in the Internet such as [12],
[13], [14] do not address polymorphic worms. Intrusion
detection systems and their requirements have also been
extensively studied (see [15], [16], [17], [18], [19], [20],
[21], [22] and the references therein). Again, these either
specifically focus on single strain worms and viruses or
do not consider the coevolution of the worm and the
IDS.

This letter fills a void in this area by developing an
analytic framework for modeling and evaluating the
dynamics of polymorphic worms. Our model is based
on biological models for the coevolution of viral quasi-
species and their interaction with the immune system
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[23], [24]. The morphing of code in polymorphic worms
is analogous to the modifications in the genetic material
of biological organisms in successive generations and
this analogy was alluded to in [25]. The ability of the
evolved organisms to survive depends on the ability
of the immune system of the host to detect the new
pathogen strains, analogous to the dependence of the
survivability of new strains of the polymorphic worm
on the effectiveness of the IDS. The evolution of the
polymorphic worm’s dynamics is modeled by a set
of differential equations governing the co-evolutions of
the quasi-species represented by the code sequences
generated by the polymorphic worms, and the fitness
landscape representing the capabilities of the IDS. We
use these equations to evaluate the conditions required
for the IDS to contain the worm. The observations from
the model are validated using simulations.

The applicability of the model presented in this paper
is limited to polymorphic worms. The model is not
applicable to other possible and in some cases more
effective ways to thwart IDSes such as metamorphic
worms [1], [26], [27] and red herring [4] or allergy attacks
[28]. The goal here is not to investigate the numerous
ways in which a worm may try to confuse or overwhelm
an IDS but rather to focus on the specific problem of
modeling the population of polymorphic worms. Finally,
some assumptions are made in this letter for analytic
tractability, which while not always true, do not diminish
the value of the insights gained from the model.

The rest of the letter is organized as follows. In Section
2 we present and discuss the assumptions made in our
model. Section 3 presents our model and the results from
the model are compared against simulations in Section
4. Conclusions are presented in Section 5.

2 MODEL PRELIMINARIES AND ASSUMP-
TIONS

In this section we discuss the basic assumptions made in
this letter. A discussion of polymorphism as it relates to
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worms and our model can be found in [29]. Each copy
of the worm is assumed to consist of an arbitrary (but
fixed) number of strings or sequences. In this letter we
refer to each worm with a different code sequence as a
strain. In each generation the worm mutates some of the

sequences to create new strains. We assume that the ith

sequence mutates independently with probability ǫi and
its mutated sequences are chosen from an alphabet of
size Si. Each worm copy replicates at a rate of β.

An IDS system is assumed to be present in the net-
work. We assume that the IDS has no knowledge of the
worm initially but, depending on its capability, is able to
detect some or all variations of the worm after a specific
period of time. The model presented in this paper is not
dependent on the exact techniques used by the IDS to
detect the worms.

2.1 Discussion on the Assumptions

The objective of this letter is to give an intuition behind
the propagation dynamics of polymorphic worms and
some of the assumptions above have been made to keep
the analysis tractable while avoiding an overwhelming
number of variables. We now discuss these assumptions
and their implications.

Our model assumes that in each successive replication,
each byte sequence mutates independently. The indepen-
dence in the mutations also means that they are harder
to detect since there are no correlations that may be
exploited.

The rate at which new infection attempts are made
by real life worms depends on the scanning mechanism
used and in certain scenarios, the replication rate de-
creases with time. We assume a constant replication rate
representing the worst case scenario, leading to exponen-
tial growth in the worm population. This is consistent
with the worm growth, detection and containment for
the early stage of a worm and the model is accurate in
these scenarios.

Another concern is the placement of the IDS system.
In reality, it is impractical to expect each node to be
equipped with an IDS and the effect of this can be
captured to a certain extent by decreasing the detection
rate of the IDS as the prevalence of IDS decreases. The
model would however tend to underestimate the worm
population since it assumes that all nodes infected by a
known worm strain are detected.

3 DYNAMICS OF POLYMORPHIC WORMS

In this section we develop our model for the evolution
and spreading related dynamics of polymorphic worms.

3.1 Polymorphic Worm Propagation Model

Consider a worm composed of n strings or sequences.
Let the strength or the total number of copies of strain
k generated up until time t be denoted by yk(t). The

time evolution of yk(t) is characterized by the following
equation

dyk(t)

dt
=
∑

l

βWl,kA(yl(t))yl(t) (1)

where Wl,k denotes the probability of a worm strain
of type l morphing to a strain of type k in the next
generation. A(yl(k)) denotes the fitness function of strain
l and accounts for the likelihood that the IDS is able
detect and prevent the propagation of strain l. The
summation above is carried out over all possible worm
strains. Assuming each sequence to be of length b bits,
we have (2b)n possible worm strains. For example, even
if we consider just 4 byte-long sequences characterizing
a strain, we have a total of 232 possible strain sequences.
Thus considering each strain individually leads to an
explosion in the state space and is impractical.

To make the model tractable, we group all strains
according to their Hamming distance (HD) (i.e. the
number of sequences in which the two strains differ)
from a master strain (the master strain is the one which
starts out with the highest strength and in the case of
identical initial conditions, it may be chosen arbitrarily).

Denoting the master strain by y0, the lth group is defined
as

wl =
∑

yk∈{yk|HD(yk,y0)=l}

yk (2)

and its fitness function is defined by A(l). This reduces
the problem from (2b)n dimensions to n+1 dimensions.
We now derive the equations governing the time evolu-
tion of wl(t).

Claim 1: The time evolution of the strain group with
Hamming distance l from the master strain is approxi-
mated by

dwl(t)

dt
=

l
∑

l′=0

Pm(n, l, l′)βA(l′)wl′(t) (3)

where

Pm(n,l,l′) =

n−l+1
∑

j1=1

n−l+2
∑

j2=j1+1

· · ·

n−l′
∑

jl−l′=jl−l′−1+1

ǫj1ǫj2 ···ǫjl−l′

Qn
i=1

(1−ǫi)

(1−ǫj1 )(1−ǫj2 )···(1−ǫj
l−l′

)

is the probability of a worm from strain group l′ mu-
tating to strain group l and Pm(n, l, l′) =

∏n
i=1(1 − ǫi) if

l − l′ = 0. In the case ǫi = ǫ, ∀i, the above expression

reduces to Pm(n, l, l′) =
(

n−l′

l−l′

)

ǫl−l
′

(1 − ǫ)n−(l−l′).
Proof: The proof is given in Appendix 1.

In Equation (3), a key parameter is the fitness function
A(l′) corresponding to each group. In the absence of any
defense mechanism, the fitness function for each group
will be the same since all of them are equally likely to
propagate without detection. We thus consider a scenario
where initially all the strains have an identical fitness
function (we introduce the effect of the IDS later in this
section)

A(yl) = η, ∀l ⇒ A(wl) = η ∀l (4)



3

In order to determine the maximum allowable re-
sponse time of the IDS, we now obtain the strengths
of arbitrary members of different strain groups. In the
following, we assume that each strain group has the same
initial strengths, i.e.

wl(0) = w0(0) ∀l (5)

The above expression implies that the initial strength
of the an arbitrary member of the strain group with
Hamming distance 1 will have lower initial strength than
an arbitrary member of the strain group with Hamming
distance 0. This is because there are

∑n
i=1(Si − 1) mem-

bers in the group with Hamming distance 1 as compared
to only one member in the latter group and the initial
strengths of the groups are identical. A similar argument
applies to other groups. This is in line with most real
life attacks that are initiated by only a few specimens
and then spread using other variants or strains. Note
that by making the initial strength of strain group with
Hamming distance 1

∑n
i=1(Si−1) times higher than that

of the strain group with Hamming distance 0 (and so on
for other groups), we can accommodate the case where
all strains have the same initial strength.

Claim 2: The strength of an arbitrary member of the

0th, 1th and nth strain group, represented by wa0 , wa1
and wan respectively, the total worm strength w and the
number of different strains existing in the network, N ,
are

wa0(t) = w0(0)e
Qn

i=1
(1−ǫi)βηt (6)

wa1(t) = w0(0)
e

Qn
i=1

(1−ǫi)βηt

∑n
k=1(Sk−1)

[

1+βηt
n
∑

j=1

ǫj

n
∏

l=1

1−ǫl
1−ǫj

]

(7)

wan(t) = w0(0)
e

Qn
i=1

(1−ǫi)βηt

∏n
k=1(Sk − 1)

(8)

w(t) = w0(0)(n+1)eβηt (9)

N(t) = w0(0)(n+1)

[

1−
n
∏

i=1

(1−ǫi)

]

[

eβηt−1
]

+N(0)(10)

where w0(0) = y0(0) is the initial strength of the master
strain w0(t) and N(0) is the initial number of strains in
the network.

Proof: We consider each strain group separately and
solve Equation (3) to obtain the expressions above.

Strain group 0: Note that there is only one strain (the

master strain) which belongs to the 0th strain group and
thus wa0(t) = w0(t). From Equation (3), substituting l = 0,
we have

dwa0(t)

dt
=

dw0(t)

dt
= A(w0)

n
∏

i=1

(1 − ǫi)βw0(t)

= η

n
∏

i=1

(1 − ǫi)βw0(t) (11)

Solving the ordinary differential equation above, we
obtain

wa0(t) = w0(0)e
Qn

i=1
(1−ǫi)βηt (12)

where w0(0) = wa0(0) = y0(0), the initial strength of the
master strain.

Strain group 1: With each worm strain consisting of n
sequences and an alphabet of size Sk for sequence k,
there are

∑n
k=1(Sk − 1) possible strains which have a

Hamming distance of 1 from the master strain and thus
form group 1. Thus the dynamics of the group w1(t) is
∑n
k=1(Sk − 1) times faster than an arbitrary strain wa1(t)

in the group. Substituting l = 1 in Equation (3) we then
have

dwa1(t)

dt
=

1
∑n
k=1(Sk−1)

dw1(t)

dt
=

1
∑

l′=0

Pm(n,1,l′)βA(l′)
∑n
k=1(Sk−1)

wl′(t)

=
βη
∏n
l=1(1−ǫl)

∑n
k=1(Sk−1)

[ n
∑

j=1

ǫj

1−ǫj
e

Qn
i=1

(1−ǫi)βηtw0(0)+w1(t)

]

Solving the differential equation above and using
w1(0) = w0(0), we obtain

wa1(t) = w0(0)
e

Qn
i=1

(1−ǫi)βηt

∑n
k=1(Sk−1)

[

1+βηt

n
∑

j=1

ǫj

n
∏

l=1

1−ǫl
1−ǫj

]

(13)

Strain group n: Consider an arbitrary member of strain
group n, wan. Denote by Ωi,jm the set of sequences of

the jth strain in group i, wji , that are identical with the
sequences of wan. Increase in the strength of wan results
from its own growth as well as the mutations from
members of all other groups and other members of its
own group. These contributions are

dwan(t)

dt
= A(wn)β

n
∏

l=1

(1−ǫl)w
a
n(t) +

n
∑

i=0

∑

wj
i∈{wi,w

j
n 6=wa

n}

A(wi)β
∏

k/∈Ωi,j
m

ǫk

Sk−1

∏

l∈Ωi,j
m

(1−ǫl)w
j
i (t)

In the expression above, a mutation from any strain j

of group i, 1 ≤ i ≤ n to the strain wan occurs when: (1)
each sequence k in w

j
i that is not in Ωi,jm mutates to the

corresponding sequence in wan, each of which happens
with probability ǫk

Sk−1 and (2) each of the remaining

sequences l ∈ Ωi,jm do not mutate, the probability of
which is 1 − ǫl. Also, members of strain wan continue
to replicate their own if no mutation occurs, i.e. with
probability

∏n
j=1(1 − ǫj). Note that in the expression

above, the second term has a product term of (Sk − 1)
in the denominator. For even small alphabet sizes and
number of sequences, the contribution of the second
term becomes quite small and we can thus write

dwan(t)

dt
≈ A(wn)β

n
∏

i=1

(1−ǫi)w
a
n(t) = βη

n
∏

i=1

(1−ǫi)w
a
n(t)

Solving the differential equation above gives

wan(t) = wan(0)eβη
Qn

i=1
(1−ǫi)t = w0(0)

e
Qn

i=1
(1−ǫi)βηt

∏n
k=1(Sk − 1)

(14)
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Overall worm population: The overall worm population
constitutes of the populations of each worm strain or
strain group. The rate of change of the overall worm
population is given by

dw(t)

dt
=

n
∑

l=0

dwl(t)

dt
=

n
∑

l=0

∑

yk∈{yk|HD(yk,y0)=l}

dyk(t)

dt

=

n
∑

l=0

∑

yk∈{yk|HD(yk,y0)=l}

∑

i

βηWi,kyi(t) (15)

= βη
∑

i

∑

j

Wi,jyi(t) (16)

= βη
∑

i

yi(t) = βηw(t) (17)

where the third summation in Eqn. (15), and the two
summations in Eqn. (16) are carried out over all strains
(yk). Also, in Eqn. (17) we have used the fact that
∑

jWi,j = 1, ∀i. Solving the differential equation above,
we get

w(t) = w0(0)(n+ 1)eβηt (18)

where we have used the fact that the initial worm
population is (n+ 1)w0(0).

Number of strains: At each replication attempt, the new
worm is different from the one at the infecting node with
probability 1−

∏n
i=1(1−ǫi). While the new worm may be

the same as any of the existing worms, the likelihood of
this event is small because (i) the probability of down-
mutations is very small as shown in the proof of Claim
1, (ii) given that a worm strain at a Hamming distance
of l exists in the network, the probability of up-mutating

is
∏l ǫi

Si−1

∏n−l
(1−ǫj) (fairly small) and (iii) most of the

strains with higher Hamming distances from the master
strain are unpopulated (for example, with S = 256 there
are over 4 billion strains with a Hamming distance of 4,
most of which are unpopulated). Thus to a very good
approximation it may be assumed that each mutation
leads to a new strain in the time scales of our interest.
Since from Eqn. (17) each worm replicates with rate βη,
we have

dN(t)

dt
=

(

1 −

n
∏

i=1

(1 − ǫi)

)

βηw(t) (19)

Solving Eqn. (17) and (19) simultaneously we have

N(t) = w0(0)(n+1)

[

1−

n
∏

i=1

(1−ǫi)

]

[

eβηt−1
]

+N(0) (20)

For the special case where w0(0) = 1, we have N(0) =
n+ 1. This completes the proof of Claim 2.

3.2 Maximum Allowable IDS Response Time

In this subsection we assume that the time interval
between the first infection and the first detection by
the IDS is τ and then τids seconds elapse between the
detection of successive instances of the worm. We now
obtain the minimum rate at which the IDS must detect

new strains in order to contain the growth of the worm
population.

3.2.1 A Simple Bound

Let α be the rate at which new strains must be detected
in order to contain the worm. The approach for deriving
α is to characterize the required detection rate as a
fraction 1

k of the number of worm strains existing in the
network at the time of first detection (N(τ)) so that the
worm population is a decreasing function of time (i.e., α
is expressed in terms of k and the inital conditions and
the bounds are then derived for k). One unit of time after
τ , in the absence of any new worms being generated, the
number of remaining strains is then

N(τ) −
N(τ)

k
= N(τ)

(

1 −
1

k

)

(21)

It is more likely that worm strains with greater strength
would be detected before strains with lower strengths.
Then, the number of remaining worms after one unit
time’s detection would be at most w(τ)(1 − 1

k ). Each of
these worms (or infected nodes) infects other nodes at
rate βη and each infection results in a new strain with
probability 1−

∏n
i=1(1− ǫi). Using Eqn. (17), the number

of new worms generated in an unit of time after the first
detection is then

∆w(τ)
∆
= w(τ+1)−w(τ) =

(

1 −
1

k

)

w(τ)
(

eβη − 1
)

(22)

The number of worm strains after one unit of time is
then at most

N(τ)

(

1 −
1

k

)

+

(

1 −
n
∏

i=1

(1 − ǫi)

)

∆w(τ) (23)

and to ensure that the worm growth is contained, this
number should be less than N(τ), i.e.,

N(τ)

(

1−
1

k

)

+

(

1−
n
∏

i=1

(1−ǫi)

)

w(t)
(

eβη−1
)

(

1−
1

k

)

< N(τ)

Solving for k we then have

k < 1 +
N(τ)

(1 −
∏n
i=1(1 − ǫi))w(τ) (eβη − 1)

(24)

Since N(τ + 1) < N(τ) with this choice of k, continuing

to detect N(τ)
k strains per unit time monotonically keeps

decreasing the number of strains present in the network.
Thus it suffices to have

α >
N(τ)

k
(25)

to contain the worm and τ1
ids <

1
α .
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3.2.2 Containment Time Dependent Signature Genera-
tion

In the previous subsection, we obtained an expression
for the strain detection rate required to ensure that
the worm population is a decreasing function of time.
With finite number of nodes in a network, a very slow
detection rate will also eventually succeed in detecting
all infected nodes but after all nodes in the network have
been infected. We now consider the case where we need
to detect new strains fast enough so that all existing
worm strains are detected within a specified amount of
time. With the time at which the first worm strain is
detected denoted by τ , let τ +T be the time at which all
worm strains are required to be detected.

From Eqn. (9) and (10), the number of infected nodes
and the number of worm strains at time τ are given by

w(τ) = w0(0)(n+1)eβητ (26)

N(τ) = w0(0)(n+1)(1−
∏n
i=1(1−ǫi))[e

βητ−1]+N(0) (27)

Since α strains are detected in an unit of time, the rate
of change of the number of strains is

dN(t)

dt
=

(

1 −

n
∏

i=1

(1 − ǫi)

)

βηw(t) − α (28)

Since the strains with higher strength are detected first,

the strength of a detected strain is at least w(t)
N(t) . The rate

of change in the worm population is then

dw(t)

dt
= βηw(t) − α

w(t)

N(t)
(29)

Solving Eqn. (28) and (29) simultaneously, we obtain

w(T ) = AeβηT
αw(τ)

βη [N(τ) − (1 −
∏n
i=1(1 − ǫi))w(τ)]

(30)

N(T ) =
αA

βηe−βηT

[

e−βηT+
(1−

∏n
j=1(1−ǫj))w(τ)

N(τ)−(1−
∏n
i=1(1−ǫi))w(τ)

]

(31)
where

A = ln





(

e−βηT +
w(τ)(1−

Qn
i=1

(1−ǫi))

N(τ)−(1−
Q

n
j=1

(1−ǫj))w(τ)

)

N(τ)[N(τ) − (1 −
∏n
k=1(1 − ǫk))w(τ)]−1





+

(

α+ βηN(τ) − (1 −
∏n
l=1(1 − ǫl))βηw(τ)

α

)

− 1

To obtain the desired detection rate α that will detect all
existing strains within time T , we can equate either Eqn.
(30) or Eqn. (31) to zero and solve for α. This solution
gives us

α =
βηN(τ) − βη(1 −

∏n
k=1(1 − ǫk))w(τ)

ln

(

N(τ)

e−βηT (N(τ)−(1−
Q

n
i=1

(1−ǫi))w(τ))+(1−
Q

n
j=1

(1−ǫj))w(τ)

)

(32)
and thus τ2

ids <
1
α . At lower mutation rates, the equation

above may overestimate the required rate at which new
strains must be detected. This is because the derivation

assumes each detected strain has a strength of w(t)
N(t) while

in reality the dominant strain may have higher numbers.
To reduce the resulting error, we combine Eqns. (25) and
(32) to give

τids = min{τ1
ids, τ

2
ids} (33)

3.3 Non Fixed Rate Detection Mechanisms

In many practical IDSes, the time between successive
strain detections may be a function of time or dependent
on the number of stains seen by the IDSes so far. We now
extend our models for these scenarios.

We first consider the case where the rate at which new
strains are detected is a polynomial function γtν of the
time t that has elapsed after the first detection (τ ). Here γ
is an arbitrary positive constant included for generality.
In this case, the rate of change in the number of strains
and the worm population in the network are given by

dN(t)

dt
=

(

1 −

n
∏

i=1

(1 − ǫi)

)

βηw(t) − γtν (34)

dw(t)

dt
= βηw(t) − γtν

w(t)

N(t)
(35)

with the initial conditions given in Eqn. (26) and (27).
While no closed form expression for the simultaneous
solution of Eqn. (34) and (35) exists, they may be solved
numerically to obtain the ν required for the worm pop-
ulation to die out within a given period.

Next we consider the case where the rate of strain
detection depends on the number of strains that have
appeared in the network so far. Let x(t) be the count
of the number of strains seen in the network till time
t. After the first detection at time τ , the rate of new
detections is given by µx(t). The rate of change in the
total and existing number of strains, and the worm
population in the network are given by

dx(t)

dt
=

(

1 −

n
∏

i=1

(1 − ǫi)

)

βηw(t) (36)

dN(t)

dt
=

(

1 −
n
∏

i=1

(1 − ǫi)

)

βηw(t) − µx(t) (37)

dw(t)

dt
= βηw(t) − µx(t)

w(t)

N(t)
(38)

with x(τ) = N(τ) and the other two initial conditions
given in Eqn. (26) and (27). Again, no closed form
expression for the simultaneous solution of Eqn. (37),
(37) and (38) exists. They may be solved numerically to
obtain the µ required for the worm population to die out
within a given period.
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3.4 Further Analysis: Dominant Group Populations

We now consider the dominance of one strain group
over the other and evaluate the interaction between the
polymorphic worm and the IDS in detail. Once the IDS
detects the strain with the highest strength, it applies
a large kill rate δ to that specific worm strain. Until the
IDS is capable of detecting the other strains of the worm,
other worm strains will now have a higher growth rate
as compared to the earlier dominant strain. The worm
adapts to this change in the fitness landscape and the
strain with the next highest strength now becomes the
dominant strain. The IDS system now tries to adapt to
this new dominant strain. Through the iteration of the
steps above, the worm scours through the sample space
of strains and the IDS system follows on its heels.

Once the IDS detects the master strain, strains belong-
ing to strain group 1 have the next highest strength while
those belonging to strain group n have the lowest, as can
be observed from Eqns. (6), (7) and (8). The continuation
of this dominance depends on the timescale τ = τids+τw,
i.e. on the speed with which the IDS detects new strains
(τids) and how fast the worm adapts to the changing
fitness landscape (τw). In the following, we investigate
the conditions required for this dominance, assuming
new strains are detected at a constant rate.

Let t = 0 be the instant when the fitness land-
scape shifts and an arbitrary strain from the 1st strain
group becomes dominant. Using Eqn. (7) the normalized
growth of this strain over a period τ is then given by

wa1(τ)

wa1(0)
=
e

Qn
i=1

(1−ǫi)βηt

∑n
k=1(Sk−1)

[

1+βηt

n
∑

j=1

ǫj

n
∏

l=1

1−ǫl
1−ǫj

]

(39)

The strain wa1 is currently the fittest. But if another strain
far away from the fitness peak is able to surpass its
population in the interval τ , then the currently dominant
strain will lose its dominance. With the current dominant
strain being from strain group 1 and the strain group 0
having already been detected, we turn to an arbitrary
member of the strain group n, wan, since it has the largest
Hamming distance from the master sequence. Using
Equation (8), its normalized growth rate is then given
by

wan(τ)

wan(0)
= eβη

Qn
i=1

(1−ǫi)τ (40)

The ratio of these growth rates is then

κ =

wa
1 (τ)

wa
1
(0)

wa
n(τ)

wa
n(0)

=
1 + βητ

∑n
j=1 ǫj

∏n
i=1

1−ǫi
1−ǫj

∑n
k=1(Sk − 1)

(41)

The member of strain group 1 will lose its dominance
if κ < 1 and dominates only when κ ≥ 1. To evaluate
κ we next obtain an expression for τ . To estimate the
timescale for the shift in the worm’s fitness landscape,
τw, we first iterate the propagation model for a full cycle
of length τ starting at t = 0. The switch in the dominant
strain is made at t = τ when the IDS starts applying the
decay rate of δ on the previous dominant strain. Now, the

populations of the old and new dominant strains at the
end of τ are given by wa0(τ) and wa1(τ) in Equations (6)
and (7) respectively. In the subsequent interval τw, the
growth rates of the old and new dominant strains are
e

Qn
i=1

(1−ǫi)ηβ−δ and e
Qn

i=1
(1−ǫi)βη respectively. Equating

the populations of the old and new dominant strains at
τw, we obtain

e
Qn

i=1
(1−ǫi)βητwwa1(τ) = e

Qn
i=1

(1−ǫi)(βη−δ)τwwa0(τ)

⇒ e
Qn

l=1
(1−ǫl)βητwe

Qn
m=1

(1−ǫm)βητ
1+βητ

∑n
j=1ǫj

∏n
i=1

1−ǫi
1−ǫj

∑n
k=1(Sk − 1)

= e(
Qn

i=1
(1−ǫi)βη−δ)τwe

Qn
j=1

(1−ǫj)βστ

⇒ τw = −
1

δ
ln

(

1 + βητ
∑n
j=1 ǫj

∏n
i=1

1−ǫi
1−ǫj

∑n
k=1(Sk − 1)

)

(42)

Using Equation (42), we can write τ as

τ = τw+τids = −
1

δ
ln

(

1+βητ
∑n
j=1ǫj

∏n
i=1

1−ǫi
1−ǫj

∑n
k=1(Sk − 1)

)

+τids

=
1

δ
LamW(x) −

1

βη
∑n
j=1 ǫj

∏n
i=1

1−ǫi
1−ǫj

(43)

where x is given by

x =
δ
∑n
k=1(Sk − 1)

βη
∑n
j=1ǫj

∏n
i=1

1−ǫi
1−ǫj

e

δ

»

1+nβητids
Pn

j=1
ǫj

Qn
i=1

1−ǫi
1−ǫj

–

βη
Pn

j=1
ǫj

Qn
i=1

1−ǫi
1−ǫj (44)

and LamW(·) is the Lambert W function, i.e., a function
which satisfies

LamW(y)eLamW(y) = y (45)

3.4.1 Worm Mutation Rates

For the special case of ǫi = ǫ, ∀i, we now further analyze
the quasi-species model to determine the mutation rate
of the polymorphic worm that maximizes the likelihood
of worms of strain group 1 dominating those of group
n. With the ratio κ in Equation (41) governing the
dominance of strain group 1, obtaining this mutation rate
requires solving for ∂κ

∂ǫ = 0, which can be written as

∂κ

∂ǫ
=

∂

∂ǫ

1 + nβηǫ(1 − ǫ)n−1τ

n(S − 1)

=
∂

∂ǫ

βηǫ(1 − ǫ)n−1τ

S − 1

Substituting the value of τ from Equations (42) and (44)
into the equation above, we have

0 =
∂

∂ǫ

βηǫ(1 − ǫ)n−1

S − 1

[

1

δ
LamW(x) −

1

nβηǫ(1 − ǫ)n−1

]

After some algebraic manipulations of the equation
above we have the mutation rate ǫopt as the solution of
the following equation for ǫ

[

1 + LamW(x)
]

x =
ǫ(1 − ǫ)

nǫ− 1
(46)
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Fig. 1. The number of distinct
strains in the network as a function
of time.

Fig. 2. The maximum allowable de-
tection time with constant detection
rate as a function of τ .

Fig. 3. The ν required for contain-
ment with polynomial detection rate
as a function of τ .
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Fig. 4. The µ required for con-
tainment with proportional detection
rate as a function of τ .

Fig. 5. The worm populating as a
function of T and α for ǫ = 0.55
(constant detection rate).

Fig. 6. κ versus ǫ and n. The pa-
rameters used are η = 1.0, β = 100,
δ = 100, τids = 40 and S = 255.

4 SIMULATION RESULTS

To verify the models presented in the previous sections,
in this section, we compare the analytical results with
those from simulations. The simulator core was based
on a random scanning engine provided to us by the
authors of [30]. This simulator was used to generate the
results in [30] and is based on permutation scanning of
the address space. In permutation scanning, all worms
share a common pseudo-random permutation of the IP
address space and an infected machine starts scanning
just after its location in the permutation. Permutation
scanning prevents the same address from being scanned
multiple times and the worm thus propagates faster.
To implement the polymorphic part, we combined the
worm generator of [30] with the ADMutate polymorphic
engine [31]. Thus the selection of the nodes to be infected
was made according to the permutation scanning of [30]
and the worm code that infects the node was generated
according to the ADMutate engine. After each detection
step, the worm strain with the highest strength was
detected by the simulated IDS and these worms were
prevented from propagating further in the network. Our
simulator takes the following inputs: n, τids, β and the
number of initially infected nodes and uses η = 1.

For the results presented in this section, we have nor-

malized a unit of time to the time required for an infected
node to attempt infecting another node. Equivalently,
β = 1 in our simulations. Results for other values of
β are simply scaled versions of the results presented
here. Also, a single node was assumed to be infected
initially. Results are presented for three values of the size
of the worm content scanned by the IDS for detection
purposes: 6, 15 and 32 bytes. For the 6 byte case, two
bytes had ǫ and S of 0.03 and 16 respectively (denoted as
2×[0.03, 16]) while the remaining four had corresponding
values of 0.06 and 255 (4 × [0.06, 255]). For the 15 byte
case we had: 4× [0.03, 16] and 11× [0.06, 255] and for the
32 byte case: 6 × [0.03, 16], 2 × [0.99, 55], 4 × [0.80, 255],
2× [0.94, 255] and 18× [0.06, 255]. The alphabet size of 16
corresponds to the least significant nibble of the return
address that is cycled by the ADMutate engine, the
alphabet size of 55 corresponds to the NOPs and that
of 255 bytes corresponds to other content in the worm
payload. The mutation rates and alphabet sizes were
empirically observed though multiple (2000) runs of the
ADMutate engine. Each simulation was repeated with
100 different seeds and the average values are reported.
The 95% confidence interval for all results was within
10% of the mean.

In Figure 1 we compare the simulation and analytic
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results for the number of strains in the network as a
function of time. In Figure 2 we plot the maximum
allowable time for detecting a new strain for contain-
ment in the case of constant detection rates. The match
between the simulation and analytic results improves as
n and ǫ increase and we note an almost exact match
for the 32 byte case. The difference at lower mutation
rates is because in Eqn. (28) the change in the worm

population at each detection is assumed to be w(t)
N(t) , while

in the simulations, the strain with the highest strength is
detected. Thus the worm population in the simulations
falls faster and higher detection times are sufficient to
control the worm population. At higher mutation rates
each mutation is more likely to lead to a new strain and
thus the populations of all strains are likely to be closer,
and in this case the analytic model gives very accurate
results. Similar trends are observed in Figures 3 and 4
which show the required value of ν and µ for worm
containment in the case of polynomial and proportional
detection rates.

We next consider the analytic results for the IDS with
constant detection rates to gain further insight into the
dynamics of the worm. In Figure 5 we show the worm
population N(t) as a function of α and T , the time from
the first detection, for n = 84, ǫ = 0.55 and τ = 5. For
lower values of T , the α required to contain the worm
increases and the asymptote in the figure also shows the
minimum α value required to contain the worm. Finally,
in Figure 6 we plot κ as a function of ǫ and n. We also
plot the plane κ = 1 to show the dominance criterion.
We note that the dominance of strain 1 peaks at values
of ǫ where the likelihood of zero or single mutations is
maximized since this leads to their fastest growth. We
also note that as n increases, the value of κ decreases.
This is because as the signature length increases, the IDS
becomes better at detecting the worm strains. Note that
for n = 8, there is no portion of the surface which meets
the dominance criterion since now each new infection
is likely to have more than one mutations, reducing the
growth rate of members of strain group 1.

5 CONCLUSIONS

In this letter we presented a framework based on co-
evolution of quasi-species to model the dynamics of
polymorphic worms and their interaction with an IDS.
The model provides a theoretical basis to explain poly-
morphic worm outbreaks and the limitations they put
on the IDS and thereby aid the development of de-
fense strategies which can respond effectively to such
outbreaks. The model is used to obtain the conditions
that govern the growth, containment and dominance of
worm strains.

APPENDIX

We now present the proof for Claim 1.
Proof: Mutations into group l may occur in two

possible ways: (1) up-mutations from groups with

lower Hamming distances and (2) down-mutations from
groups with larger Hamming distances. Consider the
up-mutation case first with mutations from group l′ to
group l with l′ ≤ l. There are three possibilities for the
up-mutation:

i. l − l′ of the n − l′ sequences which are identical with
the master sequence mutate and all other sequences stay
the same. This case, C1, occurs with probability

P [C1] = Pm(n, l, l′) (47)

ii. i, 0 < i ≤ min{l′, n − l}, of the already mutated
sequences mutate back to the master strain and there
are mutations in l − l′ + i of the n − l′ non-mutated
sequences. Let Ωl′ be the set of sequences of the worm
that have already mutated (|Ωl′ | = l′) and Ωcl′ be
the rest of the sequences (|Ωcl′ | = n − l′). Also, let
φ1, φ2, · · · , φl′ (ψ1, ψ2, · · · , ψn−l′ ) be the elements of Ωl′
(Ωcl′ ), i.e. the positions of the bytes that have mutated
(not-mutated). Now, the probability that sequence k mu-
tates and changes back to the corresponding sequence in
the master strain is given by ǫk

Sk−1 . Then the probability
of this case, C2, is given by

P [C2] =

min{l′,n−l}
∑

i=1

[

n−l′
⊕

b,l−l′+i

ǫψb1
ǫψb2

· · · ǫψb
l−l′+i

(1−ǫψb1
)(1−ǫψb2

) · · · (1−ǫψb
l−l′+i

)

l′
⊕

a,i

ǫφa1
ǫφa2

· · · ǫφai

(Sφa1
−1)(Sφa2

−1) · · · (Sφai
−1)

∏

k=1(1 − ǫk)

(1−ǫφa1
) · · · (1−φai

)

]

where
⊕B

a,A =
∑B−A+1
a1=1

∑B−A+2
a2=a1+1 · · ·

∑B
aA=aA−1+1.

iii. Of the l′ already mutated sequences, i mutate back
to the corresponding sequences in the master strain, j
(j > 0) mutate to other sequences, l′ − i − j stay the
same with i+ j ≤ l′ and 0 < i ≤ min{l′, n− l} and of the
n− l′ non-mutated sequences, l− l′ + i sequences mutate
and the remaining n−l−i sequences stay the same. For a
given i, let ΩBl′ be the set of sequences that are not back-
mutating (|ΩBl′ | = l′ − i) and let ϕ1, ϕ2, · · · , ϕl′−i be the
elements of ΩBl′ . The case C3 then occurs with probability

P [C3] =
∑

j

∑

i

[

l′
⊕

a,i

ǫφa1
(1−ǫφa1

)−1

(Sφa1
−1)

· · ·
ǫφai

(1−ǫφai
)−1

(Sφai
−1)

l′−i
⊕

b,j

ǫϕb1
(Sϕb1

−2)

(Sϕb1
−1)

· · ·
ǫϕbj

(Sϕbj
−2)

(Sϕbj
−1)

n−l′
⊕

c,l−l′+1

ǫψc1

1−ǫψc1
· · ·

ǫψc
l−l′+i

1−ǫψc
l−l′+i

∏n
k=1(1−ǫk)

(1−ǫϕb1
) · · · (1−ǫϕbj

)

]

where the summations over i and j are carried out over
the region where j > 0, i+ j ≤ l′ and 0 < i ≤ min{l′, n−
l}.

We now consider the down-mutations where strains
with a higher Hamming distance l′ back-mutate to gen-
erate strains with lower Hamming distance l (l < l′) from
the master strain. Again, there are three possibilities:
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i. l′− l of the already mutated sequences mutate back to
the corresponding sequences in the master strain while
the remaining sequences stay the same. This case, C4,
occurs with probability

P [C4] =
l′
⊕

a,l′−l

ǫφa1
(1−ǫφa1

)−1

(Sφa1
−1)

· · ·
ǫφa

l′−l
(1−ǫφa

l′−l
)−1

(Sφa
l′−l

−1)

n
∏

k=1

(1−ǫk)

ii. i of the already mutated sequences mutate back to the
corresponding sequences in the master strain with l′−l <
i ≤ min{l′, n− l} and l− l′ + i of the n− l′ non-mutated
sequences mutate while the remaining sequences stay
the same. The expression for the probability of this case,
P [C5], is the same as that for case C2 except that now

the initial summation is carried out over
∑min{l′,n−l}
i=l′−l+1 .

iii. Of the l′ already mutated sequences, i mutate back to
the corresponding sequences in the master strain (where
l′ − l < i ≤ min{l′, n − l}), j (0 < j < i and i + j ≤ l′)
mutate to other sequences, l′ − i − j stay the same and
of the n− l′ non-mutated sequences, l− l′ + i sequences
mutate and the remaining n − l − i sequences stay the
same. The expression for the probability of this case,
P [C6], is the same as that for case C3, except that now the
summations over i and j are carried out over the region
where j > 0, i+ j ≤ l′ and l′ − l < i ≤ min{l′, n− l}.

Combining the six cases above, the probability of
mutations from group l′ to group l, P [wl′→l], is given
by

P [wl′→l] = P [C1]+P [C2]+P [C3]+P [C4]+P [C5]+P [C6]

Note that the expressions for all cases except P [C1] have
i (S∗ − 1) terms in the denominator. For even moderate
alphabet sizes these probabilities thus become very small
compared to P [C1] and can be neglected to a good
degree of approximation. Thus P [wl′→l] ≈ P [C1] =
Pm(n, l, l′).

The time evolution of the lth strain group is thus
governed by the the rate of up-mutations from strain
groups with lower Hamming distances. In each time
unit, the strength of the strain group l′ increases by
βA(l′)wl′(t) and a fraction P [wl′→l] of these mutate to
strain group l. Summing up these contributions, the time
evolution of wl(t) is then given by

dwl(t)

dt
=

l
∑

l′=0

Pm(n, l, l′)βA(l′)wl′(t)

which completes the proof of Claim 1.
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