
Leveraging AI to Compromise IoT Device Privacy
by Exploiting Hardware Imperfections

Mirza Athar Baig, Student Member, IEEE, Asif Iqbal, Muhammad Naveed Aman, Senior Member, IEEE,
and Biplab Sikdar, Senior Member, IEEE

Abstract—The constrained design, remote deployment, and
sensitive data generated by Internet of Things (IoT) devices
make them susceptible to various cyberattacks. One such attack
is profiling IoT devices by tracking their packet transmissions.
While existing methods mitigate these attacks using pseudony-
mous identities, we propose a novel attack strategy that exploits
the physical layer characteristics of IoT devices. Specifically, we
demonstrate how an attacker can leverage features extracted
from device transmissions to identify packets originating from
the same device. Once identified, the attacker can isolate the
device’s signals and potentially determine its physical location.
This attack exploits the fact that microcontroller clock variations
exist across devices, even within the same model line. By
extracting transmission features and training Machine Learning
(ML) models, we accurately identify the originating device of
the packets. This study reveals inherent privacy vulnerabilities
in IoT systems due to hardware imperfections that are beyond
user control. These limitations have profound implications for the
design of security frameworks in emerging ubiquitous sensing
environments. Our experiments demonstrate that the proposed
attack achieves 99% accuracy in real-world settings and can
bypass privacy measures implemented at higher protocol layers.
This work highlights the urgent need for privacy protection
strategies across multiple layers of the IoT protocol stack.

IMPACT STATEMENT

This paper contributes to the security of the Internet of
Things (IoT) by revealing a vulnerability stemming from
hardware imperfections introduced during the manufacturing
process of IoT devices. In particular, we exploit the variations
in the internal clock of embedded devices to identify the source
of a data packet. The IoT has become ubiquitous and given
the private nature of data, it is crucial to guarantee privacy
protection. The current state-of-art for privacy management is
based on anonymization using pseudonym identities or other
mechanisms at the network layer. However, the proposed at-
tack shows that the privacy of IoT devices can be compromised
using physical layer information irrespective of network layer

This research is supported by the National Research Foundation, Singapore
and Infocomm Media Development Authority under its Future Communica-
tions Research Development Programme, under grant FCP-NUS-RG-2022-
019. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore and Infocomm Media Development
Authority.

M. A. Baig and M. N. Aman are with the School of Computing, University
of Nebraska-Lincoln, 1400 R St, Lincoln, Nbraska, United States 68588.
Email: mbaig4@huskers.unl.edu, naveed.aman@unl.edu.

A. Iqbal and B. Sikdar are with the Department of Electrical and Computer
Engineering, National University of Singapore, 4 Engineering Drive 3, Sin-
gapore 117583. Email: aiqbal@nus.edu.sg, bsikdar@nus.edu.sg.

mechanisms. Thus, this paper highlights the importance of
cross layer approaches for IoT security. The convergence of
hardware imperfections and the pursuit of verifiable anonymity
is a critical juncture for research, especially considering the
growing integration of the Internet of Things into sectors
of critical infrastructure. The primary aim of our research
is to promote the understanding of device-specific physical
fingerprints and facilitate the advancement of strategies that
safeguard privacy at multiple layers.

Index Terms—Internet of Things, Privacy Attack, Machine
Learning, Device Profiling.

I. INTRODUCTION

The Internet of Things (IoT) is envisioned as the enabler
of many new services and applications, such as smart cities,
agriculture, healthcare, industries, etc. The simple and low-
cost nature, extremely large number, remote location, and their
use in critical infrastructure make IoT devices an attractive
target for cybercriminals. One of the major applications of
IoT devices is control and decision making. Therefore, trust
in the fidelity of data generated by IoT devices is crucial
for the success of IoT based control and decision making
systems. Most IoT devices are embedded systems made up
of microcontrollers. An IoT device has various hardware
subsystems, including a microprocessor, memory, security, and
radio subsystems, as shown in Figure 1.

Figure 1 illustrates an IoT device’s clock-dependent subsys-
tems. The microprocessor subsystem incorporates the CPU,
memory, buses, and interfaces for computation and control.
The security subsystem is responsible for executing crypto-
graphic operations whereas the radio subsystem is responsible
for facilitating wireless communication by utilizing various
components, such as amplifiers and modulators. The process
of digitizing sensor inputs in an analog-to-digital converter
involves sampling at specific intervals that is determined by
the clock. Frequency dividers are utilized to generate lower
frequency clocks for individual subsystems by dividing a high-
frequency source clock. Figure 1 shows that a clock source
may be used to produce different clock periods or frequencies
according to application specific needs using a frequency
divider.

The CPU, bus, and peripherals of a microcontroller use
its internal clock to coordinate their operations. The clock
is crucial to performance because it determines how quickly
the CPU executes its instructions. The central processor of

Microproessor

Sub-System

Frequency

Divider

Frequency

Divider

Security

Sub-System

Frequency

Divider

Security

Sub-System

Microproessor

Sub-System

Frequency

Divider

Radio

Sub-System

Frequency

Divider

Frequency

Divider

Analog to Digital
Converter

Clock Source

Fig. 1: IoT device sub-systems and reliance on a clock source.

a microcontroller can be viewed as a synchronized series of
logic units, each one serving a specific purpose. If the clock
is running too slow, the processing time will increase. On
the other hand, if the clock runs too fast, there may not
be enough time to complete the required operations before
the next set begins. Similarly, any large error in the clock
speed will have unforeseen effects on the internal operations
of the microcontroller. It has been shown that the internal
clock varies from one microcontroller to another, even if we
consider the same type of microcontroller manufactured in
the same facility [1], [2]. This is because industrial processes
cannot control variations at the microscopic level. Although
these variations in the internal clock may not be significant
enough to cause errors, in this paper we show that they have
enough entropy to be used for IoT device identification.

A. Related Work

Many researchers have discussed the impact of clock vari-
ations on system performance and mitigation techniques. The
authors in [3] examine the modeling of various delay and jitter
mechanisms in systems that close the communication network
loop. As an example, the plant behavior is used to illustrate
constant and time-varying delays. An event-triggered real-time
scheduling technique for networked embedded devices based
on event triggers is described in [4]. A modeling technique
for random time delays in distributed control systems and
a scheme for dealing with unpredictable time delays are
described in [5]. [6] provides an overview of time synchro-
nization in sensor networks. The authors of [7] address the
subject of jitter control in time-triggered real-time systems,
as delays or jitter in real-time embedded systems may affect
system stability. The authors in [8] compare various fault-
tolerant clock synchronization techniques.

Similarly, the authors in [9] describe an inventive hardware-
based, extremely reliable clock generator to circumvent the
shortcomings of algorithm-based fault-tolerant clock synchro-

nization systems. Further discussion of clock synchronization
issues in embedded systems and multiprocessor systems can
be found in [10]–[14]. Although the significance of clock
synchronization, clock delay, and clock jitter is highlighted,
there is no extensive consideration of the effects of clock
period variation on system behavior in the frequency domain.
In a recent work by [1], frequency domain analysis is used to
explore the effect of clock/sampling period drift on discrete
time algorithms with open and closed loops. They described
how the results of discrete-time algorithms can be impacted
by clock variations due to manufacturing flaws. The above
discussion shows that microcontrollers suffer from clock vari-
ations, which are exploited in this paper to attack the privacy
of IoT devices.

Many research studies have utilized Radio Frequency Fin-
gerprinting (RFF) techniques for device authentication. The
underlying concept involves extracting unique features from
wireless communication components to serve as device sig-
natures for authentication purposes. Deep Learning (DL) ap-
proaches have demonstrated effectiveness in addressing clas-
sification problems of this nature, as evident from previous
studies. In particular, some studies have employed DL-based
RFF protocols that utilize base-band IQ samples as input to
the system [15]–[17]. However, these studies indicate that
significant performance degradation can occur when deal-
ing with dynamic propagation environments and time gaps
between training and testing data [18], [19]. These factors
should be considered when designing and evaluating DL-
based RFF systems to ensure their robustness and reliability
in real-world scenarios. Thus, the existing RFF techniques are
highly sensitive to channel and environmental factors such as
mutipath interference, temporal and spatial variations, etc.

Prior research has explored time-based fingerprinting tech-
niques that exploit timing imperfections in CPU clocks and
system components for device identification. Authors in [29]
demonstrated a method that times the execution of CPU in-
struction sequences and JavaScript APIs to fingerprint general-
purpose computers and web browsers. However, their approach
requires running code locally on the target device or remotely
through web APIs, and primarily targets timing sources in
high-performance CPUs and DRAM modules. Sánchez et
al. [20] employed behavioral fingerprinting to identify single-
board computers. They exploited the deviation between the
GPU and CPU cycle counters and employed XGBoost to
classify individual devices. However, their technique requires
physical access to the GPU and CPU cycle counter. In [21],
the authors employed programmable switches to introduce in-
network fingerprinting using standard packet metadata. How-
ever, it requires access to the programmable switches which
may not be possible in many cases.

In contrast, our work focuses on passive remote fingerprint-
ing of resource-constrained wireless IoT devices by analyzing
their over-the-air transmissions. We exploit unique hardware
imperfections in the internal clock sources of low-power
microcontrollers that get imprinted on the wireless signals
during clock-dependent operations like modulation. In [22],

[15]–[17] [20] [21] [22] [23]–[28] Our Work
Remote Fingerprinting ✗ ✗ ✓ ✗ ✗ ✓
No Physical Access Needed ✓ ✓ ✗ ✗ ✓ ✓
Robust to Environmental Factors ✗ ✓ ✓ ✓ ✗ ✓
Exploits Hardware Imperfections ✓ ✓ ✗ ✓ ✗ ✓
High Accuracy in Real-World Conditions ✗ ✓ ✗ ✗ ✗ ✓
Computational Complexity High High Medium Low Low Low
Effective Feature Extraction ✗ ✓ ✗ ✓ ✗ ✓

TABLE I: Comparative analysis of existing works and our proposed method.

authors presented fingerprinting technique that utilized electro-
magnetic emanations from the processor clock of simple IoT
devices without wireless interfaces. However, this technique
requires close physical proximity of the IoT device which may
not be possible in the real world.

Existing studies on data privacy for IoT devices include
the following: The privacy properties of IoT services are
discussed in [30]. A survey on the taxonomy for the security
and privacy issues of Bluetooth low energy (BLE)-based IoT
devices is presented in [31]. A survey on current progress
for privacy support in IoT blockchains is presented in [32]. A
study of privacy preservation strategies and solutions proposed
thus far in the literature, as well as the IoT levels at which
each solution addresses privacy and their resistance to privacy
breaching attacks, was carried out in [33]. In another work,
[34], the authors present a methodology for handling data
privacy preservation in IoT networks. The authors in [35] use
differential privacy to add noise to sensor measurements. Sim-
ilarly, differential privacy is used to protect location privacy
in [36].

The authors in [37] use a random disturbance mechanism to
provide location privacy. Redactable Signature Schemes (RSS)
were proposed to delete privacy-sensitive parts of the signed
data of IoT systems in [38]. However, this approach cannot
avoid the inherent uncontrollable variation. The authors in
[39] proposed deep learning models for privacy preservation
in healthcare IoT devices. The risk of sharing private data
by IoT devices is estimated in [40]. A hierarchical two-layer
and three-player game framework was used for data privacy
preservation in context-aware IoT applications in [41]. The
authors in [42], propose an IoT-cloud-enabled healthcare data
system incorporating a searchable encryption method with
forward privacy and verifiability. Most of the other existing
work on IoT privacy preservation use random pseudonym
identities [23]–[28]. A comparative summary of the methods
discussed above and their features are provided in Table I.

Although encryption and network-layer defenses continue
to be crucial, we contend that inherent and unalterable hard-
ware variations can offer an alternative method for device
fingerprinting. The rationale behind our methodology stems
from the imperative for integrated physical and logical pri-
vacy strategies, as the sole reliance on techniques such as
pseudonymity proves inadequate. Through the demonstration
of exploiting clock skew to identify devices, we uncover
concrete weaknesses in the privacy of IoT systems that encom-
pass both physical characteristics and higher network layers.

This highlights the significance of incorporating cross-layer
perspectives in the process of developing resilient privacy
safeguards.

The significance of conducting research at the conver-
gence of hardware imperfections and the pursuit of verifiable
anonymity is paramount, particularly in light of the increasing
integration of the IoT into critical infrastructure sectors. The
objective of our research is to enhance comprehension of
device-specific physical fingerprints and stimulate the devel-
opment of multi-layer privacy preservation strategies.

B. Contributions
A major security requirement for IoT devices is privacy, i.e.,

the source of data should not be traceable by an adversary.
In these types of attacks, an adversary should not be able
to identify or correlate packets from a specific IoT device.
The existing work on privacy concentrates on pseudonymous
identities, where an IoT device uses temporary identifiers
generated using random numbers. Despite being effective
at the network layer, these methods could be vulnerable to
physical layer attacks. In this paper, we show a physical layer
attack to identify IoT devices using modulated signals. In
particular, we exploit the variation in the internal clock of
microcontrollers to identify multiple packets from the same
source IoT device.

The overall operation of the proposed attack is shown in
Figure 2. The adversary sniffs wireless packets sent from
multiple IoT devices and then based on extracted features
(frequency peaks in this paper), the packets are separated
according to source using a JS-divergence based algorithm.
After a sufficient number of packets are accumulated from
a source IoT device, a machine learning based classifier is
trained. Consequently, the trained classifier is used to identify
packets from various sources.

This paper focuses on revealing a new type of attack on
the privacy of IoT devices. The proposed attack uses wireless
characteristics of transmitted signals, specifically frequency
peaks, to identify packets from a specific IoT device. The
major contributions of this paper are as follows:

i. Propose a JS-divergence based novel algorithm to separate
packets based on the source of the packets.

ii. Use machine learning models to train a classifier based
on the packets collected using the JS-divergence based
separation algorithm.

iii. Evaluate the effectiveness of the proposed attack using
actual hardware under ideal, simulated noisy, and real-
world scenarios.

Fig. 2: Overall operation of the proposed attack.

The rest of the paper is organized as follows: Section II
presents the network model and assumptions considered in
this paper. Section III outlines the threat model employed in
this paper. Section IV describes the proposed attack strategy.
Section V presents the experiment setup, while the experimen-
tal results are discussed in Section VI. The future research
directions are summarized in Section VII and Section VIII
concludes the paper.

TABLE II: Notations and acronyms.

Acronym Definition
IoT Internet of Things
BLE Bluetooth Low Energy
FFT Fast Fourier Transform
ML Machine Learning
SVM Support Vector Machine
ROC Receiver Operating Characteristics
JS Jensen-Shannon
SNR Signal-to-Noise Ratio
RFID Radio Frequency Identification
Symbol Definition
Sn(t) transmitted signal
An(t) amplitude of nth sub-carrier
ωn carrier frequency
θk(t) phase for the nth sub-carrier
fc Carrier frequency
Pb sub-carrier peaks for reference base signal
Pt sub-carrier peaks for test signal
A Vector containing peaks for the same device
B Vector containing peaks for the different device
N Number of samples
M Number of classes
µ Mean
w window size for inputs of JS-Divergence
σ Standard deviation

II. NETWORK MODEL AND ASSUMPTIONS

The network model considered in this paper is shown in
Figure 3. In this network model, we have two IoT devices
connected to a gateway through wireless links. The adversary
sniffs the wireless packets and tries to find similarities between
packets according to the source, i.e., the objective of the
adversary is to separate packets from Alice and Bob according
to the source.

The following assumptions are made in this paper:
i. Every IoT device uses a single internal clock source.

ii. The adversary can listen to the wireless channel and obtain
packets transmitted by all parties within the wireless
network.

iii. Every packet transmitted by an IoT device has a preamble.
This is a realistic assumption because every packet in
TCP/IP has a preamble [43].

III. THREAT MODEL

The adversary employs a cheap software-defined radio
(SDR) that can sniff packets over the air. The adversary does
not have direct access to the devices in order to tamper with or
hijack them. The adversary passively analyzes wireless signals
to track devices and invade their privacy. We assume that the
radio protocol meets public IoT standards [44]. Although the
attacker cannot decipher encrypted payloads, it can capture and
extract information from the physical waveforms. Threats from
remote passive wireless eavesdroppers are the main concern
of this research.

IV. PROPOSED ATTACK

LTE-enabled devices, such as smartphones and tablets are
already pervasive while LTE has become the standard for IoT

Wireless
Gateway

Alice

Bob

Adversery

Fig. 3: The network model.

device communication. LTE is designed to efficiently transmit
packets of information with low latency (a few milliseconds)
and includes modern communication technologies such as
Multiple Input Multiple Output (MIMO) and turbo codecs.
LTE is based on Orthogonal Frequency Division Multiplexing
(OFDM), with each subframe composed of multiple OFDM
symbols. LTE subframes have 72 to 1200 sub-carriers with
bandwidths ranging from 1.4 MHz to 20 MHz.

A time domain OFDM signal for each sub-carrier can be
represented with the following equation:

Sn(t) = An(t)e
j|ωnt+θn(t), (1)

where, Sc(t), Ak(t), ωk and θk(t) represent the transmitted
signal, amplitude, carrier frequency, and phase for the nth

sub-carrier. Although the amplitude and phase can vary from
symbol to symbol, they remain constant for a single symbol’s
duration. For N sub-carriers, the complex transmitted signal
is given by:

Ss(t) =
1

N

N−1∑
n=0

An(t)e
j|ωnt+θn(t)|, (2)

where ωn = ω0+n∆ω, while ω0 and ∆ω represent the carrier
frequency and sub-carrier spacing, respectively. Thus, this can
be viewed as a superposition of multiple sub-carrier signals
representing individual FDM signals.

A block diagram to generate each subframe of an LTE
frame is shown in Figure 4. We observe that the output relies
heavily on the carrier frequency fc, i.e., any jitter in fc would
be propagated to all the sub-carriers. A typical spectrum for
an OFDM signal is shown in Figure 5. This shows that any
variation in fc would in turn affect the sub-carrier peaks. To
classify incoming packets as coming from the same or dif-
ferent sources, we employ a hierarchical binary classification
approach that involves computing the distance between packet
feature distributions using the Jensen-Shannon (JS) divergence
[46]. JS divergence is a method of measuring the similarity be-
tween two probability distributions. It is a symmetric and finite
version of the Kullback-Leibler divergence (KL divergence),
which is a measure of the difference between two probability
distributions. The JS divergence ranges from 0 to ln(2), with

Periodic Switch with Period T

N Parallel

Input

Subcarriers

Fig. 4: Block diagram for OFDM generation.

Fig. 5: OFDM signal frequency spectra [45].

0 indicating that the two distributions are identical and a value
of ln(2) indicating maximum divergence. A simple threshold
δ can then be used to classify the origin of the packets based
on the distance computation.

The algorithm for the proposed attack is summarized in
Algorithm 1 and the steps are as follows:

Algorithm 1: Proposed algorithm to detect packets
from the same source.
Input: Pb = [P1, P2, · · · , PN]T , thresh,

Pt = [P ′
1, P

′
2, · · · , P ′

N]T , A = ϕ, B = ϕ
1 I ←− JS divergence(Pb,Pt)
2 if I < thresh then
3 A =

[
A Pt

]
: H1 - Same Device

4 else
5 B =

[
B Pt

]
: H0 - Different Device

6 end
Output: A,B

1) Sniff a new data frame/packet and find the sub-carrier
peaks using the bandpass filter bank technique over a

specified window length [47]. Save the sub-carrier peaks
in a vector,

Pb =
[
P1 P2 · · · PN

]
. (3)

2) For each new data frame sniffed, do the following:
a) Calculate the sub-carrier peaks as before and save them

to a vector,

Pt =
[
P ′
1 P ′

2 · · · P ′
N

]
. (4)

b) Use JS divergence [46] to compute distance between
the distributions of Pb and Pt to test the following
hypothesis on P = [Pb Pt]:

H0: Higher JS divergence score. The elements of
P are random and belong to different sources.
H1: Lower JS divergence score. The elements of P
are not random, i.e., they are from the same source.

c) The null hypothesis H0 refers to the case in which the
distributions of the two vectors Pb and Pt have higher
statistical diversity and are therefore random, i.e., the
new packet is regarded as not coming from the same
source. The purpose of the JS divergence test is to
determine whether the sub-carrier peak distributions of
the current and prior windows are consistent. If distri-
butions are consistent, the JS divergence test rejects
the null hypothesis, and the new packet is considered
to come from the same source.

3) If the null hypothesis is rejected, save Pt in container A,
otherwise save it in B.

If the goal is to identify G distinct sources, then the above
steps can be repeated G− 1 times on packets stored in B.

To train an ML model to classify packets from different
sources, an attacker needs to first generate a training dataset,
i.e., separate packets coming from different sources. For this
purpose, the Algorithm 1 is employed for identifying packets
from the same source. However, it alone cannot effectively
classify the packets into their respective labeled classes. Con-
sequently, machine learning classifiers are utilized to perform
the classification task. Once the adversary accumulates a
sufficient number of packets from various sources, a machine
learning (ML) model is trained using this data. This trained
model can subsequently be employed to classify packets from
these sources in future instances.

V. EXPERIMENT DESIGN

This section describes the experimental setup and imple-
mentation details. The system model includes multiple trans-
mitter (TX) devices that communicate data to a single receiver
(RX) via a wireless channel, as seen in Figure 6. The TX
devices are simulated using software-defined radios such as
PlutoSDR and HackRF, which transmit an OFDM based LTE
waveform and have settings specifically designed for device
fingerprinting analysis. The RX device employs a PlutoSDR
that has been configured with automatic gain control and
matched filtering to record wireless signals.

The experiment is repeated under three scenarios.

1) Lab Environment (S1): In this scenario, we simulated
ideal conditions under controlled environment within the
lab as shown in Figure 6.

2) Controlled Noisy Channel Simulation (S2): To evalu-
ate the robustness of our fingerprinting technique under
adverse channel conditions, we simulated the whole ex-
periment within a controlled lab environment by adding
synthetic noise to the collected wireless signal samples.
Specifically, we considered two commonly used noise
models:

a) Additive White Gaussian Noise (AWGN): This models
the effect of thermal noise in the receiver circuitry. We
added AWGN noise with varying signal-to-noise ratio
(SNR) levels of 10dB to the received signal samples.

b) Rayleigh Fading: This models the multi-path fading
effects in wireless channels caused by reflections and
obstructions. We applied a Rayleigh fading channel
model with scale parameters of 1.0 to induce varying
fading intensities.

3) Real-World Scenario (S3): To evaluate our technique
in practical conditions, we repeated the experiment in an
open parking area with an unobstructed path between the
transmitter and receiver SDRs separated by 10m.

The wireless channel introduces various impairments, such
as path loss, fading, and noise. Despite these challenges, the
consistent hardware-based clock skew variations among TX
devices enable the identification of individual devices, even in
the presence of these channel effects. Figure 7 shows a block
diagram for the experimental workflow.

OFDM Waveform

TX-SDR RX-SDR

Fig. 6: Experimental setup.

A. Data acquisition

The experimental setup consists of one receiver (RX) and
multiple transmitters (TX). We used analog devices, ADALM
PLUTO® Software Defined Radios (PlutoSDR) as the receiver
and multiple PlutoSDR and HackRF One as transmitters. The
plutoSDR is based on the Analog Devices Highly Integrated
RF Agile Transceiver, AD9363. It has a homodyne or Direct-
Conversion Receiver (DCR) utilizing the same Local Oscilla-
tor (LO) for both RX and TX. The LO is used as the carrier
frequency fc. This fc is selected in the UHF band with an

Rx

Data Provenance
using classification

Data Acquisition

Pre-Processing

Feature Extraction

Save as .mat

Detect
Packets from
Same Source

Train
ML

Classifier

Trained ML Model

Jensen-
Shannon

Divergence

RF Samples
from Same

Device

Device
Recognition

Labeled
Data

Inference

Fig. 7: Experiment block diagram.

1860 MHz frequency value. The same fc and sampling rate
is used for all RX and TX modules. The same parameters are
used in every RX and TX module for consistency.

The HackRF uses a more stable crystal oscillator as it’s
clocking source and can be used to transmit and receive
frequencies from 1MHz to 6GHz. We used one RX-TX pair
for the data acquisition and repeated this process for all the
TX devices as shown in Figure 6. The TX transmits a pre-
computed LTE quadrature waveform with a 5MHz bandwidth.

For each device, we recorded 50× 106 time domain sam-
ples as training and testing disjoint datasets, which were used
for feature extraction as discussed next.

B. Feature Extraction

The collected samples are packaged in frames of 10,000
samples per frame, leading to a matrix of size 5, 000×10, 000.
These frames are used to extract features that are used to
train the ML classification models. The PlutoSDR employs a
Temperature-Compensated Crystal Oscillator (TCXO) that is
used to derive the master reference clock for SDR operations
and processing. Each SDR module has its own independent
TCXO i.e, an independent reference clock with a ±25 ppm
tolerance. Besides this, the hardware intrinsic also cause clock
variations that can be exploited to find module-specific charac-
teristics. As described in Section IV, the sub-carrier frequency
peaks are exploited to identify packets from the same source.
Thus, the sub-carrier frequency peaks are extracted as features
from the LTE waveform and then used to train the classifiers.

The sub-carrier peak frequencies are selected as features
because: 1) They directly relate to the internal clock source
generating the OFDM waveform since any variations in the
clock will manifest as shifts in the sub-carrier peak locations;
2) Hardware imperfections introduce uncontrollable variations
in the internal clocks across different device instances, caus-
ing the peak locations to shift uniquely for each device;

3) The highest magnitude peaks are most resilient to noise
and channel distortions compared to lower magnitude peaks.
Thus, the peak frequencies effectively capture device-specific
“fingerprints” arising from manufacturing imperfections in the
clock sources.

The frequency peaks are extracted per frame using an
FFT-based polyphase spectrum estimation method [47]. This
method uses an analysis filter bank to split the broadband
signal x[n] into multiple narrow subbands, y0, y1, · · · , yM−1

where M is the number of frequency bands in the filter bank.
After the broadband input signal is split into multiple narrow

bands, the spectrum estimator computes the power in each
narrow band using the equation 5. Each zi value becomes an
estimate of the power over that narrow frequency band, i.e.,

zi =
1

L

L−1∑
m=0

|yi[m]|2, ∀i = 0, 1, · · · ,M − 1 (5)

where zi is the power value of the ith band, and L represents
the length of the narrow band signal yi. The final output is the
matrix X of size 5, 000×M . The filter bank approach produces
a spectral estimate with a higher resolution, a more accurate
noise floor, and more precise peaks with low or no spectral
leakage [47]. The frequencies found in rows of X are ranked
according to their Received Signal Strength Indicator (RSSI).
The frequency components with the highest RSSI values are
used as features, i.e.,

f j
peak = argmaxN |RSSI(f j)|, ∀j = 1, · · · ,M (6)

where f j is the jth row of X, and RSSI(.) is the RSSI
of a given frequency obtained by spectral analysis of the
original signal. In this paper, the IoT devices are represented
by the PlutoSDR and HackRF, while the top N = 10 peak
frequencies are utilized as features. We observed that the
peaks deviate from one IoT device to another due to clock

(a) Frequency spectrum of single data frame.

Band

(b) OFDM data frame with 4 pilots.

Fig. 8: Frequency domain analysis.

deviations caused by hardware manufacturing imperfections.
The spectrum analysis was performed using the DSP System
Toolbox of MATLAB® 2022a by Mathworks.

C. Supervised Learning Setup

The purpose of this experiment was to classify the packets
originating from the six test devices. Therefore, each classifier
was trained using six classes. We considered the most common
ML models, i.e., fine k-Nearest Neighbors (k-NN), Decision
Tree, Logistic Regression, Random Forest, and fine Support
Vector Machines (SVM) as classifiers for device identification.
Note that these classification models are not too complex and
can be used for multi-class classification. The dataset was
normalized to scale the feature values between 0 and 1. For the
k-NN classifier, the value of k was set to five. Additionally,
we used Euclidean distances and equal distance weights as
the distance metrics. We trained the decision tree classifier
using one hundred splits, with Gini’s Diversity Index (GDI)
used as the criterion for each split. For SVM, the RBF kernel
was used. All kernel functions use standardized data with a
box constraint level set to 1. A random forest classifier was
trained using the GDI criterion and 8 estimators. All these
models were trained and tested using Python’s Scikit-Learn
[48] library.

The dataset was split into training (75%) and test (25%) sets.
The training set was further split using 5-fold cross-validation
for tuning models’ hyperparameters. Once the models were
trained, their performance was evaluated on the held-out test
set using metrics such as accuracy, F1-score, precision, recall,
and AUC score. Confusion matrices were also generated to
analyze errors.

VI. RESULTS AND DISCUSSION

This section is divided into four subsections. In the first
subsection, we discuss the TX data generation process and
analyze the RX data signals for each device. In the second
subsection, we analyze the performance of the proposed Algo-
rithm 1 in terms of its ability to separate data packets coming
from different sources. In the third subsection, we use the
datasets generated using Algorithm 1 to train ML classifiers
and present their classification scores on the test datasets.

Finally, in the fourth section, we discuss the computational
complexity and analysis of the proposed algorithm.

A. Data generation

For prototyping purposes, the experimental OFDM frame
specifications were simplified from LTE. A 10 MHz spectrum
is utilized by the 64 sub-carriers as opposed to up to 20
MHz for LTE. Pilot tones and cyclic prefixes are two essential
elements that are kept in the simplified design. The objective is
to demonstrate device fingerprinting via clock skew as opposed
to testing against every potential LTE configuration. Note that
using a simplified waveform presents a lower bound on the
performance. An OFDM frame was created using the MAT-
LAB software. The frame consisting of 64 sub-carriers with a
total bandwidth of 10 MHz. The frame was then transmitted
using the PlutoSDR devices, which had a sampling rate of 10
MHz. The sub-carrier spacing was set to 156.25 kHz, with
11 sub-carriers designated as guard bands and 4 as pilots.
The input data bits were modulated using 8-point Quadrature
Amplitude Modulation (QAM). These settings were chosen to
be closest to the standard 10 MHz LTE waveform. Figures 8(a)
and 8(b) show the spectrum and OFDM sub-carrier mapping
of a single data frame, respectively.

Figure 9 illustrates the block diagram of the proposed
technique. The input RF data coming from the ADC is
sequenced into the Features Extraction Unit (FEU) to extract
peak frequency features from the data. The FEU calculates
frequency spectrum peaks as explained in V-B. As a proof
of concept, we utilize the data acquired in the laboratory
environment to analyze the features. Figure 10 shows the
number of unique frequencies found for each feature. We
observe that the first 4 features have the least number of unique
frequencies as compared to the rest and are thus consistent.
This is expected as, in the simulated OFDM frame, there
were 4 fixed pilot sub-carriers with constant unit amplitudes
as compared to the rest of the data sub-carriers. The lower-
variance features have an impact on fingerprinting because
they have a lower ability to distinguish between different
devices. The features with greater variance, however, have
more entropy to distinguish between devices. Although devices
1-3 show more unique frequencies than devices 4-6, we

observe that these are sufficient for identifying the devices
nonetheless.

Rx

Feature
Extraciton Unit

Jensen-Shannon
Divergence

Device
Recognition

RF samples from
same device

Fig. 9: JS divergence compute unit.

1 2 3 4 5 6 7 8 9 10
0

250

500

750

1000

1250

1500

1750

2000

Un
iq

ue
 Fr

eq
ue

nc
ie

s

Dev 1
Dev 2
Dev 3
Dev 4
Dev 5
Dev 6

Fig. 10: Number of unique frequencies found for each feature
in lab environment.

Figure 11 shows the empirical Cumulative Distribution
Function (CDF) of all the frequencies present in the overall
spectrum. The differences among the devices in CDF show that
they have slightly different frequencies, caused by the clock
sources of the TX and the RX. Since the RX is same for this
experiment, the difference can be attributed to the TX devices.
Note that PlutoSDRs utilize a temperature-compensated crys-
tal oscillator, while HackRFs use a crystal oscillator. TCXOs
are less stable than crystal oscillators; hence, PlutoSDRs’ lead
to larger frequency drifts. Due to their more stable clock,
HackRFs can pick up more frequencies at the lower end of the
spectrum, where signals are weaker. Because frequency drift
is less prone to miss weaker signals, HackRFs miss them less.

Figure 12 shows the frequency distribution for the six TX
devices within the 1857-1863 MHz band. The densities are
multi-modal, with each mode centered around a specific pilot
frequency. A density diagram illustrates the number of devices
found at each frequency. The four peaks shown in the graph
are due to the four pilot signals used in the waveform. Ideally,
we should not have anything in the graph except for the
four pilot frequencies but due to the clock variations, each
TX device generates a range of frequencies other than the
pilot frequencies. The more unstable the clock, the wider
the range of frequencies as shown in Figure 12. Although

1858 1859 1860 1861 1862
Frequencies (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Devices Empirical CDF - All frequencies

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR
Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

Fig. 11: Devices empirical CDF for the entire spectrum in lab
environment.

1857 1858 1859 1860 1861 1862 1863
Frequencies (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

De
ns

ity

Devices Distribution - All frequencies

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR
Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

Fig. 12: Frequency distribution for each device in lab environ-
ment.

the transmitted waveform was the same for each device, the
received frequency profiles are not the same, and thus, we
should be able to use these profiles as hardware fingerprints
for packet differentiation.

B. Performance Analysis

Once the feature matrix for the received packet stream has
been computed, we use the proposed algorithm to separate
packets coming from different devices. To do so, we pass
the computed feature frames (from laboratory environment
setting) to the JS divergence compute unit, which performs hi-
erarchical binary classification on the frames using Algorithm
1. A sliding window approach is used in the JS divergence
compute unit with a minimum stride of 1 frame. Each window
w has f frames, where F shows the total number of frames
of the data. If the incoming frames have a low divergence
score compared to the previously collected frames, it is likely
that they are coming from the same device. The divergence
algorithm calculates the probability that a test statistic will

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR

Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

In
pu

t 2
:

0.08 0.058 0.047 0.034 0.023
0.36 0.35 0.35 0.35 0.35
0.36 0.34 0.32 0.3 0.28
0.67 0.66 0.67 0.67 0.66
0.67 0.67 0.67 0.67 0.67
0.66 0.66 0.66 0.66 0.66

Input 1: Dev 1

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR

Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

In
pu

t 2
:

0.36 0.35 0.35 0.35 0.35
0.093 0.074 0.06 0.048 0.037
0.35 0.32 0.32 0.31 0.3
0.67 0.67 0.67 0.66 0.67
0.68 0.68 0.68 0.68 0.68
0.67 0.67 0.67 0.67 0.67

Input 1: Dev-2 PlutoSDR

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR

Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

In
pu

t 2
:

0.36 0.34 0.32 0.3 0.28
0.35 0.32 0.32 0.31 0.3

0.075 0.054 0.042 0.03 0.019
0.66 0.66 0.66 0.66 0.66
0.67 0.66 0.66 0.66 0.66
0.66 0.65 0.65 0.65 0.65

Input 1: Dev-3 PlutoSDR

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR

Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

In
pu

t 2
:

0.67 0.66 0.67 0.67 0.66
0.67 0.67 0.67 0.66 0.67
0.66 0.66 0.66 0.66 0.66

0.028 0.021 0.018 0.013 0.012
0.17 0.16 0.15 0.14 0.13
0.69 0.69 0.69 0.69 0.69

Input 1: Dev-4 HackRF

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR

Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

In
pu

t 2
:

0.67 0.67 0.67 0.67 0.67
0.68 0.68 0.68 0.68 0.68
0.67 0.66 0.66 0.66 0.66
0.17 0.16 0.15 0.14 0.13

0.018 0.015 0.014 0.013 0.01
0.69 0.69 0.69 0.69 0.69

Input 1: Dev-5 HackRF

500 750 1000 1500 2500
Window Size

Dev-1 PlutoSDR
Dev-2 PlutoSDR
Dev-3 PlutoSDR

Dev-4 HackRF
Dev-5 HackRF
Dev-6 HackRF

In
pu

t 2
:

0.66 0.66 0.66 0.66 0.66
0.67 0.67 0.67 0.67 0.67
0.66 0.65 0.65 0.65 0.65
0.69 0.69 0.69 0.69 0.69
0.69 0.69 0.69 0.69 0.69
0.16 0.16 0.14 0.15 0.13

Input 1: Dev-6 HackRF

0.25

0.50

0.25

0.50

0.25

0.50

0.25

0.50

0.25

0.50

0.2

0.4

0.6

Fig. 13: Mean JS divergence scores.

be observed to be as extreme as or more extreme than its
observed value under the assumption that the null hypothesis
is true. These JS Divergence scores can be used to identify if
the incoming packets originated from the same source or not.

To verify the sensitivity of the JS divergence scores, we
computed the distance between input frames, coming from the
same or different devices, over window sizes between 50 and
250 frames (500 and 2500 samples, respectively). The mean
scores of this test are shown in Figure 13 and the histogram
of all raw divergence scores is shown in Figure 14. Figure
13 highlights that the JS divergence test was found to be
relatively insensitive to the window size used. The results
suggest that the window size has a minimal impact on the
divergence score. Moreover, the distribution of JS divergence

scores, as shown in Figure 14, is tri-modal (scores for frames
coming from the same vs. different devices) and has very low
overlap; thus, an appropriate threshold can be used here for
the binary classification problem.

To analyze the classification accuracy of Algorithm 1, we
used it to classify the received data from the three PlutoSDR
devices. The test was repeated using multiple window sizes
and various threshold levels. The results are summarized in
Figure 15. Figure 15 (a) shows the classification accuracy
with respect to the various thresholds used on the JS di-
vergence score highlighting the robustness against threshold
selection as a threshold of 0.1 - 0.3 (see Figure 13) would
give us around 99% accurate classification. Figure 15 (b)
shows the classification accuracy for various window sizes

TABLE III: Summary of the performance of different classifiers.

Precision Recall F1-score AUC-Score Accuracy
S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Random
Forest

0.9650 0.9516 0.9981 0.9650 0.9516 0.9981 0.9649 0.9516 0.9981 0.9972 0.9948 0.9994 0.9650 0.9516 0.9981

Decision
Tree

0.9483 0.9396 0.9976 0.9483 0.9396 0.9976 0.9483 0.9396 0.9976 0.9738 0.9396 0.9980 0.9483 0.9396 0.9976

Logistic
Regression

0.4440 0.2900 0.5888 0.4498 0.2900 0.5888 0.4246 0.2900 0.5888 0.8127 0.7406 0.8385 0.4498 0.2900 0.5888

k-NN 0.5789 0.3259 0.8211 0.5656 0.3259 0.8211 0.5642 0.3259 0.8211 0.8584 0.7160 0.9171 0.5657 0.3259 0.8211
SVM 0.5789 0.3773 0.8669 0.5656 0.3773 0.8669 0.5642 0.3773 0.8669 0.9176 0.8145 0.9582 0.5656 0.3773 0.8669

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
JS Divergence

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

De
ns

ity

x:0.147

Empirical Distribution of JS-DIV

Fig. 14: Empirical distribution of JS divergence scores for all
window sizes and all devices.

with a constant threshold value. Increasing the window size
decreases the JS divergence score, as discussed above, hence
improving the classification. These results demonstrate that
the proposed algorithm is robust and does not require precise
tuning of parameters such as the window size and classification
threshold. It works effectively for a wide range of parameter
values.

C. Classifier Performance

The feature training datasets from all devices obtained using
Algorithm 1 were used to train multiple ML classifiers, and
their effectiveness is evaluated through various metrics such as
accuracy, F1-score, precision score, recall score, AUC score,
and confusion matrices. A summary of these metrics for
the different classifiers under different environment conditions
studied in this paper on test datasets is presented in the table
III.

We observe that the classifiers based on random forest and
decision tree classification models can identify an IoT device
with precision and accuracy of more than 96% for ideal closed
lab environment and 99 % in real-world scenario. Sampling
with the same precision, recall, and F1-score means that the
model classifies positive and negative samples with the same
accuracy, i.e., the ratio of true positives to false positives is the
same as the ratio of true positives to false negatives. This is a
desirable outcome, as it indicates that the model is correctly

identifying both positive and negative samples. However, the
logistic regression, k-NN, and SVM based classifiers have
significantly degraded performance on all of the performance
metrics. This performance degradation can be attributed to the
fact that our data is not linearly separable and the features are
correlated. If the features are highly correlated, it can lead to
multicollinearity, which can affect a model’s performance. The
data must be linearly separable in order for logistic regression,
RBF SVM, and k-NN to work. This means that a linear
boundary must be able to separate the data into various classes.
If the data is not linearly separable, these models may not
perform well. Thus, this shows that the nature of the data is
non-linear, and a linear classifier may not be appropriate.

A confusion matrix, which illustrates the true positives,
true negatives, false positives, and false negatives for each
of the three test IoT devices is provided in Figure 16 for
each of the classifiers. The confusion matrices summarize the
performance of the classifiers for lab environment. The deci-
sion tree classifier has the best performance among all. It has
only one misclassification, where it misidentified device 1 as
device 2. When compared to existing techniques, our approach
outperforms those referenced as [15], [16], and [22], which
reported accuracies of 96.4%, 95%, and 95.1%, respectively.
Additionally, our approach demonstrates robustness, as it does
not require close physical proximity to the victim device and
is independent of the wireless protocols used.

D. Computational Complexity

The worst case running time computational complexity for
the different stages of Algorithm 1 is as follows:

1) Feature extraction involves applying an FFT to the signal,
which is O(NlogN) for N samples [43].

2) Computing the Jensen-Shannon divergence between two
feature vectors x and y with length N is O(N) [28].

3) The threshold for comparison and classification is O(1).
Considering M packets and N sub-carrier peaks extracted,

the overall computational complexity can be calculated as
follows:

1) Inputs for the Algorithm 1 require calculating FFT. So
they have complexity of O(MlogM ·N)

2) Step 1 loops through set of feature vector P with JS-
divergence costs of O(N) for a total computational cost
of O(P ·M).

3) Step 2− 6 run in O(1).

(a) Accuracy vs multiple thresholds with a single window size
of 2500 samples.

(b) Accuracy vs multiple window sizes with a constant threshold
of 0.1.

Fig. 15: Binary classification: the data frames are classified into two groups: “same device” or “different devices”.

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Predicted label

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Tr
ue

 la
be

l

749 1 0 0 0 0

0 749 0 0 1 0

0 0 750 0 0 0

1 1 0 1152 96 0

0 0 0 109 1141 0

0 0 1 0 0 1249
0

200

400

600

800

1000

1200

(a) Random Forest

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Predicted label

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Tr
ue

 la
be

l

748 1 0 1 0 0

0 750 0 0 0 0

0 0 750 0 0 0

1 0 0 1095 152 2

0 0 0 150 1098 2

0 1 0 0 0 1249
0

200

400

600

800

1000

1200

(b) Decision Tree

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Predicted label

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Tr
ue

 la
be

l

736 0 7 0 0 7

24 451 150 112 4 9

94 171 397 18 26 44

38 313 75 475 170 179

57 285 72 363 213 260

248 154 148 154 119 427
0

100

200

300

400

500

600

700

(c) Logistic Regression

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Predicted label

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Tr
ue

 la
be

l

714 1 23 0 2 10

7 505 202 10 18 8

18 115 538 16 39 24

0 2 3 752 343 150

0 7 15 568 453 207

0 3 19 465 331 432
0

100

200

300

400

500

600

700

(d) k-NN

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Predicted label

Dev-1 PlutoSDR

Dev-2 PlutoSDR

Dev-3 PlutoSDR

Dev-4 HackRF

Dev-5 HackRF

Dev-6 HackRF

Tr
ue

 la
be

l

725 0 25 0 0 0

7 512 224 0 4 3

13 63 644 7 13 10

0 2 3 757 300 188

0 4 7 363 531 345

0 5 15 203 271 756
0

100

200

300

400

500

600

700

(e) Support Vector Machines

Fig. 16: Confusion matrices for various classifiers.

Thus, the overall worst-case running time is given by
O(MlogM · N + P · M). Since P<M , it simplifies to
O(MlogM · N). This shows that the proposed attack can
be carried out with low computational complexity.

E. Ethical Considerations and Responsible Disclosure

While unveiling new security vulnerabilities plays a crucial
role in driving more robust and resilient system designs, it
must be done with prudence to prevent potential misuse by
malicious actors. We understand the weight of responsibility
that comes with disclosing attack methodologies against de-
vices used in critical infrastructure sectors like IoT devices.

From an ethical standpoint, our intention is not to aid nefar-
ious purposes, but to raise awareness about hardware-based
fingerprinting vulnerabilities that could severely undermine
user privacy. By responsibly disclosing our findings through
this publication, we aim to initiate an open discourse and
prompt the research community, industry practitioners, and
policymakers to prioritize the development of multi-layered
defenses.

To mitigate potential misuse risks, we have anonymized all
sensitive information related to specific device configurations
and omitted low-level implementation details that could enable

straightforward recreations of the attack. Furthermore, Section
VII include possible defenses and mitigation techniques for
this attack to be explored in future.

VII. FUTURE DIRECTIONS

While this work highlights a fundamental vulnerability
arising due to hardware imperfections, there are several po-
tential strategies that could be explored to defend against such
privacy attacks. Since the attack relies on uniqueness in clock
characteristics, introducing intentional dithering or obfuscation
of the clock signal could help mitigate device fingerprinting.
However, this may impact timing-sensitive operations.

Clock calibration and controlled jitter injection are two
suggestions to counteract fingerprinting attempts by adver-
saries that use clock variations. PUFs could reduce hardware
signature leakage while improving synchronization protocols
to allow for more accurate device clock alignment. The data
that can be accessible for fingerprinting can be limited using
a variety of methods at the PHY, MAC, and network levels.
Moreover, engineering absolutely identical hardware behavior
across devices will remain an open challenge.

Applying physical layer transformations like Direct Se-
quence Spread Spectrum (DSSS) or frequency hopping could
distort the sub-carrier peak locations and make fingerprint-
ing more difficult. Redesigning wireless protocols to avoid
long preambles and minimize imperfection-based modulations
could reduce fingerprinting vulnerabilities at the cost of in-
creased overhead. Processing data locally and sending obfus-
cated/encrypted data over wireless links could prevent privacy
leakage from physical signals. Combining multiple techniques
like obfuscation, shielding, and edge computing could provide
stronger multi-layered defenses against fingerprinting.

VIII. CONCLUSION

This paper presented a new way to attack the privacy of
IoT devices. The proposed attack exploits the variation in
the internal clock of microcontrollers to identify the source
of packets using statistical diversity among the sub-carrier
frequency peaks. The diversity among successive packets is
determined using the Jensen–Shannon divergence. Once the
adversary gathers sufficient data packets, it uses them to train
a machine learning classifier. We demonstrate the effectiveness
of the proposed attack using an experimental setup consisting
of PlutoSDR and HackRF nodes. Experimental results show
that the proposed attack can identify the source of a data packet
with approximately 100% accuracy.

To the best of our knowledge, this is the first work which
uncovers the vulnerability of using hardware imperfections in
the internal clock of IoT devices. However, this paper also
demonstrates device fingerprinting through clock skew analy-
sis, opening up future applications in authentication, counter-
feit detection, and surveillance. Our results also demonstrate
the need for cross-layer privacy mechanisms. Further research
can explore exploiting hardware imperfections for security
goals while also guarding against potential privacy violations.

REFERENCES

[1] S. S. Kuruppu and A. Shibilski, “Clock variation im-
pact on digital control system performance,” in 2019
IEEE 10th Annual Ubiquitous Computing, Electron-
ics & Mobile Communication Conference (UEMCON),
2019, pp. 0353–0358.

[2] M. Harris, How important is your microcontroller clock
source, Altium, 2021. [Online]. Available: https : / /
resources . altium . com / p / how - important - your -
microcontroller-clock-source-0.

[3] B. Wittenmark, J. Nilsson, and M. Torngren, “Timing
problems in real-time control systems,” in Proceedings
of 1995 American Control Conference - ACC’95, vol. 3,
1995, 2000–2004 vol.3.

[4] P. Tabuada, “Event-triggered real-time scheduling of
stabilizing control tasks,” IEEE Transactions on Auto-
matic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[5] J. Nilsson, B. Bernhardsson, and B. Wittenmark,
“Stochastic analysis and control of real-time systems
with random time delays,” Automatica, vol. 34, no. 1,
pp. 57–64, 1998.

[6] F. Sivrikaya and B. Yener, “Time synchronization in
sensor networks: A survey,” IEEE Network, vol. 18,
no. 4, pp. 45–50, 2004.

[7] K.-J. Lin and A. Herkert, “Jitter control in time-
triggered systems,” in Proceedings of HICSS-29: 29th
Hawaii International Conference on System Sciences,
vol. 1, 1996, 451–459 vol.1.

[8] P. Ramanathan and R. Butler, “Fault-tolerant clock syn-
chronization in distributed systems,” Computer, vol. 23,
pp. 33–42, Nov. 1990.

[9] M. Tsuchimura, H. Sawada, T. Kurokawa, and Y. Koga,
“Fault tolerant ic chip for crystal oscillators,” in [1991]
Proceedings Pacific Rim International Symposium on
Fault Tolerant Systems, 1991, pp. 232–237.

[10] T. LeBlanc, “Shared memory versus message-passing
in a tightly-coupled multiprocessor: A case study.,”
English (US), in Proceedings of the International Con-
ference on Parallel Processing, K. Hwang, S. Jacobs,
and E. Swartzlander, Eds., ser. Proceedings of the
International Conference on Parallel Processing, IEEE,
Dec. 1986, pp. 463–466.

[11] L. Lamport and P. M. Melliar-Smith, “Synchronizing
clocks in the presence of faults,” J. ACM, vol. 32, no. 1,
pp. 52–78, Jan. 1985.

[12] J. Y. Halpern, B. Simons, R. Strong, and D. Dolev,
“Fault-tolerant clock synchronization,” in Proceedings
of the Third Annual ACM Symposium on Principles
of Distributed Computing, ser. PODC ’84, Vancouver,
British Columbia, Canada: Association for Computing
Machinery, 1984, pp. 89–102.

[13] T. K. Srikanth and S. Toueg, “Optimal clock synchro-
nization,” J. ACM, vol. 34, no. 3, pp. 626–645, Jul.
1987.

[14] K. G. Shin and P. Ramanathan, “Clock synchronization
of a large multiprocessor system in the presence of
malicious faults,” IEEE Transactions on Computers,
vol. C-36, no. 1, pp. 2–12, 1987.

[15] G. Shen, J. Zhang, A. Marshall, L. Peng, and X.
Wang, “Radio frequency fingerprint identification for
lora using deep learning,” IEEE Journal on Selected
Areas in Communications, vol. 39, pp. 2604–2616, 8
Aug. 2021.

[16] S. Riyaz, K. Sankhe, S. Ioannidis, and K. R. Chowd-
hury, “Deep learning convolutional neural networks for
radio identification,” IEEE Communications Magazine,
vol. 56, pp. 146–152, 2018.

[17] I. Agadakos, N. Agadakos, J. Polakis, and M. R. Amer,
“Chameleons’ oblivion: Complex-valued deep neural
networks for protocol-agnostic rf device fingerprinting,”
Proceedings - 5th IEEE European Symposium on Secu-
rity and Privacy, Euro S and P 2020, pp. 322–338, Sep.
2020, Protocol-agnostic DL based RFFI.

[18] A. Al-Shawabka, F. Restuccia, S. D’Oro, et al., “Expos-
ing the fingerprint: Dissecting the impact of the wireless
channel on radio fingerprinting,” Proceedings - IEEE
INFOCOM, vol. 2020-July, pp. 646–655, Jul. 2020,
ISSN: 0743166X.

[19] S. Alhazbi, S. Sciancalepore, and G. Oligeri, “The day-
after-tomorrow: On the performance of radio finger-
printing over time,” May 2023. [Online]. Available:
https://arxiv.org/abs/2305.05285v1.

[20] P. M. S. Sánchez, A. H. Celdrán, G. Bovet, and G. M.
Pérez, “Adversarial attacks and defenses on ml- and
hardware-based iot device fingerprinting and identifica-
tion,” Future Generation Computer Systems, vol. 152,
pp. 30–42, Mar. 2024, ISSN: 0167-739X. DOI: 10.1016/
J.FUTURE.2023.10.011.

[21] C. Kuzniar, M. Neves, V. Gurevich, and I. Haque,
“Poiriot: Fingerprinting iot devices at tbps scale,”
IEEE/ACM Transactions on Networking, 2024, ISSN:
15582566. DOI: 10.1109/TNET.2024.3395278.

[22] J. Feng, T. Zhao, S. Sarkar, et al., “Fingerprinting iot
devices using latent physical side-channels,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., vol. 7,
no. 2, Jun. 2023.

[23] S. Johar, N. Ahmad, A. Durrani, and G. Ali, “Proof
of pseudonym: Blockchain-based privacy preserving
protocol for intelligent transport system,” IEEE Access,
vol. 9, pp. 163 625–163 639, 2021.

[24] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym
schemes in vehicular networks: A survey,” IEEE Com-
munications Surveys & Tutorials, vol. 17, no. 1,
pp. 228–255, 2015.

[25] I. Gutiérrez-Agüero, S. Anguita, X. Larrucea, A.
Gomez-Goiri, and B. Urquizu, “Burnable pseudo-
identity: A non-binding anonymous identity method for
ethereum,” IEEE Access, vol. 9, pp. 108 912–108 923,
2021.

[26] M. Akil, L. Islami, S. Fischer-Hübner, L. A. Martucci,
and A. Zuccato, “Privacy-preserving identifiers for iot:
A systematic literature review,” IEEE Access, vol. 8,
pp. 168 470–168 485, 2020.

[27] M. N. Aman, U. Javaid, and B. Sikdar, “Iot-proctor:
A secure and lightweight device patching framework
for mitigating malware spread in iot networks,” IEEE
Systems Journal, pp. 1–12, 2021.

[28] M. N. Aman, M. H. Basheer, S. Dash, et al., “Prom:
Passive remote attestation against roving malware in
multicore iot devices,” IEEE Systems Journal, vol. 16,
no. 1, pp. 789–800, 2022.

[29] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock
around the clock: Time-based device fingerprinting,” in
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18,
Toronto, Canada: Association for Computing Machin-
ery, 2018, pp. 1502–1514.

[30] R. Chow, “The last mile for iot privacy,” IEEE Security
& Privacy, vol. 15, no. 6, pp. 73–76, 2017.

[31] A. Barua, M. A. Al Alamin, M. S. Hossain, and E.
Hossain, “Security and privacy threats for bluetooth low
energy in iot and wearable devices: A comprehensive
survey,” IEEE Open Journal of the Communications
Society, vol. 3, pp. 251–281, 2022.

[32] S. A. Wright, “Privacy in iot blockchains: With big data
comes big responsibility,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 5282–
5291.

[33] S. Imtiaz, R. Sadre, and V. Vlassov, “On the case of
privacy in the iot ecosystem: A survey,” in 2019 Inter-
national Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2019,
pp. 1015–1024.

[34] R. S. Apare and S. N. Gujar, “Research issues in privacy
preservation in iot,” in 2018 IEEE Global Conference on
Wireless Computing and Networking (GCWCN), 2018,
pp. 87–90.

[35] N. Fotiou, V. A. Siris, A. Mertzianis, and G. C. Polyzos,
“Smart iot data collection,” in 2018 IEEE 19th Interna-
tional Symposium on ”A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), 2018, pp. 588–599.

[36] C. Yin, J. Xi, R. Sun, and J. Wang, “Location privacy
protection based on differential privacy strategy for big
data in industrial internet of things,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 8, pp. 3628–3636,
2018.

[37] M. Bi, Y. Wang, Z. Cai, and X. Tong, “A privacy-
preserving mechanism based on local differential pri-
vacy in edge computing,” China Communications,
vol. 17, no. 9, pp. 50–65, 2020.

[38] F. Zhu, X. Yi, A. Abuadbba, I. Khalil, S. Nepal, and
X. Huang, “Cost-effective authenticated data redaction

with privacy protection in iot,” IEEE Internet of Things
Journal, vol. 8, no. 14, pp. 11 678–11 689, 2021.

[39] H. Bi, J. Liu, and N. Kato, “Deep learning-based privacy
preservation and data analytics for iot enabled health-
care,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 7, pp. 4798–4807, 2022.

[40] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot-privacy:
To be private or not to be private,” in 2014 IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2014, pp. 123–124.

[41] W. Li, T. Song, Y. Li, L. Ma, J. Yu, and X. Cheng, “A
hierarchical game framework for data privacy preserva-
tion in context-aware iot applications,” in 2017 IEEE
Symposium on Privacy-Aware Computing (PAC), 2017,
pp. 176–177.

[42] K. Wang, C.-M. Chen, Z. Tie, M. Shojafar, S. Kumar,
and S. Kumari, “Forward privacy preservation in iot-
enabled healthcare systems,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 3, pp. 1991–1999,
2022.

[43] A. S. Tanenbaum and D. J. Wetherall, Computer net-
works. Prentice Hall, 2011.

[44] A. Al-Fuqaha, M. Guizani, M. Mohammadi, A. Rayes,
and A. Kamal, “Internet of things: A survey on enabling
technologies, protocols, and applications,” IEEE Com-
munications Surveys & Tutorials, vol. 17, no. 4,
pp. 2347–2376, 2015.

[45] S. B. Weinstein, “The history of orthogonal frequency-
division multiplexing [history of communications],”
IEEE Communications Magazine, vol. 47, no. 11,
pp. 26–35, 2009.

[46] J. Lin, “Divergence measures based on the shannon
entropy,” IEEE Transactions on Information Theory,
vol. 37, pp. 145–151, 1 1991, ISSN: 15579654.

[47] R. G. Lyons, Understanding digital signal processing,
3rd. Prentice Hall, 2011, ch. 13.20, p. 954.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-
learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

