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Abstract—This article proposes a deep generative model for
anomaly detection in unsupervised power grid data. One-class
classifier-based methods suffer from performance degradation
when training data contain anomalous samples. Due to the tem-
poral characteristics in most of the power grid datasets, we ex-
plore a long short-term memory-variational autoencoder-based
deep generative model that can tolerate the moderate presence
of anomalous data during training instead of standard data. This
work demonstrates the advantage of reconstruction-based methods
over clustering-based methods. As part of the reparameterization
of the latent layer, a method is proposed by employing wavelet
decomposition of the wavelet coefficients found from the high and
medium frequency representations of the input time-series data.
For further improvement, we have incorporated a log cosh-based
cost function instead of the traditional consideration of the L2

norm-based cost function. The numerical results demonstrate an
improvement of performance metrics, such as AUC by 0.1–0.2 of
our method over other benchmark methods. The transient stability
threshold (δ) is an important system parameter in the performance
assessment of power grid systems. Through time domain simula-
tions, it has been shown that δ = 0.3 obtains optimal accuracy for
transient stability assessment in the IEEE NewEngland-39 bus.

Index Terms—Autoencoder (AE), deep learning, long short-term
memory (LSTM), power grid, recurrent neural networks (RNN),
smart grid, variational autoencoder (VAE), variational Bayes.

I. INTRODUCTION

R EAL-TIME anomaly detection is essential for smart grid
and internet of things (IoT)-driven manufacturing plants.

Anomalies in the power system are deviations from expected
measurements resulting from grid faults, such as load fluc-
tuations and system oscillations. In the last few years, ma-
chine learning has started to play a critical role in bad data
detection, transient stability prediction for various kinds of
microgrid faults. For example, one-class support vector machine
(OCSVM), random forest, and artificial neural networks-based
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methods have been used in [1]. The one-class classification
technique, such as OCSVM and support vector data description
(SVDD), models the underlying data by building a hypersphere
of minimum volume to enclose the majority of the data in the
feature space. This hypersphere describes the normality profile.

The availability of labeled data remains a crucial challenge
for anomaly detection in a power grid, where high-dimensional
data are generated in large volumes. Various methods have
been proposed in literature for unsupervised anomaly detection.
These can be grouped into two approaches: clustering-based and
reconstruction-based unsupervised anomaly detections. Some
of the most popular techniques among the clustering-based
methods are OCSVM, K-means, and Gaussian mixture mod-
eling (GMM). The high computational complexity of distance
computation in large-dimensional datasets makes the clustering
technique less attractive. Reconstruction-based approaches rely
on dimension reduction through feedforward neural networks. It
assumes that anomalies are incompressible and remain challeng-
ing to reconstruct from reduced dimension latent space [2]. In
addition, various researchers have applied fast Fourier transform
and discrete wavelet transform (DWT)-based feature engineer-
ing to facilitate unsupervised learning [3].

One of the difficulties in one-class classification methods,
such as OCSVM, is that they can only handle a tiny percentage
of anomalies in the training data. The performance of OCSVM
degrades with the increase in the size of a fraction of anomalies
in training data [4]. Similarly, reconstruction-based methods,
such as autoencoders (AEs), assume that only standard patterns
are being used for training purposes, thereby making the AE to
reconstruct the normal data points well and failing to reconstruct
anomalous data as it has never seen them during training. Various
researchers have studied data-driven learning of hyperparame-
ters of OCSVM, random forest to overcome this limitation [5].

The preparation of labeled data in a large dataset for anomaly
detection is an expensive task, which demands domain knowl-
edge expertise and human intervention. In most of the exist-
ing unsupervised learning methods, it is assumed that training
data are free from anomalous instances. The motivation of this
article comes from a need to have tolerance for the presence
of a relatively moderate fraction of anomalous data and not
to be very restrictive about a low fraction of anomalous data
during the training process as desired by unsupervised learning.
The relevance of our work is that while allowing the training
data to tolerate moderate presence of anomalous samples, the
proposed method can achieve high accuracy, AUC, and low
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average response time (ART). There is “no single winner”
among standalone anomaly detection methods that can detect all
types of anomalies with high accuracy. We have chosen a gener-
ative model: recurrent neural network (RNN)-based variational
autoencoder (VAE) for our anomaly detection method. Although
VAE is a robust generative algorithm, the baseline VAE does
not consider the temporal relation among data. Hence, we have
incorporated long short-term memory (LSTM) with VAE. Many
research papers have used the wavelet decomposition method
for feature engineering purposes. We propose to use wavelet
coefficients to make the latent space resilient to the presence of
anomalous data during training.

A. Contributions

In this article, we have utilized the temporal relationships in
the data by combining VAE LSTM-based RNN for unsupervised
anomaly detection. To enrich the reparameterization trick in
VAE, we fetch independent samples from an a priori distribution
of multivariate Gaussian distribution. The respective covariance
matrix is learned from the singular value decomposition (SVD)
of the wavelet coefficients found by multiresolution analysis.
We use high and medium frequency representations of the
signal employing Daubechies (db) wavelet decomposition. We
choose high and medium frequency representations of the signal
because we assume that anomalous samples occur rarely as
compared with standard samples.

The important contributions of this article can be summarized
as follows.

1) We propose an anomaly detection mechanism that can
tolerate a certain amount of anomalous samples.

2) We demonstrate the effectiveness of generative models
over clustering models in the context of anomaly detection
for a sequential dataset.

The rest of this article is organized as follows. Section II
reviews the related works and Section III elucidates the un-
derlying principles of VAE. In Section IV, we present our
proposed method to incorporate wavelet decomposition and
log hyperbolic cosine (log cosh) function in the reconstruction
loss function instead of the default choice of L2 loss function.
Section V provides a description of datasets used in this article,
followed by Section VI that demonstrates the evaluation of
results. Finally, we conclude this article in Section VII.

II. RELATED WORKS

This section presents a literature survey on anomaly detection
for power grid data with unsupervised learning. Clustering and
reconstruction-based methods are widely used techniques in
unsupervised learning. These techniques assume that standard
data occurs much more frequently than abnormal data [6], [7].
The models are trained to predict the regular patterns of the data
and to point out anomalies as they are different from the learned
distribution.

A. Clustering Based Methods

Clustering analyses, such as GMM, K-means, and density
estimation, have been preferred by researchers as some of the

most popular techniques for anomaly detection. In order to avoid
the curse of dimensionality, the traditional methods adopt a two-
step approach where the dimension is reduced at first by an AE
or deep belief network, and subsequently, clustering analysis or
density estimation is performed on the reduced space.

The input data are passed through a bottleneck, such as deep
AEs or deep belief networks, before applying the one-class clas-
sifiers (OCC) to the data. Several hybrid mechanisms have been
proposed to overcome the limitations of one-class classification
methods. Cao et al. [8] proposed to use regularized AEs and
VAEs in the first stage to force the standard data into a very
tight space centered at the origin (that is, bottleneck unit). In
the second stage, various density estimation-based clustering
algorithms have been used for anomaly detection in the reduced
space.

Khaledian et al. [9] proposed anomaly detection using an un-
supervised stacked ensemble learning with isolation forest, local
outlier probability, and K-means in IEEE 14 and 68-based bus
systems phasor measurement units (PMUs). Khaledian et al. [9]
used ensemble learning for the faster detection of anomalies and
then classifying anomalies into bad data, event data, and PDC
error. In a similar vein, Zhou et al. [10] presented an unsuper-
vised ensemble learning approach for online anomaly detection
for PMU data. The ensemble method invokes three classes of
base detectors, notably, Chebyshev-based, DBSCAN-based, and
regression-based detectors, are selected to generate anomaly
scores of the PMU data.

B. Reconstruction Based Methods

This article focuses on the AE-based reconstruction method.
AEs can extract the common factors of variation from normal
samples but fail to do the same for anomalous samples, as they
have never seen the abnormal examples during training. The
VAE is used to infer the latent embedding and reconstruct the
input data in a variational manner by optimizing the variational
lower bound. We limit our literature survey to probabilistic
modeling and generative modeling techniques.

A modification of VAE (β-VAE), which is aimed at unsuper-
vised disentangled representation learning, is proposed by Chen
et al. [11]. β-VAE includes an additional hyperparameter in the
VAE cost function, squeezing the latent bottleneck and boosting
the latent representation’s factorization. A latent representation
of input multivariate time series data by incorporating tempo-
ral dependence among stochastic variables is proposed by Su
et al. [12], which is named as OmniAnomaly.

A fault detection mechanism for inverter-interfaced dis-
tributed generation (IIDG)-enabled microgrid based on DWT
and gated recurrent unit (GRU)-based RNN is proposed by
James et al. [13]. The branch current magnitudes of three phases
in one cycle is considered as input in [13]. DWT-based feature
engineering is performed before feeding the data as input to the
GRU in [13]. Symbolic dynamic filtering-based feature extrac-
tion technique for cyber-attack detection in large-scale smart
grids has been analyzed by Karimipour et al. [14]. Taking a dif-
ferent approach, Karimipour et al. [14] implemented a dynamic
Bayesian network for revealing the causal relationship between
the extracted symbolic features and the restricted Boltzmann



 

machine for capturing the distribution of regular operation of
the grid system.

Another approach for detecting anomalies in power systems is
to estimate the state by learning invariant relationships between
system components. One of the most popularly used techniques
is Kalman filter-based autoregressive state estimation. To this
end, Muralidhar et al. [15] analyzed Kalman autoregressive state
estimation. This method is extended to be used as structure
aware invariant learning by leveraging the network topology
of cyber-physical system given beforehand. The other method
is to investigate the probabilistic modeling of heavy-tailed dis-
tribution to find anomalies since the anomalous data appear
in the tails of the probability distributions [16]. Copula func-
tions are well known for their ability to model the heavy-tailed
distributions.

C. Alternative to L2-Based Cost Function

In the recent past, there has been a constant effort to ex-
plore the effectiveness of other cost functions instead of the
L2 norm in the context of VAEs. In this direction, Xu et al. [17]
proposed log hyperbolic cosine (log cosh)-based cost function
for intrusion detection using conditional VAE. Similarly, Zhao
et al. [18] discussed the choice ofL2 norm in the context of image
restoration. They evaluated several loss functions to observe
the impact of perceptually motivated metrics: the structural
similarity index (SSIM) and the multiscale structural similarity
index (MS-SSIM). It has been shown empirically in [18] that
the poor performance happens due to the local minima of the
loss functions. At the same time, the insufficiency of SSIM
and MS-SSIM is demonstrated in [18]. The motivating factor
for a search of an alternate loss function is that the L2 norm
penalizes heavily for large reconstruction errors and lightly for
small reconstruction errors. Most of the research works have
been reported in the context of image restoration, denoising,
deblurring, and demosaicking. In [17], log cosh-based cost func-
tion has been applied in the context of intrusion detection with
conditional VAE, which is trained with class label information.
Our research work explores the effectiveness of the log cosh-
based cost function in unsupervised learning in the context of
anomaly detection using VAE.

Although deep generative models, such as VAE, have pro-
duced promising results in anomaly detection for multidimen-
sional time series, existing research has generally assumed that
the training samples are free from anomalous data. This moti-
vates us to carry out a study to accommodate the presence of
a relatively moderate fraction of anomalous data and not to be
very restrictive about a low fraction of anomalous data during
the training process as desired by unsupervised learning.

III. METHODOLOGY

In this section, we present an overview of the methodology of
LSTM and VAE in a nutshell. In this article, synchrophasor mea-
surement techniques, which record voltage magnitude, voltage
angle, and voltage frequency for all the buses are used as input
data. As a result, it becomes pertinent to use RNN for analyzing
the multidimensional time series data.

Fig. 1. Structure of an LSTM cell.

A. Long Short-Term Memory

LSTM is a class of neural network that belongs to the family of
RNN. It takes a temporal sequence of vectors [x1,x2, . . . ,xT ]
as input, and outputs a sequence of vectors [h1,h2, . . . ,hT ].
An LSTM unit is comprised of three “ gates”: input, forget, and
output, and a cell state in addition to a hidden state. An LSTM
unit contains the weight parameters Wx∗, where ∗ denotes the
symbol for one of the four matrices of the LSTM units (f for
forget, i,g for input, and o for output), the LSTM unit updates
its cell state Ct according to the following formulation:

ft = σ
(
Wxfxt + bxf +Whfht−1 + bhf

)
it = σ

(
Wxixt + bxi +Whiht−1 + bhi

)
gt = tanh

(
Wxgxt + bxg +Whght−1 + bhg

)
Ct = ft �Ct−1 + it � gt

and updates the output representation as

ot = σ
(
Wxoxt + bxo +Whoht−1 + bho

)
ht = tanh(Ct)� ot

where � represents the elementwise product. The structure of
an LSTM unit is shown in Fig. 1. One may refer to [19] for more
details about LSTM.

GRU is another class of neural networks in the family of
RNN. Unlike LSTM, GRU has only two gates, namely, update
gate and reset gate. GRU has less training parameters, requires
less memory, and executes faster than LSTM. There are two
factors that dominate the comparison between LSTM and GRU:
dataset size and length of time step. Comparison between GRU
and LSTM in power grid datasets is an unexplored area. Yang
et al. [20] conducted a performance comparison between LSTM
and GRU in Yelp dataset. It was concluded by Yang et al. [20]
that under long time step, GRU is more suitable for smaller



datasets than LSTM. We have chosen a small time step since we
are interested in finding anomalies in the small-signal transient
stability dataset. Hence, we have chosen LSTM over GRU as
the RNN.

B. Variational AE

VAE is a probabilistic graphical model that connects deep
learning with variational inference. It aims to infer and learn a
continuous latent variable z whose parameters have intractable
posterior distributions. VAE is a directed probabilistic graphical
model whose posterior is approximated by a neural network
qφ(z|x). The decoder pθ(x|z) represents the complex process
of generating data x from the encoder’s output, which is also
modeled in the structure of a neural network. The objective
function of a VAE is the variational lower bound of the marginal
likelihood of data since the marginal likelihood is intractable.
Interested readers may refer to [21] for derivation of VAE.

The marginal likelihood can be written as follows:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + L(θ, φ;x). (1)

The first right-hand side (RHS) term in (1) is the KL-
divergence of the approximate from the true posterior. Since
this KL-divergence is nonnegative, the second RHS term
L(θ, φ;x(i)) is called the (variational) lower bound on the
marginal likelihood of data point x, and can be written as

log pθ(x) ≥ L(θ, φ;x)

≥ −Eqφ(z|x)

[
log

qφ(z|x)
pθ(z)

]
+ Eqφ(z|x) log pθ(x|z)

≥ −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x) log pθ(x|z)
(2)

where pθ(x|z) is the likelihood of the data x given the latent
variable z. The first term of (2) is the KL-divergence between
the approximate posterior and the prior of the latent variable z.
This term forces the posterior distribution to be similar to the
prior distribution, working as a regularization term. The second
term of (2) can be understood in terms of the reconstruction of
x through the posterior distribution qφ(z|x) and the likelihood
pθ(x|z).

The approximate posterior qφ(z|x) can be viewed as an
encoder f(x, φ) and the directed probabilistic graphical model
pθ(x|z) can be viewed as a decoder, from the perspective of
AE. One of the most important features is that the VAE models
the parameters of the distribution rather than the value itself.
It implies that f(x, φ) in the encoder outputs the parameter
of the approximate posterior qφ(z|x) and to obtain the actual
value of the latent variable z, sampling from qφ(z; f(x, φ))
is required. Thus, the encoders and decoders of VAE can be
called as probabilistic encoders and decoders with the complex
relationship between the data x and the latent variable z repre-
sented by a neural network. The solution lies on differentiation
and optimization of the lower bound L(θ, φ;x(i)) w.r.t. both
the variational parameters φ and generative parameters θ. The
gradient of the lower bound w.r.t. φ is a bit problematic. To

overcome this, Kingma and Welling [21] proposed a reparam-
eterization trick that involves generating samples z ∼ qφ(z|x).
It is then often possible to express the random variable z as
a deterministic variable z = gφ(ε, x), where ε is an auxiliary
variable with independent marginal p(ε), and gφ(.) is some
vector-valued function parameterized by φ.

For example, in the univariate Gaussian case, let z ∼
qφ(z|x) = N (μ, σ2). In this case, a valid reparameterization
is z = μ+ σ · ε, where ε is an auxiliary noise variable ε ∼
N (0, 1). Therefore

EN (z;μ,σ2)[f(z)] = EN (ε;0,1)[f(μ+ σ · ε)]

� 1

L

L∑
l=1

f(μ+ σ · ε(l)) where ε(l)∼N (0, 1).

(3)

IV. PROPOSED METHOD

In this article, we assume that the latent layer can be made
resilient to the presence of anomalous data during training by
forcing the covariance of latent variable to be guided by the
high and medium frequency wavelet coefficients of the training
data. Our assumption is in-line with the research work of [16],
which assumes that the anomalous data appears in the tails
of the probability distributions as they occur rarely. In this
section, we propose a method to enhance reparameterization
and reconstruction loss function instead of following the usual
choice in the VAE.

A. Reparameterization Trick

The heart of the VAE lies in the reparameterization of the la-
tent space representation as given in (3). Since the true posterior
pθ(z|x), in this case, is intractable, Kingma and Welling [21]
demonstrated that the prior over the latent variables can be
considered to be a centered isotropic multivariate Gaussian
pθ(z) = N (z; 0, I), resulting into the output of the encoder
network as

log qφ(z|x(i)) = logN (z;μ(i), σ
2(i)I) (4)

where the mean and standard deviation (s.d.) of the approximate
posterior, μ(i) and σ(i), are outputs of the encoding neural
network. A diagram of the architecture of modified VAE with
feedforward neural network and LSTM is shown in Figs. 2 and
3, respectively. The architecture drawn in Fig. 3 is an enhanced
version of the architecture described in Fig. 2 by incorporat-
ing LSTM units instead of the fully connected neurons in the
encoding and decoding layers.

In accordance with Kingma and Welling [21], the sample
from posteriorz(i,l) ∼ qφ(z|x(i)) can be obtained usingz(i,l) =
gφ(x

(i), ε(l)) = μ(i) + σ(i) · ε(l), where ε(l) ∼ N (0, I). We
propose to enhance the assumption of distribution of ε(l) ∼
N (0, A), where A is a diagonal matrix consisting of the two
largest eigenvalues found in the SVD of the wavelet coefficients
from the high and medium frequency representations of the
training data. The following steps are applied on each of the



Fig. 2. MVAE with feedforward neural network.

Fig. 3. LSTM with MVAE.

two principal components of the training data to construct the
covariance matrix of the multivariate Gaussian distribution.

1) To obtain high and medium frequency wavelet coeffi-
cients, the db wavelet transformation up to the level of
4 is applied to the first principal component of the training
dataset. The detail coefficients are stored as a column
vector of a matrix. The lower level wavelet coefficients are
padded with zero to maintain equal size for all the vectors
in each column. Compute the average of the wavelet
coefficient matrices generated from the first two principal
components. Let us denote this resultant matrix as B.

2) Repeat the same process for the second principal compo-
nent of the signal.

3) Develop a diagonal matrix A whose elements are the first
two eigenvalues of the matrix B.

We have also incorporated the log cosh function in the cost
function, described in the following section. We have named this
model LSTM modified variational autoencoder (MVAE). Thus,
we use a different technique to find the approximate distribution
in LSTM-MVAE, in contrast to the baseline VAE that uses an
identity matrix. The algorithmic description of our method is
given in Algorithms 1 and 2.

B. Reconstruction Loss Function

The reconstruction loss function Eqφ(z|x) log pθ(x|z) plays
a pivotal role in all the deep generative models. It has become
usual practice to use the L2 loss as reconstruction loss as
pθ(x|z) ∝ exp(‖x− x̂‖2) while considering the samples from
multivariate Gaussian distribution. The efficiency of L2 loss



Algorithm 1: Training of LSTM-MVAE.

1: Input: X = {x(1) = {y(1),y(2), . . . ,y(T )},x(2) =
{y(2),y(3), . . . ,y(T+1)}, . . . ,
x(N−T+1) = {y(N−T+1),y(N−T+2), . . . ,y(N)}},
Xtrain = 0.8 ∗X;Xtest = 0.2 ∗X

2: Output: probabilistic encoder and decoder
3: repeat
4: for all x(i) ∈ Xtrain do
5: μ(i), σ(i) = gφ(z

(i)|x(i))
6: Draw L samples from ε(l) ∼ N (0, A)
7: z(i,l) = μ(i) + σ(i) · ε(l)
8: end for

x̂(i) = 1
L

∑L
l=1(fθ(x

(i)|z(i,l)))

LC(i) = log cosh(x(i), x̂(i))

E =
∑N

i=1[DKL(qφ(z|x(i))||pθ(z)) + LC(i)]
φ, θ ← Update parameters using gradients of E

9: until convergence of parameters φ, θ
10: return gφ, fθ

Algorithm 2: Testing of LSTM-MVAE.
1: Input: Testing dataset = Xtest, α : Using Chebyshev’s

inequality 99.1% confidence interval.
2: Output: reconstruction probability pθ(x|x̂)
3: for all x(i) ∈ Xtest do
4: μ(i), σ(i) = gφ(z

(i)|x(i))
5: Draw L samples from ε(l) ∼ N (0, A)
6: z(i,l) = μ(i) + σ(i) · ε(l)
7: end for

x̂(i) = 1
L

∑L
l=1(fθ(x

(i)|z(i,l)))

rc[x(i)] = log cosh(x(i), x̂(i))
if ((rc[x(i)] < α)) x(i) is an anomaly
else x(i) is not an anomaly

function has been investigated by Zhao et al. [18] and found to get
confounded in local minima in the image processing context. In
addition, the L2 loss function is sensitive toward outliers. On the
other hand, the L1 loss function is not sensitive toward outliers.
The necessity for L1 loss function can arise if the decoder
is chosen from a zero-mean Laplace distribution pθ(x|z) ∝
exp(‖x− x̂‖1). But the L1 loss function is disadvantageous
as it is not differentiable for a data point with xi − x̂i = 0.
Zhao et al. [18] shown that L1 loss function can outperform L2

loss function in the context of image restoration. An interesting
problem arising in this context is to find a suitable reconstruction
loss function instead of the usual choice ofL2 loss for time series
dataset in deep generative models, such as LSTM-based VAE.

In a nutshell, the contributions of our method are given as
follows.

1) Enhancing the reparameterization trick for sampling latent
variable in VAE. It works by employing SVD of the
wavelet coefficients from the input time-series data’s high
and medium frequency representations.

2) Incorporating the log hyperbolic cosine (log cosh) func-
tion in the reconstruction loss function instead of the
default choice of L2 loss function.

V. DATASETS

In this section, we briefly describe the datasets that have
been used in this article. Various experiments of our anomaly
detection method have been carried out on different kinds of
datasets, such as transient stability, PMU voltage measurement
data, industrial control system (ICS) cyber-attack, and data
integrity attack.

In order to prepare the training datasets for anomaly detection,
we allow 5%–15% of the training data to contain anomalous
samples. In the testing datasets, 50% of the data are anomalous.
The labels of the dataset have been suppressed to the algorithm
during training, while it has been used during the evaluation of
our predictions. The experiments are implemented on a machine
with Python 3.7, Intel Core i7 CPU at 3.6 GHz, and 8 GB RAM,
with Keras and Tensorflow frameworks. The python codes are
made available with private access at Github.1 The following
benchmark datasets have been used for our experiments.

A. Transient Stability Prediction Datasets

In our work, we have chosen phasor-based simulator and
hybrid-type simulator, which was investigated by Behdad-
nia and Parlak [22]. For simplicity, the dataset is termed
as “TSAT_PMU” in the rest of this article. The outputs of
the phasor-based simulator, including voltage magnitude, volt-
age angle, and voltage frequency, were named “Bus_Mag,”
“Bus_Ang,” and “Bus_Freq,” respectively. The dataset is a cell
array where each cell has a single-precision array of dimension
39× 17, where 39 indicates the number of buses equipped with
PMUs, and 17 is the number of phasor values, including prefault,
during-fault, and postfault data. It has a sample size of 5000.
Interested readers may refer to [22] for further details of the
phasor-based simulator.

B. IEEE 118-Bus Transient Event Data

Transient stability assessment is very important for reliable
power distribution. Transient data are used to simulate the PMU
voltage measurements. In this article, we have chosen the tran-
sient event data of IEEE 118-bus, which is described in [23]. This
dataset is termed as “TED_118” in the rest of this article. The
data are collected from the TSAT software (DSATool) containing
postfault voltage magnitude transient data simulation from the
IEEE 118-bus system. Here, the training and testing samples are
8000 (50% stable and another 50% unstable) and 2000 (50%
stable and another 50% unstable), 25 indicates the length of
the data, which indicates the number of cycles of PMU voltage
magnitudes after the clearance of the fault. The sampling rate of
PMUs is 120.

1https://github.com/dguhanus/LSTM_MVAE

https://github.com/dguhanus/LSTM_MVAE


C. ICS Cyber-Attack Datasets

The next dataset that has been considered is the cyber-
attack dataset in ICS for the synchrophasor-based measurement
data for broader area monitoring in a smart grid [24]. This
dataset is referred to as “ICS_DB1” in the rest of this article.
The synchrophasor measurement data include frequency, current
phasors, voltage phasors, and sequence components. Different
scenarios are simulated, such as power system disturbances,
normal operations, and power system cyber-attacks are applied
against the simulated power system and its components. How-
ever, we have used the binary classes for preparing the anomaly
dataset.

D. Data Integrity Attack in Cyber-Physical Systems

In order to verify the capacity to detect anomalies caused
by data integrity attacks, we have chosen a false data injection
attack. We have used the dataset from Goel and Swarup [25],
wherein the IEEE 24 bus system is modeled in digisilent’s
power factory, and normal operating data points are generated
under quasi-dynamic simulation and N-2 contingencies. Data
integrity attacks are critical due to their difficulty in analyzing
the normality profile. Hereafter, this dataset is referred to as
“Integrity_Att” in the rest of this article.

E. Hyperparameters of Proposed LSTM-MVAE

The encoder and decoder parts of LSTM-VAE are embedded
with LSTM cells. The architecture of our proposed LSTM-
MVAE is composed of two hidden layers and a latent layer,
which is shown in Fig. 2, for an example of five dimensional
input. The encoder path of LSTM-MVAE has 32 and 16 LSTM
units in their hidden layers in succession, and two neurons for the
latent layer. The decoder path of LSTM-MVAE has 16 and 32
LSTM units in their hidden layers in succession. The minibatch
size is set to be 256, and fourfold cross validation, “ relu”
activation, and Adam optimizer [26] are used. The time step
value for the LSTM is chosen to be 10. The method was run for
200 epochs with a learning rate of 1× 10−3 and early stopping
enabled if the loss for the validation set observes no decrease
for 50 epochs.

VI. DISCUSSION OF RESULTS

This section presents the detailed results for LSTM-MVAE
for the abovementioned datasets and compares the performance
against both the methods of generative and hybrid clustering-
based techniques. As part of the reconstruction method, we
have chosen various kinds of VAE, such as MMD-VAE, β-VAE,
and OmniAnomaly. The construction of the hybrid clustering
technique is composed of a combination of VAEs and multiple
kinds of OCC [8]. Anomaly detection techniques use a threshold
value that allows the user to control the tradeoff between false
positive (FP) and false negative (FN). The performance of our
model has been evaluated using the accuracy and the area under
the resulting ROC curve (AUC). The performance metrics are
reported by choosing the best threshold.

Fig. 4. Embedding of training data and testing in latent space for LSTM-
MVAE in TSAT_PMU dataset.

Fig. 5. Embedding of training data and testing in latent space for baseline
LSTM-VAE in TSAT_PMU dataset.

A. Comparison With LSTM-Baseline VAE

The histogram of latent layer encoding of training and testing
data is shown in Figs. 4 and 5 for LSTM-MVAE and LSTM-VAE
models, respectively, for the TSAT_PMU dataset. The data in
Figs. 4 and 5 have been plotted by Kernel density estimation
of “seaborn” packages. The y-axis values are produced by the
internal algorithms of binning and “yticks” of “matplotlib,”
which makes it difficult to unify the scale of values in the y-axis.
The data are plotted in 2-D latent space after being fed into the
encoder part of the VAE. Fig. 4 shows that the separation of
testing data in the latent space is more visible for LSTM-MVAE
than for the LSTM-baseline VAE. These figures provide an intu-
itive explanation of the improved performance of LSTM-MVAE
over baseline LSTM-VAE, as we can distinguish the two classes
in the latent space whose mean are separated by some distance.
This can be attributed as one of the causes behind the improved
performance of LSTM-MVAE over baseline LSTM-VAE.

B. Anomaly Detection With Various VAEs

In the first set of experiments, we compare our method with the
state-of-the-art latent generative models, such asβ-VAE, MMD-
VAE, and OmniAnomaly, and the results are given in Table I. The
AUC has been used to evaluate our method’s predictive capacity.
In the case of the IEEE 118-bus transient event dataset [23],
it can be seen in Fig. 6 that our proposed model of LSTM-
MVAE produces an improvement of 0.1–0.2 in AUC values,
when compared with other latent generative models of MMD-
VAE, β-VAE, and OmniAnomaly. The reconstruction fidelity
of LSTM-MVAE is better than β-VAE as β-VAE introduces
a tradeoff that punishes reconstruction quality for encouraging
disentanglement within the latent representations.



TABLE I
PERFORMANCE COMPARISON WITH DIFFERENT KIND OF VAES

Fig. 6. Comparison with generative models for TED_118 dataset with 10%
anomaly.

We have compared four different generative models across
four different performance metrics: accuracy, precision, F1
score, and AUC. Hence, it is necessary to conduct statistical test,
such as Wilcoxon test, to find the significance of the difference
among the values produced in Table I. Among the chosen state-
of-the-arts methods of MMD-VAE, β-VAE, and OmniAnomaly
for anomaly detection, MMD-VAE and OmniAnomaly have
more promising results. At first, we chose MMD-VAE and
LSTM-MVAE for performing the Wilcoxon test. All the AUC
values for the abovementioned datasets for MMD-VAE and
LSTM-MVAE methods are collected as two different variables,
and subsequently, the Wilcoxon test is performed between these
two variables. The abovementioned test produced a p-value of
0.285. While performing the Wilcoxon test between the AUC
values reported in Table I for LSTM-MVAE and OmniAnomaly,
the p-value becomes 0.1. We have shown that the Wilcoxon
test produces p-value ≥ 0.1, which is sufficient for measuring
significance of difference.

C. Comparison With OCC Models in Various Kinds of VAEs

In the second set of experiments, we compare the performance
of our model with hybrid models of VAE with various flavors
of OCC by following Cao et al. [8], and the results are given in
Table II. Interested readers may find the definition of clustering
methods, such as local outlier factor (LOF), centroid (CEN),
mean distance (MDIS), and kernel density estimation (KDE),

variant of AEs, such as shrink autoencoder (SAE), and dirac
delta variational autoencoder (DVAE) in [8]. The bottleneck
layers of the trained DAE, VAE, SAE, and DVAE are used as
latent representations for six OCC, LOF, CEN, MDIS, KDE, and
OCSVM. Each column represents the AUCs reported by several
classifiers.

It can be seen from Table II that CEN, MDIS, and KDE-based
density estimation on the reduced latent space of various VAEs
outperforms LOF and OCSVM. It can also be seen that hybrid
model of DVAE and KDE produces better AUC than other
AEs, such as VAE and DAE [8], in the presence of anomalous
instances during training. This suggests that we can compare
our proposed LSTM-MVAE performance with the hybrid model
of DVAE-KDE. Wilcoxon test has been conducted between
DVAE-KDE and LSTM-MVAE to find the significance of the
difference among the values produced in Table II. All the AUC
values for the abovementioned datasets for DVAE-KDE and
LSTM-MVAE methods are collected as two different variables,
and subsequently, the Wilcoxon test is performed between these
two variables. The abovementioned test produced a p-value
of 0.375. For the Wilcoxon test between OmniAnomaly and
LSTM-MVAE, the p-value is 0.1. We have shown that the
Wilcoxon test produces p-value ≥ 0.1, which is sufficient for
measuring significance of difference. The values in both Tables I
and II suggest that our method not only achieves the performance
of state-of-the-art algorithms but also produces an improvement
of AUC values by 0.1–0.2.

D. Comparison of Cost Functions for Logcosh and L2 Loss

Next, we consider log cosh function to understand its behavior
relative to L1 and L2 functions. From the properties of log cosh
function in the following, we know that

f(x) = log cosh(x) = log
ex + e−x

2 s
. (5)

As x→∞, the log cosh function tends toward
log cosh(x) ≈| x | − log(2). Therefore, when x is far from 0,
the function behaves like L1 norm. At the same time, it behaves
close to L2 norm for small | x |. Thereby, log cosh function
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TABLE III
LOG COSH VERSUS L2 FOR RECONSTRUCTION LOSS FUNCTION FOR BOTH BASELINE LSTM-VAE AND LSTM-MVAE

is essentially a combination of both the L1 and L2 functions,
and the derivative of log cosh is the tanh function that makes
the training of neural network more efficient. Our motivation
to use log cosh-based cost function stems from the work of
Ronchetti and Huber [27] who proposed to combine L1 and
L2 by using L2 in the vicinity of the origin and then invoking
L1 at a certain distance away from origin. To the best of our
knowledge, log cosh-based cost function has not been used
before in the context generative modeling in time series data.

The comparison between LSTM-VAE and LSTM-MVAE is
given in Table III, which contains the AUC of the receiver
operating characteristics curve. Furthermore, the performance
comparison between log cosh-based cost function andL2 norm-
based cost function is given in Table III. It is evident that
log cosh-based cost function produces better results than the L2

norm-based cost function.

E. Comparison With Related Transient Assessment Methods

In this section, we compare the performance of transient
stability assessment of our method with that of James et al. [28].
For transient stability assessment, the generator rotor angle
difference δ is used to determine whether any generator in the
system is out of synchronism or not. This index is a widely
used transient stability indicator for power grid systems [29].
By following the methodology as described by James et al. [28],

a time domain simulation is conducted using TSAT. Different
δ values in the range [0.05, 0.45] with a step size of 0.05
are simulated, and accuracy and ART are plotted. We refrain
from comparing with CNN-LSTM-based models for the sake of
maintaining similarity in model assumptions between compared
methods.

The accuracy and ART of transient prediction is plotted across
different values of δ for our proposed LSTM-MVAE and [28]
in Figs. 7 and 8, respectively, for the IEEE New England-39
bus dataset. It can be seen from Fig. 7 that our proposed model
provides better accuracy when δ is below 0.3 and it maintain
higher accuracy compared with [28] when δ is between 0.4 and
0.45. However, LSTM-MVAE produces lesser accuracy in the
region from 0.3 to 0.4. One may infer that the δ value 0.3 can be
chosen for getting optimal performance for transient assessment
accuracy. In Fig. 8, it can be seen that ART values are lower for
LSTM-MVAE than that of [28]. The reduction of ART can be
attributed by the reduced number of neurons in intermediate
layers for LSTM-MVAE.

F. Robustness in the Presence of Anomalous Data

After comparing the performance of anomaly detection with
the state-of-the-art methods, we now turn our attention toward
verifying the resilience of our proposed method while we assume
that anomalous data are contained in the training data with



Fig. 7. Accuracy versus δ in IEEE New England-39 bus dataset.

Fig. 8. ART versus δ in IEEE New England-39 bus dataset.

proportion of 5%–15%. The OmniAnomaly method [12] has
been chosen for comparison purpose as OmniAnomaly outper-
forms the other methods of β-VAE, and MMD-VAE as given
in Table I. Fig. 9 compares the AUC between LSTM-MVAE
and OmniAnomaly for various fractions of anomalous data for
the TED_118 dataset. The results suggest that LSTM-MVAE
remains less sensitive to the presence of increased anomalous
data during training. To highlight the strengths of LSTM-MVAE,
the results are summarized as follows.

1) The separability of normal and anomaly classes of data in
the latent layer is more clearly visible for our proposed
model than the baseline LSTM-VAE.

2) By the help of Wilcoxon testing to verify the significance
of the difference of our proposed method’s performance
metrics over the state-of-the-arts methods, as reported in
Tables I and II, it has been shown that the p-value ≥ 0.1.

3) The resilience of our proposed model is better than the
state-of-the-art methods when anomalous data are con-
tained up to 15% of the training data.

4) In the context of anomaly detection, it is demonstrated that
log cosh-based loss function outperforms the L2-based
loss function.

Fig. 9. Comparison of LSTM-MVAE and OmniAnomly with different per-
centage of anomaly in TED_118 dataset.

5) In the context of transient stability assessment, our pro-
posed method produces better accuracy and ART for var-
ious values of transient stability index (0.05 ≤ δ ≤ 0.45)
when it is compared with [28]. Through time domain
simulations, it has been shown that δ = 0.3 obtains op-
timal accuracy for transient stability assessment in IEEE
NewEngland-39 bus.

VII. CONCLUSION

This article considered a generative model based on an LSTM-
VAE that remains relatively insensitive to moderate presence
of anomalous data during training, in contrast to the preva-
lent existing methods with absence of anomalous data during
training. In this article, we introduced a method to enhance
the reparameterization trick for sampling latent variables in
VAE by employing singular value decomposition of the wavelet
coefficients found from the input’s high and medium frequency
representation time-series data. At the same time, we also incor-
porated a log cosh-based cost function instead of the traditional
use of the L2 norm-based cost function. The numerical results
demonstrate an improvement of performance metrics, such as
AUC by 0.1–0.2 for our method over other benchmark methods.
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