
1
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Abstract—Leakage of private information in machine learning
models can lead to breaches of confidentiality, identity theft,
and unauthorized access to personal data. Ensuring the safe
and trustworthy deployment of AI systems necessitates address-
ing privacy concerns to prevent unintentional disclosure and
discrimination. One significant threat, Membership Inference
(MI) attacks, exploits vulnerabilities in target learning models
to determine if a given sample was part of the training set.
However, the effectiveness of existing MI attacks is often limited
by the number of classes in the dataset or the need for diverse
multi-level adversarial features to exploit overfitted models.
To enhance MI attack performance, we propose meMIA, a
novel framework based on stacked ensemble learning. meMIA
integrates embeddings from a neural network (NN) and a Long
Short-Term Memory (LSTM) model, training a subsequent NN,
termed the meta-model, on the concatenated embeddings. This
method leverages the complementary strengths of NN and LSTM
models; the LSTM captures order differences in confidence
scores, while the NN discerns probability distribution differences
between member and non-member samples.

We extensively evaluate meMIA on seven benchmark datasets,
demonstrating that it surpasses current state-of-the-art MI at-
tacks, achieving accuracy up to 94.6% and near-perfect recall.
meMIA’s superior performance, especially on datasets with fewer
classes, underscores the urgent need for robust defenses against
privacy attacks in machine learning, contributing to the safer
and more ethical use of AI technologies.

IMPACT STATEMENT

This paper contributes to data privacy in machine learning
(ML) models. Leakage of private information in machine
learning models can have significant consequences for both
individuals and the society as a whole. Although the data
used for training ML models is kept private, unintentional
disclosure of sensitive information through these models can
result in breaches of confidentiality, identity theft, and unau-
thorized access to personal data. Furthermore, the likelihood
of producing discriminating results rises when private data
becomes available, intensifying issues regarding fairness and
ethical considerations in the field of machine learning. Thus,
the safe and trustworthy deployment of AI systems in diverse
fields is contingent upon understanding privacy concerns in
ML models. This paper presents a membership inference (MI)
attack that takes advantage of a vulnerability in the target
learning models to determine whether a given sample was a
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part of the training set or not. The existing MI attacks proposed
in literature are limited either by the number of classes in a
dataset or by the availability of various multi-level adversarial
features to exploit overfitted target models. We show that by
employing stacked ensemble learning with a neural network
(NN) and LSTM, we can improve the accuracy of a MI attack
to above 94% without making any restrictive assumptions on
the number of classes or overfitting in the target model. These
finding would help researchers in further improving the privacy
of ML models.

Index Terms—Membership Inference Attacks, Privacy Leak-
age, Adversarial Attacks, Data Leakage, Recurrent Neural Net-
work

I. INTRODUCTION

W ITH the rise of digital technologies, privacy and se-
curity concerns have intensified. The use of machine

learning models for decision-making is becoming ubiquitous
in several sectors, including healthcare, finance, retail, educa-
tion, social media, among others. However, it has been shown
that ML models are vulnerable to adversarial attacks [18, 20,
32, 35, 36, 42, 41, 45, 46, 48, 61] that allow adversaries to
infer information from a target machine learning model. Such
attacks enable adversaries to find patterns in the output signals
of the target model, leading to a comprehensive analysis of
the private information used in training the target model.
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Fig. 1: Membership inference attack overview.

Machine learning models have been increasingly used to train
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TABLE I: Summary of membership inference attacks (MIAs).

Modality Reference Technique Pros Cons

Text

[2] S. Mahloujifar, et al. Word Embeddings Effective for text data, en-
hances model interpretability
beyond just word embeddings

Resource intensive, limits the
applicability of some findings
to other types of models and
data representations

[47] A. Suri, et al. Federated Learning Has direct implications for
privacy-preserving in health-
care and finance.

Lack of comprehensive defen-
sive strategies could limit its
practical utility for securing
federated learning systems.

[39] S. Rezaei, X. Liu Discernibility Analysis Offers a balanced perspec-
tive, challenging the perceived
severity of MI attacks and en-
courages a more nuanced un-
derstanding of their implica-
tions.

May not provide complete so-
lutions, theoretical focus

[51] Y. Wu, et al. Text-to-Image Models Introduces innovative attack
techniques, highlighting the
vulnerabilities in generative
models

Limits the generalizability to
other types of generative mod-
els

Images [3] R. Webster, et al. GANs Introduces effective attack
methodologies and provides
empirical evidence of
vulnerabilities of GANs

Identifies vulnerabilities with-
out proposing robust defensive
mechanisms to secure GAN-
generated content

[62] J. Zhou, et al. GANs Expands understanding of pri-
vacy risks with generative
models.

Limited to certain types of
data, complex to implement

Audio [56] Y. Yang, et al. RNNs Expanding the understanding
of privacy risks in sequential
models

Require significant resources,
complex analysis

Graph [19] X. He, et al. Graph Neural Networks Good for relational data, Intro-
duces node-level MIA against
GNNs

May not scale well to other
types of NNs.

General

[23] H. Hu, J. Pang Diffusion Models Explores a relatively new area
of diffusion models and under-
scores significant privacy and
security implications

Computationally intensive,
may require significant
training data

[4] A. Bagmar, et al. Lottery Ticket Networks Resource-efficient, leverages
sparsity and provides valuable
insights into the privacy risks
associated with this model
pruning technique.

May not scale well with other
types of data.

[22] D. Hu Latent Factor Models Effective for recommendation
systems, scalable

Requires extensive data,
model-specific vulnerabilities

[14] M. Conti, et al. Multi-Model Attacks High attack success rate, cov-
ers multiple models

High computational cost, com-
plex to defend against

[54] M. Xu, X.-Y. Li Data Origin Inference This article proposed the novel
concept of data origin infer-
ence attacks, providing valu-
able insights into data privacy
issues beyond data member-
ship.

Requires additional data, Com-
putationally resource intensive

[27] J. Liu, X. Lyu Split Learning Effective against distributed
data in collaborative learning
algorithms

Potential communication de-
lays in practical settings, speci-
ficity to Split Learning

[49] Y. Wang, et al. Knowledge Graphs Effective against structured
data, formalizes membership
inference attacks on
knowledge graphs

May require large datasets

on a wide range of sensitive data using MLaaS platforms.1,2,3

Although the training platforms are trusted, for data owners,
a significant worry remains: Can the model’s output ( i.e.,
prediction vectors) be exploited to risk the confidentiality of
sensitive training data? The complexity of machine learning
models may obscure the risk of information leakage, but they
can still reveal details about the training data. In particular,
even in the most challenging black box setting, a membership

1https://cloud.google.com/vertex-ai
2https://aws.amazon.com/machine-learning
3https://azure.microsoft.com/en-us/products/machine-learning

inference attack (MIA) [21, 43] on a model can be carried
out by an adversary to determine if a specific data record
was included in the training set [45] or not. In MI attacks, the
adversary takes advantage of the distinct response of the target
model on training and testing datasets, posing data privacy
concerns.

Existing attack methods [45, 57, 31, 34] in the black-box
setting often rely on a limited amount of information per
sample for training the attack model. In particular, shadow
model-based approaches commonly rely on prediction vectors
to discern between member and non-member samples. Despite
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their utility, these approaches exhibit limitations in specific
scenarios. When faced with a limited number of classes
per dataset, the prediction vector does not provide enough
information to distinguish between member and non-member
samples accurately. Moreover, when the number of samples
per class is limited, the attack model struggles to learn the
complex boundaries of each class, leading to a significant drop
in performance.

Recently, an alternative method, seqMIA [28] treats pre-
diction vectors as sequences and trains Recurrent Neural
Networks (RNNs) to learn the order within confidence scores.
This approach assumes that member and non-member samples
exhibit different orderings in their confidence scores. Despite
seqMIA’s superior inference performance, it does not fully
utilize hidden information in the prediction vectors.

We argue that limiting an attack model’s training to a single
level of knowledge, like probability distribution or order differ-
ences, is insufficient for optimal inference accuracy. Therefore,
we introduce a novel attack method leveraging multi-level
information gleaned from two distinct networks. The first
neural network (NN) distinguishes member from non-member
samples by learning their contrasting probability distributions.
Simultaneously, a recurrent neural network with Long Short-
Term Memory (RNN-LSTM) captures the underlying rank
(order) differences in confidence scores between members
and non-members. This rich multi-level information is then
harnessed by training the final attack model on the combined
embedding representations generated by the two types of
neural networks, empowering it to achieve improved attack
performance. This multi-level ensemble membership inference
attack (meMIA) approach enables the attack model to capture
richer features and significantly enhance its membership in-
ference capabilities. We use RNN-LSTM to capture the priori
order differences in our attack model because it performs well
compared to vanilla RNN and GRU, as shown by [28].

In Table I, we summarize different techniques, their ad-
vantages, and limitations across multiple modalities, such as
text, images, audio, and graphs, to provide a comprehensive
comparative analysis of current MIAs. We observe that most
current attack methods require a significant amount of pro-
cessing power and are sensitive to the hyperparameters of
the target models. They also rely on access to large datasets
and struggle to generalize well. Additionally, these methods
display specificity to certain models and have limited use of
adversarial knowledge. In contrast, meMIA utilizes a unique
framework to address these issues by targeting models trained
on images in a black-box environment using the confidence
scores of the shadow model.

Our proposed method, as shown in Figure 2, demonstrates
several notable advantages: Firstly, leveraging multi-level in-
formation enables the attack model to achieve significantly
higher accuracy than state-of-the-art MIA methods, especially
in scenarios with limited class sizes or restricted samples per
class. This improved accuracy translates to a more robust and
reliable attack. Furthermore, the proposed approach exhibits
enhanced flexibility, readily adapting to different prediction
vectors and seamlessly integrating into diverse MI attack
scenarios. Finally, the multi-level embedding generates a uni-

fied representation that encapsulates distribution and order
differences, contributing to the overall improvement in attack
performance. This unified representation provides a powerful
tool for understanding and exploiting the underlying discrep-
ancies between member and non-member samples, ultimately
leading to more effective MIA attacks in challenging black-
box settings.

The major contribution of this paper are as follows:
• We introduce a novel attack method that utilizes multi-

level adversarial knowledge obtained from primary en-
semble learning models, offering improved performance
compared to state-of-the-art attack methods.

• A comprehensive analysis of MI attack performance is
presented, which compares meMIA with state-of-the-
art MI attack methods, using multi-model datasets with
varying levels of complexity.

• We present a stacked ensemble technique that leverages
established adversarial features like probability order dif-
ference and probability distribution difference to differ-
entiate between data members and non-members. This
effectively makes meMIA scalable and adaptable to any
newly found adversarial knowledge by adding a base NN
model (dedicated to newly found adversarial knowledge)
that helps jointly increase the learning capacity of the
meta-model even more

• meMIA excels in providing superior attack inference
performance for datasets with fewer classes.

The rest of the paper is structured as follows. Section II
discusses machine learning background and privacy impli-
cations concluding on black-box attack setting. In Section
III, we introduce benchmark datasets, target model used to
evaluate meMIA’s performance. The details of the proposed
meMIA scheme are discussed in Section IV, followed by a
brief description of the experimental setup in Section V. A
comprehensive meMIA performance analysis is provided in
section VI. Finally, Section VII concludes the paper.

II. PRIVACY IN MACHINE LEARNING
Machine learning algorithms help AI learn without direct

programming for specific actions. These algorithms identify
patterns in complex datasets, enabling AI to make predictions
and execute tasks based on these patterns rather than pre-
written instructions. In supervised machine learning, each
sample is input into the model along with its corresponding
target label or ground truth. The essence of this process lies
in deciphering the connections between the dataset and its
associated target labels, with an objective to develop a model
capable of effectively applying these insights to data samples
not included in the training set [17]. On the other hand, in
unsupervised machine learning, the primary aim is to discover
valuable attributes from data without predefined target labels,
thereby constructing a model that reveals the underlying pat-
terns from unlabeled datasets. Furthermore, machine learning
models tend to overfit data while minimizing prediction error.
To address this problem, various regularization techniques
have been introduced, aiming to balance the reduction of pre-
diction errors while ensuring the model does not excessively
conform to the specificities of its training data [17, 34]
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Fig. 2: Proposed inference attack model, the meMIA

Supervised machine learning techniques have been used
in several applications; for instance, a retail company might
develop a system to anticipate a customer’s purchasing style,
offering tailored incentives. Similarly, a healthcare provider
could employ a model for determining the most effective
treatment based on a patient’s symptoms or genetic profile.
Due to the ubiquity of ML as a tool, the end user may be a
novice in designing, developing, training, and deploying large-
scale models. Therefore, several tech firms now offer machine
learning as a service (MLaaS) on their cloud platforms. A
typical use case of MLaaS might involve an app developer
collecting user data, using MLaaS to train or update a model,
and then applying the model’s insights to enhance the app’s
functionality or user interaction. However, the details of these
models and their training processes are not disclosed to the
users. The service may automatically select the model type
based on the data and validation accuracy. These platforms of-
ten fail to inform users about risks like overfitting and provide
limited control over regularization (e.g., Google Prediction
API conceals most details, while Amazon ML offers only
basic options like L1 or L2 regularization). Recent studies [45,
7] have shown significant data privacy and security concerns
with these MLaaS platforms, demonstrating considerable data
leakage risks.

Next, we present four inference attack methods and explore
related work in privacy-preserving machine learning that aims
to protect against these attacks, with a particular emphasis on
membership inference attacks.

A. Model Stealing

The objective for an adversary in these attacks is to replicate
the target model effectively, creating a “stolen” model [35,
48]. In essence, the attacker intends to get a model with
similar inference performance compared to the original model.
For instance, [35] demonstrated how an attacker could use
queries to a target model to reconstruct a high-fidelity copy,
highlighting significant privacy risks in MLaaS. Similarly, [48]
showed that even with black-box access, attackers could use
a large number of queries to train a surrogate model to mimic
the target model’s behavior. In contrast, meMIA does not
depend on a large number of queries. Instead, meMIA trains
shadow model on a dataset that has the same format, size,
and distribution. However, the training data samples for the

shadow model do not overlap with the training samples of the
target model as discussed in Section V.

B. Attribute Inference

While training, the ML model not only learns to predict
the primary label but also correlates other labels for the same
sample. For instance, as demonstrated by Melis et al. [32], an
ML model not only performs its main task, like predicting
age, but also learns to predict attributes like race. These
attack methods exploit such unintended information leakage.
The success of an attribute inference attack is dependent
on the assumption of having white-box access to the target
model, meaning the attacker has complete knowledge of the
model’s structure and parameters. This reliance limits their
efficacy in practical situations where the attacker might not
always have white-box access. On the other hand, meMIA is
primarily designed for black-box access attack settings, where
the attacker has minimal to no knowledge about the target
model. This makes meMIA more flexible and practical in real-
world scenarios since it can operate without requiring detailed
information about the target model.

C. Model Inversion

Model inversion attacks aim to recreate the original training
data, including the recovery of individual features for each
sample, see [18] for detailed analysis. These attacks are only
effective if the attacker has white-box access to the model.
This is because the attacker needs to perform backpropagation
passes on the model’s parameters to reconstruct a data point.
Moreover, the output of the model inversion is an average
of the features that, at best, can categorize an output class.
More precisely, it does not construct an identical data sample,
nor can it identify if a specific data sample was used in the
training. By contrast, meMIA’s framework allows the attacker
to operate in a black-box setting with optimal data membership
identification capabilities. It uses stacked ensemble learning,
combining NN and LSTM model embeddings to improve
attack performance.

D. Membership Inference

The membership inference attack method involves the ad-
versary finding out whether a particular data sample has been
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TABLE II: A description of different datasets used in the evaluation.

Datasets # of classes Resolution # Epochs (target model) Training set (target model) Training set (shadow model) Target set
UTKFace 4 32 × 32 80 5,500 5,500 11,000
FMNIST 10 32 × 32 80 16,280 16,280 32,560
STL-10 10 32 × 32 80 3,250 3,250 6,500

CIFAR-10 10 32 × 32 80 10,000 10,000 20,000
Location 30 N/A 60 1,252 12,52 2,504

CIFAR-100 100 32 × 32 80 14,770 14,770 29,540
Purchase-100 100 N/A 60 10,000 10,000 20,000

classes x 512

512 x 256

256 x 128

128 x 64

(z+64+50) x 512

512 x 256

256 x 128

128 x 2

classes x 256

256x x 128

128 x 50

Fig. 3: meMIA with a more detailed architectural view.

used in the training. In other words, the attacker is interested
in determining a data sample’s membership (member, non-
member). Usually, these attacks serve as gateways and, when
combined with other attack methods, provide the first indica-
tion of whether the target model is vulnerable [15]. MI has
been rigorously investigated in the literature [11, 12, 24, 25,
34, 41, 45]. Inferring membership of a target sample prompts
severe privacy threats; for instance, if an ML model for drug
dose prediction is trained using data from patients with a
particular disease, then inclusion in the training set inherently
leaks the individuals’ health status. Moreover, we will discuss
configurations that an adversary can use for MI attacks based
on their accessibility to the target model.

1) Black-Box/Shadow: We begin with the most common
and difficult attack scenario, as described by Salem et al. [41]
and Shokri et al. [45]. In this setting, the adversary possesses
an auxiliary dataset (the shadow dataset) and black-box access
to the target model. The adversary divides the shadow dataset
into two halves. One half trains the shadow model, and the
other serves as a test set. Following the training of the shadow
model, the adversary uses the entire shadow dataset to make
queries to this model For each query, the shadow model returns
posterior probabilities (prediction vectors) and corresponding
labels. To prepare the data for the attack, the adversary assigns
‘member’ labels to the samples that were part of the shadow
model’s training set and ‘non-member’ labels to those used in
the testing phase. The adversary then uses the labelled dataset

to train an attack model, a binary classifier for membership
inference. Once trained, the attack model uses the target
model’s posterior probabilities to predict whether the data
sample was a member or used in training.

2) Black-Box/Partial: In this setting, the adversary has
partial access to the actual data used in the target model’s
training, but they have black-box access to the target model
itself [41]. Therefore, the attack method is similar to the Black-
Box/Shadow approach. However, creating a shadow model is
not mandatory for the attacker in this scenario. Instead, they
can directly train their attack model using the partial training
dataset as a reference point for identifying membership.

3) White-Box/Shadow: Nasr et al. [33] propose a white-box
attack using a shadow or partial training dataset as an auxiliary
resource. In scenarios similar to the black-box/shadow setting,
the adversary employs a shadow auxiliary dataset to train
a parallel model known as the shadow model. This shadow
model is designed to imitate the target model’s behaviour,
thereby generating data to train the adversary’s attack model.
When it comes to a white-box setting, it is essential to note
that the attacker has direct access to the target model. This
access enables them to take advantage of different aspects
of the target sample, such as its gradients in relation to the
model parameters, embeddings from various intermediate lay-
ers, classification loss, and the prediction posteriors, including
the label.

4) White-Box/Partial: The attack methods that use this set-
ting are based on the same parameters, features, and gradients
as target models, according to [33]. This method is the inverse
of black-box/shadow. In conclusion, we focus on the Black-
Box/Shadow setting, the most challenging setting to evaluate
an MI attack.

E. Privacy-preserving machine learning

Existing literature on privacy preservation in machine learn-
ing mainly focuses on enabling models to learn from data
without compromising privacy. Henceforth, Secure Multiparty
Computation (SMC) allows multiple parties to jointly compute
a function over their inputs while keeping those inputs private
using decision trees [26]. Moreover, in techniques such as k-
means clustering [37] and Naive Bayes classifiers [60], the
goal is to limit information leakage during training. Besides,
The training algorithm used in privacy-preserving models re-
mains unchanged from that of non-privacy-preserving models,
meaning that these models are as susceptible to inference at-
tacks as those trained by conventional methods. Therefore, the
vulnerability is extended to models trained using computations
on encrypted data [8, 53]. On the other hand, Differential
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Fig. 4: Precision of the membership inference attack against CNN-based neural network trained on CIFAR-10 dataset. (a) shows
precision for varying dataset sizes while comparing MIA and our attack methods. (b) presents the Empirical CDF (cumulative
fraction of classes) of the precision and recall for MIA and Our membership inference attack, meMIA.
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Fig. 5: Precision and recall of the membership inference against CNN-based neural networks on STL-10 dataset of size 6500.
(a) compares MIA and our attack methods per class with random guessing 0.5. Moreover, (b) shows the Empirical CDF
(cumulative fraction of classes) of the precision and recall for MIA and Ours membership inference attacks.

Privacy (DP) [16] has been widely accepted and implemented
in various machine learning algorithms across different appli-
cations, which include support vector machines [40], linear
and logistic regression [10, 59], and deep learning [6, 44].
DP reduces the likelihood of successful membership inference
attacks by nature, which are predicated on extracting data
specifics from the model outputs. Consequently, we believe
that DP-based techniques also pose the same problem to
our attack method as all SOTA MI attack methods [45].
Nonetheless, as elicited by [9], no matter how sophisticated
the protection scheme is, the inference performance of an MI
attack will always be above 50%, which is still alarming.

III. PRELIMINARIES

In this section, we begin by defining the datasets used in
our experiments, providing a foundation for the subsequent

analyses. Following this, we briefly discuss the target models
and then shift focus to a comprehensive description of our
proposed attack model. In subsequent subsections, we discuss
the experimental setup, followed by the results of the experi-
ments.

A. Datasets

In this paper, we use several benchmark datasets to evaluate
meMIA. Additionally, to make the comparison fair among all
image-based datasets, we resize them to 32x32 pixels.

1) FMNIST (Fashion-MNIST): [52] comprises of 70,000
grayscale images, each with dimensions of 28x28 pixels. The
images showcase various fashion items including t-shirts/tops,
trousers, pullovers, dresses, coats, sandals, shirts, sneakers,
bags, and ankle boots. Notably, these fashion items are evenly
distributed across 10 distinct classes within the dataset. We
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randomly select 10,000 mutually exclusive samples for each
shadow and target model training. The target and shadow
datasets have 20,000 samples each, i.e., 10,000 for members
and 10,000 for non-members.

2) UTKFace: [1] encompasses 23,000 face images anno-
tated with age, gender, and race information. In this paper,
we focus on images from the four racial categories (White,
Black, Asian, and Indian) within the dataset, employing race
as the label for the target models. As a result, we work with
a subset of 22,012 images with 4 classes. For training, we
randomly select 5,500 samples that are mutually exclusive for
each shadow and target model. The target and shadow datasets
both have 11,000 samples each, i.e., 5,500 for members and
5,500 for non-members.

3) Location: We use the processed version of the publicly
accessible dataset containing location “check-ins” from mobile
users on the Foursquare social network [55].4 The processed
samples consist of users with fewer than 25 check-ins and
venues with fewer than 100 visits, resulting in a dataset
comprising 5010 records used in prior work [45]. Each record
is characterized by 446 binary features indicating whether
the user has visited specific regions/locations. The dataset
is clustered into 30 classes, each representing a geosocial
type. For training, we randomly select 1,252 samples that are
mutually exclusive for each shadow and target model. The
target and shadow datasets both have 25,00 samples each, i.e.,
1,252 for members and 1,252 for non-members.

4) Purchase-100: This dataset contains shopping histories
from Kaggle’s “Acquire Valued Shoppers” challenge.5 In our
experiments, we utilized the simplified version with 197,324
records clustered into 100 classes from [45], each representing
a specific purchase style. Further, each class is represented by
600 binary features corresponding to a product and represents
whether the user has purchased it or not. Given 600 binary
features, the classification task is to predict the user’s purchase
style. For training, we randomly select 10,000 disjoint samples
for each shadow and target model. The target and shadow
datasets both have 20,000 samples each, i.e., 10,000 for
members and 10,000 for non-members.

5) CIFAR: CIFAR-10 and CIFAR-100 [5] are famous
benchmark datasets used to evaluate pattern recognition Ma-
chine learning models; both comprise 60,000 32x32 colour
images equally distributed across 10 and 100 distinct classes,
respectively. Both datasets are partitioned into 50,000 images
for training and 10,000 for testing. To comprehensively in-
vestigate the impact of target training data size and compare
the attack inference performance of meMIA to a baseline MI
attack, we use different fractions of the CIFAR-10 dataset
similar to [45] e.g., [2,500, 5,000, 10,000 and 15,000]. For
CIFAR-100, we randomly select 14,770 disjoint samples for
each shadow and target model. The target and shadow datasets
have 29,540 samples each, i.e., 14,770 for members and
14,770 for non-members.

6) STL-10: [13] comprises 1,300 images within each class.
The classes include objects and animals: aeroplanes, birds,

4https://sites.google.com/site/yangdingqi/home/foursquare-dataset
5https://kaggle.com/c/acquire-valued-shoppers-challenge/data

cars, cats, deer, dogs, horses, monkeys, ships, and trucks.
STL-10 classes show more diversity with fewer samples per
class than CIFAR-10, introducing different difficulty levels for
prediction models. We randomly select 3,250 disjoint samples
for each shadow and target model training. The target and
shadow datasets both have 6,500 samples each ,i.e., 3,250 for
members and 3,250 for non-members.

TABLE III: The training and testing accuracies of the target
models on seven benchmark datasets.

Dataset Target Model Training Acc. Testing Acc.

FMNIST CNN 0.999 0.900
UTKFace CNN 0.999 0.832
STL-10 CNN 0.999 0.548
CIFAR-10 CNN 0.998 0.602
CIFAR-100 CNN 0.997 0.272
Location NN 0.989 0.687
Purchase-100 NN 0.999 0.660

B. Target Models

In this paper, we have implemented three distinct neural
network architectures for different datasets. For instance, we
use a simplistic CNN architecture for FMNIST, UTKFace,
CIFAR-10, CIFAR-100, and STL-10 datasets. The CNN model
was developed with three convolutional layers, each with a
kernel size of 3. After the convolutional layers, the model
uses max-pooling with a kernel size of 2 and ends with two
fully connected layers as proposed by [30]. Conversely, a
2-layer fully connected neural network is employed for the
Location dataset with layer sizes [128, 30]. For the Purchase-
100 dataset, a 6-layer fully connected neural network is
utilized with layer sizes of [2048, 1024, 512, 256, 100].
We use the ReLU activation function across all architectures.
We follow prior work [45] to design our target model for
image-based datasets and set a few hyperparameters in a
similar way as described in [30]. Conversely, we calibrated the
hyperparameters for non-image datasets to achieve a specific
target testing accuracy, giving us precise control over the target
model’s generalizability. This approach allowed for a thorough
assessment of the meMIA attack model’s capabilities.

We set 64 as the mini-batch size for training the target model
and chose cross entropy as our loss function. Stochastic Gradi-
ent Descent (SGD) was used as an optimizer, incorporating a
weight decay of 5e−4 and a momentum of 0.9 similar to [30].
We train target models for 60 epochs, with a learning rate of
1e−2 for the initial 50 epochs and a subsequent adjustment to
1e−3 from [50-100] epochs. Table III shows the training and
testing accuracy of the respective target models. Additionally,
we train shadow models in a similar fashion.

IV. PROPOSED ATTACK MODEL

Stacked-ensemble learning has proved to be one of the most
popular meta-learning techniques [50]. This method employs
a meta-model to discern the reliability of various base models
[58]. In this technique, the output of several base models is
used as input to a meta-model, which makes the final predic-
tion. The base models are trained using their respective data
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Fig. 6: Empirical CDF (cumulative fraction of classes) of the precision and recall for MIA and Ours membership inference
attacks trained locally using neural networks for the CIFAR-100 dataset of size 29,540. (a) compares baseline MIA and our
attack, and (b) shows a comparison between seqMIA and our attack method.
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Fig. 7: Empirical CDF (cumulative fraction of classes) of the precision and recall for MIA and Ours membership inference
attacks trained locally using neural networks for Purchase-100 dataset of size 20,000. (a) shows a comparison between the
baseline MIA and our attack, while (b) shows a comparison between seqMIA and our attack method.

and produce the corresponding predictions. These predictions
are then combined and used as inputs to the meta-model,
which learns from them to make a final prediction as illustrated
in Figure 9. Stacking allows combining the strengths of several
models and producing a more accurate and robust prediction
than any single model alone [38].

In the black box setting, training a model with a dataset that
has fewer classes severely degrades the attack model inference
performance. Moreover, researchers have shown increased that
the inference attack performance increases as the number of
classes increases [45]. Similarly, Nasr et al. [34] combines
shadow prediction vector, one-hot encoded label, and shadow
model prediction to train their attack model.

Our proposed attack model, meMIA, employs an ensemble
of base models, comprising a simple NN, a multi-layer LSTM,
and a meta-model that learns from the combined embeddings

of base model as shown in Figure 2. meMIA is based
on the key insight that two different neural networks learn
independently from the same data sample, leading to diverse
features. Until recently, we have not found any prior work
that has observed this gap. All the existing attack methods
train the attack model to capture the probability distribution
difference or probability order difference to predict members
and non-members. However, our attack method lets level1 NN
meta−model combine the final output embeddings of the base
models where level0 NN base − model1 captures the priori
distribution difference and level0 LSTM base−model0 learns
order differences in prediction vectors as illustrated in Figure
2, showing the architecture of our inference neural network
and Figure 3 illustrating a more detailed view.

The base NN provides insights into the probability distribu-
tion differences, while the LSTM contributes understanding of
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using CNN-based neural network for FMNIST dataset of size 20,000. (a) shows a comparison between baseline MIA and our
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Fig. 9: Stacking ensemble learning architecture.

the sequential order differences. By combining these outputs
and training our meta-model, meMIA provides a compre-
hensive understanding of dataset characteristics for accurate
membership inference, subsequently increasing the potency of
the attack.

The base neural network model comprises of a 4-layer,
fully connected architecture with 512, 256, 128, and 64 layer
dimensions. Complementing this, the base RNN-LSTM model
is designed as a 3 multi-layer LSTM, with layer sizes of
256, 128, and 50 as depicted in Figure 3. Additionally,
the meta-model processes input embeddings with dimensions
[64+50+z], where z is the prediction of the shadow model that
is constructed as a 4-layer, fully connected neural network,
with layer sizes set to 512, 256, 128, and 2 respectively.

We chose a mini-batch size 32 and used cross-entropy as
the loss function for the base models. For the meta-model,
we used binary cross-entropy. Moreover, we use the Adam
optimizer with a learning rate of 1e − 5, set ReLU as the

activation function across the three networks, and jointly train
base and meta models for 80 epochs.

TABLE IV: Comparative analysis of accuracy: Membership
inference attack models vs. meMIA.

Dataset NSH Acc. MIA Acc. seqMIA Acc. meMIA Acc.
[34] [45] [29]

FMNIST 0.568 0.577 0.579 0.598
UTKFace 0.588 0.589 0.594 0.624
STL-10 0.785 0.808 0.820 0.853
CIFAR-10 0.776 0.791 0.792 0.827
CIFAR-100 0.886 0.906 0.909 0.946
Location 0.594 0.750 0.759 0.783
Purchase-100 0.734 0.800 0.803 0.822

A. Scalability and complexity of meMIA

In this section, we explore the impact of the added layer of
sophistication in terms of level0 models and discuss it in terms
of time efficiency and its scalability towards sophisticated
datasets and then compare the performance with the baseline
MIA attack.
First, we examine the number of parameters used in the
training by each state-of-the-art (SOTA) attack method. MIA’s
strategy involves training n-inference models that collectively
act as an attack model, each with a single layer of 128
neurons, where n is the number of classes for a given dataset.
Therefore, the total number of parameters, ps, that MIA trains
are n[128X + 386], where n is the number of classes and X
is the prediction vector of size equal to the number of classes.
Thus, replacing X with n, we get ps = 128n2 + 386. Hence,
the complexity of the MIA depends upon the number of classes
n, leading to a squared asymptotic growth with respect to the
number of classes, i.e., O(n2).
Additionally, it’s clear that the time complexity of the model
depends upon the number of computing units (neurons). Thus,
training time is proportional to the total number of computing
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units. However, meMIA is agnostic to the class parameter n
in terms of time complexity because meMIA’s architecture
does not change regardless of the dataset type. Consequently,
meMIA’s time complexity remains considerably close to MIA,
considering a slight variance in execution time depending
on the complexity of the dataset itself, not the number of
classes. Moreover, as shown in Figure 10, we observe around
a 20 seconds higher training time compared to baseline MIA,
as the additional execution overhead comes from the LSTM
layers, which are particularly resource-intensive due to their
sequential data processing and internal complexity. Compar-
atively, meMIA, with its added layer of sophistication, holds
a clear advantage with comparable computational overhead,
considering the overall inference performance gain across the
datasets.
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Fig. 10: Comparison of training time and accuracy across
different attack methods.

B. Ablation study of meMIA

To elaborate on and comprehend the individual and com-
bined contributions to meMIA’s inference attack performance,
we conducted an ablation study across the benchmark datasets.
Moreover, to measure the effect of each component, we
selectively disabled the components and ran experiments to
observe their impact on inference gain.
Impact of the NN component: When we drop the LSTM
component, we observe a notable decrease in accuracy across
all the datasets, as illustrated in Table V. This suggests that
NN is only capable of learning static patterns. Additionally,
NN lacks sequential learning capabilities, which the LSTM
provides. The absence of LSTM led to an obvious drop in
accuracy, emphasizing the importance of treating prediction
vectors as sequential features compared to solely learning from
the difference in the prediction vector distribution.
Impact of the LSTM component: On the other hand, if
we disable the NN component and retain the LSTM, we
notice a similar trend of reduced accuracy. These results
evidently signify that the LSTM component alone, despite
its proficiency in learning the order dependencies, is not able
to fully capture the intricate interaction of confidence scores.
Moreover, the comparison shows that the NN components

generally outperform the LSTM in capturing the distribution
differences at the output of the shadow model, suggesting that
NN contributes more to the combined attack.
Combined Impact in meMIA: When the two components
are ensembled, meMIA consistently outperforms the individ-
ual components. With the full meMIA model, the accuracy
improvements are quite significant, as shown in Table IV.
Overall, the experiments have shown that meMIA’s ensemble
approach not only preserved the individual strengths of NN
and LSTM but also enhanced the effectiveness of inference
attacks when combined together.

TABLE V: Comparative accuracy metrics for meMIA with
isolated and integrated NN and LSTM components.

Dataset model0 NN Acc. model1 LSTM Acc. meMIA Acc.

FMNIST 57.64 51.07 59.8
UTKFace 62.04 58.07 62.4
STL-10 79.98 77.79 85.3
CIFAR-10 78.9 76.62 82.7
CIFAR-100 91.36 88.55 94.6
Location 68.75 69.78 78.3
Purchase-100 81.22 52.73 82.2

V. EXPERIMENTAL SETUP

The training datasets for the target and shadow models are
chosen at random and equally divided, ensuring that there are
no overlaps between the two sets (see section III). We used
randomly shuffled disjoint target and shadow training samples
in our experiments to evaluate meMIA. In other words, similar
to [45], we did not use any sample in the training of our
attack model, which was used to train the target model, thereby
ensuring that the attacker has little knowledge of the actual
training data. More precisely, the training samples of the
target and attack models are mutually exclusive, increasing
the odds of uncertainty setting up the most challenging attack
setting, leaving the adversary with a baseline accuracy of 50%
equivalent to random guessing.

In this paper, we use standard metrics such as precision
and recall, where precision shows how accurately the attack
model predicts a fraction of samples being members and
recall measures the coverage. Moreover, We present both
class-specific and average measurements to compare meMIA’s
performance with state-of-the-art attacks, using MIA [45] as
our baseline attack model. Note, when we mention MIA in
our experiments, we refer to [45].

The experiments on all datasets were run 5 times, reporting
mean values, against our target models trained on a local PC
equipped with one NVIDIA T600 GPU, 16 GB of memory
and an Intel E-cores CPU server with Ubuntu 22.04 operating
system.

VI. RESULTS AND DISCUSSION

In this section we first discuss techniques we used to
compare meMIA’s inference performance with SOTA MIA
inference schemes. Next, we discuss our results.
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A. Techniques used for comparison

We used several methods to compare the performance of
meMIA attack model. As mention previously we chose SOTA
inference schemes MIA [45], seqMIA [28] and NSH [34]
to show the superior inference capabilities of meMIA under
the extremely difficult attack scenario (the Black box setting)
over diverse range of datasets using the following performance
metrics:
Cumulative Fraction of Classes (CDF) for precision and
recall: To calculate the cumulative distribution function (CDF)
of accuracy values across different classes given a particular
dataset, we do the following:

• First we sort these precision values in ascending order
• Next, for each of the sorted precision value, we calculate

the cumulative probability which is the sum of the
probabilities of all precision less than or equal to that
value. for example if we have 5 classes with precision
values of 0.70, 0.82, 0.65, 0.90, and 0.75, we consider
each having an equal probability of 1/5 as shown below:

– P (X ≤ 0.65) = 1/5
– P (X ≤ 0.70) = 1/5
– P (X ≤ 0.75) = 1/5
– P (X ≤ 0.82) = 1/5
– P (X ≤ 0.90) = 1/5

Besides, we also determine CDF of recall using the same pro-
cedure. Moreover, The CDF provides us a clear understanding
of how precision and recall values are distributed across the
classes, enabling us to identify whether most classes are easy
or difficult for the attack model to infer. Henceforth we can
use CDF to compare multiple MIA attack methods and observe
their overall performance across all classes.
Accuracy and AUC: As mentioned previously, we use pre-
cision and recall, which are standard metrics used across
MIA (Membership Inference Attack) literature. However, we
also use accuracy and AUC (Area Under the ROC Curve) to
provide a comprehensive evaluation of meMIA.

B. Results

The accuracy of target models for different datasets is shown
in Table III. For some datasets with the same hyperparameter
set, the accuracy reaches as low as 27%. For less complex
datasets like FMNIST, the attack inference of all state-of-the-
art attacks is moderate, as depicted in Table IV. Specifically,
for FMNIST, our attack model achieves an attack accuracy that
is 3.63% higher than the baseline MIA attack. The improve-
ment is even more significant for datasets like UTKFace and
STL-10, reaching a 6% increase. Additionally, with complex
datasets like CIFAR-100, our attack model stands out, showing
a 94.6% accuracy rate.

In Figure 4(a), the median precision (indicated by the line
within each box) of our attack method is consistently higher
across all three dataset size variations compared to MIA [45].
This suggests that meMIA typically achieves superior infer-
ence performance with higher median precision and exhibits
less variability. Similarly, when we compare the CDF curves
for both attack methods as shown in Figure 4(b), meMIA
outperforms MIA, indicating that meMIA not only correctly

identifies more true members of the dataset (higher recall)
but also makes these identifications with fewer false positives
(higher precision).

Figure 5(a) shows precision and recall for membership
inference against CNN-based target neural networks trained
on STL-10 dataset of size 6,500, illustrating a comparison
between MIA and meMIA methods per class performance. We
observe fluctuations in performance due to varying number
of samples per class and feature distribution. Furthermore,
we also infer that meMIA does reasonably well as both
precision and accuracy are mostly above 70% compared to
the baseline MIA attack. Additionally, Figure 5(b) shows the
cumulative fraction of classes at different accuracy levels for
both the baseline MIA and meMIA on a CNN trained on the
STL-10 dataset. The effective CDF distribution of meMIA
indicates it can identify actual members with fewer errors
across more classes, demonstrating its potency and efficiency
in membership inference attacks.

Figure 6 presents the precision and recall metrics as
cumulative distribution function (CDF) graphs for the CIFAR-
100 dataset. Figure 6(a) compares baseline MIA and Figure
6(b) compares seqMIA [29] with our attack method, where
meMIA consistently outperforms them, indicating our model
is more effective in precision and recall. Additionally, it shows
a strong ability to conduct membership inference attacks on the
CIFAR-100 dataset. Similarly, when we perform experiments
on the Purchase-100 dataset, we can observe the same trend
where our model outperforms MIA and seqMIA as shown in
Figure 7(a) and Figure 7(b) .

Figure 8 shows the performance of membership inference
attacks on a CNN trained with the FMNIST (Fashion-MNIST)
dataset, comparing the CDFs of MIA and seqMIA with
meMIA. Furthermore, it can be observed from the graphs
that the precision of our attack surpasses MIA at an accuracy
threshold of approximately 52%, suggesting that our method
can correctly identify true positives more efficiently than MIA
beyond this accuracy threshold as shown in Figure 8(a).
Similarly, our attack achieves greater precision than seqMIA,
around an accuracy of 57%, with both methods showing
comparable precision up to this accuracy level as depicted in
Figure 8(b). Moreover, we note that all attack models exhibit
limited success, which can be attributed to the 90% high test
accuracy of the CNN-based target model for FMNIST data.
In other words, target models generalized the data very well,
leaving a very small window for the success of the attacks.

1) Attack performance Against Dataset Complexity: In this
paper, we used seven benchmark datasets and three attack
methods in a black box setting. We performed extensive ex-
periments to validate the efficacy of the proposed membership
inference attack model. To maintain the same level of features
for the image-based dataset, we resized all the samples to
32x32 pixels, as mentioned before (see III-A) and observed
the following.

• As shown in Figure 11, the complexity of the dataset
has a tremendous effect on the inference performance
of the attack methods. FMNIST is the simplest dataset,
followed by UTKFace, which contains colour images of
human faces (4 classes based on races have been used),
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Fig. 12: Membership inference Attack performance (using
accuracy, precision and AUC metrics) against target model
for Purchase-100 dataset with 0.6602 testing accuracy and
changing the shadow model test accuracy, illustrating the best
performance with lowest contrast.

and so on until CIFAR-100, the most complex dataset.
More precisely, as the complexity of the dataset increases,
membership inference attack models gain better attack
performance.

• We observe that our proposed attack model consistently
outperforms all three attack methods while following the
trend of acquiring more potency as the dataset gets com-
plex, showcasing the robustness and versatility of meMIA
model. In particular, we observe a significant increase in
performance on the CIFAR-10, STL-10 and CIFAR-100
datasets compared to the other models, indicating that our
model generalizes better as the dataset becomes complex.

2) Relation Among Testing Accuracy of Target and Shadow

Models: To analyze how attack inference performance re-
sponds to varying the test accuracy of the shadow model (by
overfitting or underfitting) while keeping the target model’s
testing accuracy fixed at 66.02%. We observe that the attack
model performs best when the shadow model has a slightly
lower accuracy than the target model, as shown in the Figure
12. The peak performance occurs when the shadow model’s
accuracy is approximately 62%-65%, which is the sweet
spot for the attack model on the Purchase-100 dataset. More
precisely, the trend in the Figure shows that a high contrast
between the shadow and target model’s testing accuracies will
lead to degraded membership inference attack performance,
confirming the experiments demonstrated by [41].

VII. CONCLUSION

In this paper, we introduced meMIA, a novel membership
inference attack model. The key insight while devising our
attack model involved leveraging multi-level information using
stacked ensemble machine learning. We implemented three
different threat models, i.e., NSH, MIA and seqMIA, within
a black-box attack framework to assess the relative potency
of meMIA. For target model architectures, we considered
a simple CNN for image-based datasets and a simple NN
for location and purchase datasets. We conducted extensive
experiments to validate the effectiveness of our model using
seven benchmark datasets. The results show that meMIA
outperforms state-of-the-art MI attacks, achieving accuracy as
high as 94% and near-perfect recall. Among other things, our
analysis shows a strong correlation between the test accuracies
of the target and shadow models and how that affects the
performance of the attack model. For example, the attack
model performs better if the difference in accuracy between
the target and shadow models approaches zero. We further
affirm that as dataset complexity increases, the attack model’s
performance improves.

As part of future work, it would be interesting to delve
deeper and experiment with more advanced machine learning
architectures, e.g., designing transformer-based “attention is all
you need” attack models. Additionally, to further improve our
attack model, we intend to explore representation learning to
learn two distinct latent feature spaces for member and non-
member data samples. Moreover, to make meMIA resilient
against potential defensive mechanisms, exploring the use of
gradient masking techniques in the training of shadow models
could further enhance meMIA’s inference performance.
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