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Abstract—Data provenance is an important security require-
ment to establish trust in the data produced by an IoT device.
Existing works on data provenance for IoT are based on complex
computations or costly hardware that may not be feasible for
IoT systems. To solve this issue, this paper uses an analytical
model to develop a threshold-based mechanism to establish data
provenance in IoT systems. Moreover, using light weight security
primitives, a light weight security protocol for data provenance is
also proposed. The proposed protocol uses Physical Unclonable
Functions (PUFs) and fingerprints extracted from the wireless
channel to achieve data provenance, mutual authentication, and
anonymity. The wireless fingerprints are generated using the
link quality indicator (LQI) values. Experimental validation on
MICA Z motes shows that the proposed technique can detect
adversarial channels with high accuracy. Security analysis of the
proposed protocol using formal proofs as well as simulations
shows robustness against various types of attacks. Moreover, the
energy requirements for the proposed protocol are shown to be
significantly lower than existing protocols.

Index Terms—Internet of Things, Data Provenance, Physical
Unclonable Functions, Wireless Channel Characteristics, Link
Quality Indicator, Data Provenance, Authentication.

I. INTRODUCTION

The exponential growth of IoT devices in the near future
producing large volumes of data may lead to many security
and privacy issues. The most important security requirements
for IoT include authentication, data provenance, and privacy.
Data provenance establishes trust in the fidelity of data, i.e.,
that the data is actually collected at the location and time
claimed by the specific IoT device. The reliable operation of
IoT-based systems depends on the trustworthiness of the data
produced by IoT devices [1]–[3]. For example, nuclear power
plants may use IoT devices for monitoring and maintaining
the pressure and temperature within a strict range. An attacker
may invalidate this data by changing the location of an IoT
device or cloning it.
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The existing research on IoT data provenance is not exhaus-
tive and most of these schemes are susceptible to imperson-
ation, cloning, denial of service (DoS) and physical attacks. To
solve these issues, this paper proposes a secure and lightweight
protocol with privacy preservation for data provenance in IoT
systems. This paper exploits the wireless channel character-
istics between two entities to generate “wireless fingerprints”
that are then used to provide data provenance. In particular,
we use the Link Quality Indicator (LQI) values to identify
the wireless link between two entities. The intuition behind
creating wireless fingerprints is that the wireless channel be-
tween two communicating entities is intrinsically symmetric.
However, according to Jake’s fading model [4], if one of two
communicating entities moves more than half of a wavelength,
then the wireless channel de-correlates quickly and becomes
independent for a distance exceeding one wavelength. This
fact and the reciprocity attribute of electromagnetic wave
propagation is used to derive security primitives from wireless
channel characteristics. The theory behind our technique is
as follows: An inherently symmetric wireless channel will
always exist between two communicating entities, Alice and
Bob, resulting in identical measurements such as delays, phase
shifts, and gains. As a result, these measurements will be
highly correlated, if taken separately by Alice and Bob, at
their respective locations.

This paper proposes the use of Physical Unclonable Func-
tions (PUFs) for hardware level authentication of IoT devices.
PUFs provide the IoT devices with a unique hardware finger-
print by exploiting the inherent random variations at the physi-
cal (sub-)microscopic structure in an integrated circuit [5]. The
data that many IoT devices produce is personal and sensitive
in nature, requiring security protocols to achieve privacy
preservation or anonymity. In this paper we use pseudonym
identities constructed using PUF outputs and random numbers.
This results in the proposed protocol being anonymous and
secure against user identity profiling.

The overall process of the proposed data provenance tech-
nique is shown in Figure 1. An IoT device samples the
LQI values of its wireless channel with a wireless gateway
to generate a wireless fingerprint F. Similarly, the wireless
gateway also generates a wireless fingerprint F’ at its end. Both
the entities send their respective wireless fingerprints to the
verifier. The verifier can check the provenance of any data sent
by the IoT device by comparing the two wireless fingerprints,
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Fig. 1: Overview of proposed data provenance technique.

i.e., F
?
≈ F . The comparison is based on the variance of the

wireless fingerprints. This paper’s major contributions are as
follows:
• An analytical model based on wireless channel LQI

measurements that can be used to differentiate between
legitimate channels and adversarial channels. This results
in data provenance with regard to the data location.

• Establishing data provenance with regard to the source of
data using PUF based authentication protocols.

• Experimental validation of the proposed technique.
The rest of the paper is organized as follows. Related work

and background are given in Sections II and III, respec-
tively. Section IV discusses our network model, assumptions,
and threat model. The proposed technique and protocol are
presented in Sections V and VI, respectively. Section VII
presents the formal security analysis and simulation results
are presented in Section VIII. The implementation results
and energy requirements are discussed in Sections IX and X,
respectively. We conclude the paper in Section XI.

II. RELATED WORK

The existing work on data provenance in IoT can be
categorized into three categories: security-primitives based,
hardware-based, and provenance using wireless channel char-
acteristics. The security-primitives based data provenance
techniques use filters, hash chains, blockchains, or zero-
knowledge proofs (ZKP) to establish data provenance. The
authors of [6] propose a data provenance technique for IoT
devices using bloom filters and attribute based encryption.

However, this technique requires IoT devices to store prove-
nance information which may not be feasible as IoT devices
has small memories. Moreover, an attacker can easily use
physical attacks to tamper with the provenance information
stored in an IoT device. In another work [7], provenance
information is transmitted across multiple IoT devices using a
hash chain based on identities. This technique is vulnerable to
impersonation attacks as it relies on IoT device identities. The
use of non-interactive zero-knowledge proofs (NI-ZKP) for
data provenance is proposed in [8]. However, ZKP techniques
may result in computationally complex solutions. The authors
of [9] propose a data provenance compression algorithm.
However, the proposed solution results in a computationally
intensive. The recent techniques for data provenance using
blockchains include [10]–[13]. However, these techniques
result in higher computational overhead due to the use of
blockchain. Hardware-based data provenance solutions use
specialized hardware to establish data provenance such as
trusted platform modules (TPM). One of the recent hardware-
based data provenance technique is proposed in [14]. The
authors in [14], propose a trust management system for
IoT devices using data provenance. However, hardware-based
techniques depends on specialized hardware which may not
be available/feasible for IoT devices.

Wireless channel characteristics for security is a well studied
and established area. The existing literature includes secret
key generation [15], proximity based authentication [16],
secure pairing [17], Sybil attack detection [18], and intrusion
detection [19]. Using wireless channel characteristics for data
provenance has been proposed in [20]. The authors in [20]
generate unique wireless fingerprints in body area networks
using the received signal strength indicator (RSSI) values.
However, this technique suffers from high communication
and computational overhead due to long wireless fingerprints
and optimization. The authors in [21], [22] propose a multi-
hop provenance protocol using the technique proposed in
[20]. However, these protocols use RSSI values without an
authentication mechanism. Thus, an attacker can easily spoof
the RSSI values to hide its location.

We observe that the existing techniques for data provenance
in IoT have one or more of the following problems:

1) Depend on secure hardware that is too expensive for
IoT devices.

2) All devices must have the same architecture.
3) Rely on complex computations not feasible for simple

IoT devices.
4) Vulnerable to physical and cloning attacks with no

privacy preservation
5) Can be compromised using ephemeral secret leakage

(ESL) attacks.

PUFs are commonly used for key generation and authentica-
tion [23]–[26]. However, PUFs have not been used to establish
data provenance. This paper uses the following methods to
solve the problems described above:

1) Developing an analytical model to establish data prove-
nance without using any complex computations.

2) Eliminate the need for any specialized hardware ex-
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TABLE I: Comparison of proposed technique with existing data provenance techniques.

Technique [6] [7] [8] [9] [14] [10]–[13] [20] [21], [22] Proposed Technique

Computationally Complex 7 3 3 3 7 3 7 7 7

Require Advanced Hardware 7 7 7 7 3 3 7 7 7

Privacy Concerns 3 3 3 3 3 7 3 3 7

Require Homogeneous Devices 3 3 3 7 3 3 7 7 7

Physical Attacks 3 3 3 3 7 7 3 3 7

ESL 3 3 3 3 3 3 3 3 7

Computationally Complex: Does the technique use computationally intensive operations?

Require Advanced Hardware: Does the technique rely on costly hardware modules such as TPMs?

Privacy Concerns: Does the technique ensure IoT device anonymity?

Require Homogeneous Devices: Does the technique require all IoT devices to share the same architecture?

Physical Attacks: Can the technique be compromised using physical attacks?

ESL: Can the technique be compromised using ephemeral secret leakage?

cept for PUFs. Note that PUFs are extremely cheap to
manufacture and can support ultra high throughput with
extremely low energy and silicon area footprints [27].

3) Use of light weight symmetric key cryptography.
4) IoT devices do not store secrets in their memory.
5) PUFs establish trust in the origin of the data while

wireless fingerprints institute trust in the location of the
data, thus, providing data provenance.

6) Privacy preservation is achieved by hiding the actual
identities of IoT devices using pseudonym identities.

7) Resilience against ESL attacks is achieved by combining
the PUF output with the short term secrets to generate a
session key. Thus, even if the attacker reveals the short
term secrets, he/she can not calculate the session key.

To provide a comprehensive comparison of the proposed
technique with existing literature, Table I provides a summary.

III. BACKGROUND

A. Physical Unclonable Functions

Random variations within the fabricating process of inte-
grated circuits give rise to an intractably complicated physical
system enabling a novel challenge response mechanism. A
PUF is characterized by a challenge-response-pair (CRP) i.e.,
R = P (C), where R is the response to a challenge C by a
PUF P . Every PUF produces a unique response when excited
with the same challenge implying that each PUF is unique.

Environmental factors such as temperature and voltage may
affect the output of a PUF to the same challenge. This problem
can be avoided and we can get stable PUF responses good
enough for security applications using fuzzy extractors [25].
Therefore, in this paper, we assume the use of ideal PUFs. IoT
devices do not need to store secret keys in their memory when
using PUFs which in turn safeguards them against physical
attacks. Delay-based PUFs (exploiting circuit delay variation)
and memory based PUFs (using the randomness in the power-
up behavior of memory cells) are among the popular choices
in security applications.

Fig. 2: Network model.

IV. NETWORK MODEL, ASSUMPTIONS AND THREAT
MODEL

A. Network Model

We consider multiple IoT devices sending data to a server
through a wireless gateway connected to the Internet as shown
in Figure 2.

B. Assumptions

a. Every IoT device has a PUF and is considered a system-
on-chip (SoC). The PUF is assumed to be useless and
destroyed if separated from the IoT device [28].

b. The micro-controller and the PUF form a SoC and the
communication between them is considered secure [28].

c. IoT devices are constrained in terms of memory, energy,
and processing capabilities. However, the server is not
resource constrained.

d. Table II gives the set of notations used in this paper.
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TABLE II: Notations

Notation Description
PUF Physical Unclonable Function
xn n-th time domain reference signal
yn n-th time domain received OFDM signal
en Error vector
N Number of OFDM symbols
Hn Rayleigh distributed channel coefficients
ηn Additive white Gaussian noise (AWGN)
σ2
η Variance of AWGN
N Normal distribution
µ Mean value
α Path loss exponent

Var(x) Variance of x
Fx Wireless fingerprint for principal x
∆ Threshold for detecting attacks
IDi ID of the IoT device
H(X) Hash of X
‖ Concatenation operator

{M}k Message M is encrypted using key k

SIDi
A

Pseudonym identity of IoT device IDA

for the i-th iteration
Ci Challenge for the i-th iteration
Ri Response of the respective PUF for Ci

PFA Probability of false alarm
PMD Probability of missed detection

C. Threat Model

After authenticating with the server, an IoT device starts
transmitting data packets to the server. The adversary may
inject, replay, tamper and eavesdrop on packets sent by an IoT
device. The proposed protocol is based on the CK-adversary
model [29]. Under the CK-adversary model, the adversary is
capable of revealing the session state, private, and session
keys in addition to the capabilities under the DY model. We
also assume that an adversary may gain physical access to an
IoT device and subject it to physical attacks to extract stored
secrets. The following set of queries can be used to model
these attacks:

• SendS(S, m0,r0,m1) models the query where the
adversary A attempts to impersonate a legitimate IoT
device by sending a message m0 to the server S. The
server then replies with r0 and the IoT device then sends
m1 to server S.

• SendID(ID, m0,r0) models the query where the ad-
versary A tries to impersonate a server by sending a
message m0 and receiving r0 from an IoT device.

• Monitor(ID, S) models the adversary’s capability to
observe and eavesdrop the wireless channel between IoT
device ID and server S.

• Drop(A) models the query where the adversary can

Fig. 3: Illustration of Error Vector

drop packets between ID and S. An adversary may use
this query to interrupt the synchronization between two
parties by selectively dropping packets.

• Reveal(ID) models the adversary’s ability to extract the
secrets stored in an IoT device’s memory using a physical
attack.

The queries SendS, SendID, Monitor, and Drop can
be invoked by the adversary any polynomial number of times.
Note that any attempt to physically alter an IoT device makes
it useless. Therefore, Reveal can be called by A only once.

The proposed protocol is designed to achieve mutual au-
thentication, data provenance (source and location), privacy
preservation, and security against DoS and physical attacks.

V. PROPOSED DATA PROVENANCE TECHNIQUE

LQI is the average of the error between ideal constellations
and the received signal over 64 symbols immediately after the
sync word [30]. Let us represent LQI as:

L =
1

N · P0

N−1∑
n=0

|yn − xn|2 =
1

N · P0

N−1∑
n=0

|en|2, (1)

where, yn is the received time domain OFDM signal, xn is
n−th time domain reference signal, and en is the error vector,
for 0 ≤ n ≤ N − 1 OFDM symbols, as shown in Figure 3.
P0 is the average symbol power for a given modulation and it
makes LQI independent of the modulation order. The received
time domain OFDM signal yn can be represented by

yn = Hnxn + ηn (2)

where Hn represents the Rayleigh distributed channel coeffi-
cients, and ηn is the additive white Gaussian noise (AWGN)
with zero-mean and σ2

η variance.
For a large number of sub-carriers, xn is approximately

independent and identically distributed (i.i.d) Gaussian dis-
tributed with zero mean and σ2

x variance [31], [32]. For a
large N , we can use the central limit theorem to approximate
L as a Gaussian random variable, i.e., L ∼ N (µL, σ

2
L). Thus,

to characterize L we need to find its mean µL and variance
σ2
L. Assuming the standard path loss law l(r) = 1

rαi
with path
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a path loss exponent of α, and using r−αi as the mean power
for Hn, we get µL as follows:

E[L] = µL =
1

N · P0

N−1∑
n=0

E[|en|2]

=
1

P0

[
σ2
x

(
2

rαi
+ 1− 2

√
π

2rαi

)
+ σ2

η

]
(3)

where ri denotes the distance between the IoT node and the
wireless gateway. Moreover, E[|en|2] is given as follows:

E[e2n] = E[(yn − xn)2]

= E[(Hnxn + ηn − xn)2]

= σ2
x

{
2

rαi
+ 1− 2

√
π

2rαi

}
+ σ2

η. (4)

To find the variance of L, we have σ2
L = E[L2] − (µL)

2.
To find E[L2] we proceed as follows:

L2 =

(
1

NP0

N−1∑
n=0

|en|2
)2

=
1

N2P 2
0

N−1∑
n1=0

N−1∑
n2=0

|en1
|2|en2

|2. (5)

Assume block fading with m symbols per block. Then we get
the expectation of L2 as:

E[L2] =
1

NP 2
0

[
mE[e4n] + (N −m)

(
E[e2n]

)2]
. (6)

We can now obtain the variance σ2
L using (3) and (6). Note that

E[e4n] can be obtained using a similar procedure as (4). If we
plot the probability density function (pdf) of L at five different
locations slowly moving away from a wireless gateway (as
shown in Figure 4(a)), we get Figure 4(b). We observe that
the mean µL remains approximately unchanged. However, the
variance of L for different locations varies. We exploit this
fact in this paper by comparing the variance of LQI at the
legitimate IoT device with the variance of LQI at the wireless
gateway. Note that the two measurements should be in high
agreement.

Let us consider the scenario in Figure 5. Two entities Alice
and Bob are talking to each other. Alice is an IoT device and
Bob is the wireless gateway. Two adversaries located nearby
but at least one wavelength away from Alice and Bob try to
send tampered data to the gateway. An adversarial channel
between Alice anb Bob can be detected using the following
steps:

1) Alice and Bob sample the LQI values for the wireless
channel between them to generate their respective wire-
less fingerprints.

2) Alice and Bob send their wireless fingerprints to a verifier.
3) The verifier calculates the variance of each wireless

fingerprint and takes the difference between the two
variances i.e.,

∆ = Var(FAlice)− Var(FBob) (7)

where, FAlice and FBob denote the wireless fingerprints for
Alice and Bob, respectively. Var represents the variance
operation. The server then compares ∆ to a threshold
value.

(a) Experimental Schematic

(b) pdf of L

Fig. 4: Detection of adversarial channels using L.

Fig. 5: Attack Scenario.

4) The wireless link between Alice and Bob is considered
legitimate if ∆ is less than the threshold. Otherwise, the
channel between Alice and Bob is considered compro-
mised and the data is discarded.

Using experiments, we determine the threshold value for ∆
in Section IX.
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Fig. 6: Authentication Phase.

VI. PROPOSED DATA PROVENANCE PROTOCOL

A. Device Registration

The server stores an initial CRP (Ci, Ri) and pseudonym
identity (SIDi) for each IoT device. For each IoT device,
the server also stores a an emergency CRP list (Cem) and
an emergency identity list (EID) to mitigate denial of service
(DoS) attacks. The initial parameters are obtained by the server
using a time-based one-time password algorithm (TOTP) [33]
and an operator using a password. Each IoT device stores Ci,
SIDi, Cem, and EID. We assume that the server and wireless
gateway have a pre-shared secret symmetric key kGS .

B. Authentication Phase

The authentication phase of the proposed protocol is shown
in Figure 6. In this figure IoT device IDA intends to send
data to the server via wireless gateway IDG. Following are
the steps for the authentication phase:

1) IoT device IDA uses the stored challenge Ci and its
PUF to generate the secret response Ri. The IoT device
IDA then generates a random nonce N1 and sends a
Message M0 along with an authentication parameter I0
to the server via a wireless gateway IDG as shown in
Message 1© of Figure 6. We use authentication parame-
ters to ensure data integrity of messages in this paper. An
authentication parameter consists of a cryptographically
secure hash of a message concatenated with freshness
identifiers and a secret key. The receiver of an authenti-
cation parameter can verify the integrity of the message
by calculating the hash using secrets stored in its memory.
The two hashes (received and calculated) should be equal.
Note that throughout this paper if an entity fails to verify
an authentication parameter the protocol is terminated.

2) The wireless gateway IDG forwards Message 1© to the
server after sampling the wireless fingerprint FAG.

3) The server searches its memory for SIDi
A and reads the

corresponding CRP (Ci, Ri). The server then uses I0 to
verify the integrity of Message 1©. The server generates

Fig. 7: Data Transfer Phase.

a random nonce N2 and uses Ri to obtain N1. It then
sends Message M1 = SIDi

A, {N1, N2}Ri along with
the corresponding authentication parameter I1 to the IoT
device IDA in Message 2© in Figure 6.

4) On receiving Message 2©, the IoT device IDA samples
the wireless channel to generate the wireless fingerprint
FGA. It then uses Ri to obtain N2 and verifies I1. The
IoT device IDA generates the session key ki = H(N1⊕
N2)⊕H(IDA⊕Ri) and updates its pseudonym identity
SIDi+1

A = H(IDA ‖ N1 ‖ Ri). It then sends Message
3© to the server as an acknowledgment as shown in Figure

6.
5) The server generates the new pseudonym identity

SIDi+1
A and verifies I2. The authentication is considered

complete and the server stores SIDi+1
A for any future

authentications.

C. Data Transfer Phase

After an IoT device successfully authenticates itself to the
server, it can now send data using the following steps.

1) A random nonce N3 is generated by IoT de-
vice IDA. It then creates a Message D1 =
SIDi

A, {Data, FGA, N3}ki . It then sends D1 along with
the corresponding authentication parameter V1 to the
server through the wireless gateway in Message 4© in
Figure 7.

2) After receiving Message 4©, the wireless gateway creates
Message DG = {FAG} and the corresponding authen-
tication parameter VG. It then sends Message 4© along
with DG and VG to the server.

3) The server uses ki and kGS to decrypt DA and DG,
respectively, to get the data and wireless fingerprints. The
authentication parameters V1 and VG are then verified
and using the wireless fingerprints it validates the data
provenance by employing the technique described in
Section V. The server rejects the data if validation fails,
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Fig. 8: Protocol for CRP update.

i.e., if FAG 6= FGA. Otherwise, the server accepts the
data and sends an authentication parameter VS to the IoT
device IDA as an acknowledgment in Message 6© in
Figure 7.

4) After receiving Message 6©, IoT device IDA verifies VS .
The IoT device may resend the data if verification fails.
Otherwise, the IoT device IDA may send additional data
using the same steps as above or the session may be
concluded.

D. CRP Update

The server maintains a list of CRPs, i.e, one CRP per IoT
device. The server may update the corresponding CRPs to
ensure freshness by obtaining new CRPs. The protocol for
CRP update is shown in Figure 8. The steps of this protocol
are as follows:

1) To update the CRP for IoT device IDA, the server sends
Message 7© (with the new challenge Ci+1) to the device
as shown in Figure 8.

2) The IoT device IDA decrypts M1 in Message 7© to
obtain Ci+1 and N1, and verifies the authentication
parameter X1. The IoT device IDA stores the new
challenge Ci+1, and uses it to generate the new response
Ri+1. It then generates a random nonce N2 and generates
the new pseudonym identity SIDi+1

A = H(IDA ‖
N2 ‖ Ri+1). The IoT device then sends Message
M2 = {Ri+1, N1, N2}Ri along with the corresponding
authentication parameter to the server in Message 8© in
Figure 8.

3) The server decrypts M1 to obtain Ri+1 and N2. It then
uses N2 to generate the new pseudonym identity SIDi+1

A

and verifies X2. The server replaces the CRP for IoT
device IDA with (Ci+1, Ri+1).

VII. SECURITY ANALYSIS

Lemma 1. The behavior of a PUF cannot be predicted.

Proof. Every PUF produces a unique response and cannot be
cloned [34]. If a PUF is excited by a challenge of length l1, it
produces a response of length l2, i.e., {0, 1}l1 → {0, 1}l2 . We
model the security of a PUF with a security game ExpSec

PUF,A
between an adversary A and challenger C as follows:

(i) A sends a randomly chosen challenge Ci to C. C uses
the PUF to reveal Ri to A.

(ii) C uses another randomly chosen challenge Cx (not used
before) to obtain the response Rx using the PUF, i.e.,
Rx = PUF (Cx).

(iii) A is allowed to query the PUF using challenges other
than Cx a polynomial number of times.

(iv) A reveals its guess Rx
′

for the challenge Cx and wins
the game if Rx

′
= Rx.

The adversary’s advantage in this game is given by AdvPUFA =
Pr[Rx

′
= Rx]. The adversary can only guess the output of a

PUF to a given challenge. Therefore, AdvPUFA = 1
2l2

.

Lemma 2. An adversary cannot predict a wireless fingerprint.

The adversary is assumed to be located at least a single
wavelength away from a legitimate IoT device. Therefore,
the wireless channel seen by the adversary is independent
of the one seen by the IoT device. Thus, it is not possible
for the adversary to infer the wireless fingerprints between a
legitimate IoT device and a wireless gateway. We model the
security of the wireless fingerprints using the security game
ExpSec

FP,A as follows:
(i) C randomly chooses an IoT device ID1.

(ii) C obtains the wireless fingerprint F1G between ID1

and the wireless gateway by initiating a communication
session between them.

(iii) A is allowed to acquire wireless fingerprints by initiating
communication sessions with ID1 and the wireless gate-
way a polynomial number of times. However, A should
be located at least a single wavelength away from the
two entities.

(iv) A reveals its guess F ∗1G for the wireless fingerprint
between ID1 and the wireless gateway and wins the
game if F ∗1G = F12.

The adversary’s advantage in this game can be modeled as
AdvFPA = Pr[F ∗1G = F1G]. The adversary can only guess the
wireless fingerprint between ID1 and the wireless gateway.
Therefore, for a fingerprint size of f , AdvFPA = 1

2f
.

Lemma 3. The Reveal oracle cannot be used to extract the
secrets used in the proposed protocol.

Proof. The IoT device only stores the current challenge Ci,
pseudonym identity SIDi

ID and the emergency identities
EID and challenges Cem lists. Thus, the IoT device does
not store any secret in its memory, and the adversary cannot
obtain the secret response Ri even by invoking the Reveal
oracle. It is worth noting that given the SoC assumption, A
cannot obtain Ri using Ci or Cem.

Lemma 4. An IoT device’s pseudonym identities cannot be
correlated even by invoking the Reveal oracle.

Proof. The pseudonym identity SIDi
ID of an IoT device is

constructed as H(IDA, Na, R
i), i.e., using a random nonce

Na which is refreshed after each round. Therefore, each
pseudonym identity is valid for only a single round. Thus,
it is not possible for the adversary to correlate the pseudonym
identity for the current round with that of the next or previ-
ous round unless he/she can obtain the secret response Ri.
However, according to Lemma 3, this is not possible. The
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advantage of the adversary in this case can be modeled as
AdvIDA = Pr[Corr(SIDi, SIDi+1) 6= 0] ≈ 0, where Corr
represents the correlation coefficient.

Theorem 5. Mutual Authentication: A successful run of the
protocol between an IoT device and a server is only possible
if both entities are legitimate.

Proof. An adversary may attempt to authenticate itself to the
server by impersonating a legitimate IoT device. The following
game between C and A is used to model this attack.

1) C chooses a legitimate IoT device ID1 to run the pro-
posed protocol with the server.

2) A queries the server and the IoT device ID1 a polynomial
number of times using SendID, SendS, Drop, and
Monitor.

3) A tries to authenticate itself as a legitimate IoT device
by calling the SendS oracle.

4) A can win the game by successfully completing the
proposed protocol’s authentication phase.

A can only successfully authenticate itself if it can produce
the correct authentication parameter I2 = H(SIDi+1

1 ‖ ki).
To do so, A needs Ri. Assume A can reveal l′2 bits (out of l2
bits) in Ri. Then the advantage of A in revealing Ri is given
by Pr[Ri

′
= Ri] = 1

2l2−l
′
2

. We can model the adversary’s
advantage for successfully authenticating itself to the server as
AdvAuth1A = Pr[Ri

′
= Ri]−AdvPUFA . However, by Lemmas

1 and 3, A can only randomly guess Ri, i.e., l′2 = 0 and
Pr[Ri

′
= Ri] = 1

2l2
= AdvPUFA . thus, AdvAuth1A = 0.

A may also try to impersonate a server and authenticate
itself to an IoT device. We denote the advantage of the
adversary in this attack by AdvAuth2A . Using a similar approach
as above, we get AdvAuth2A = 0.

Theorem 6. Data Provenance: If the IoT device and server
successfully complete a run of the proposed protocol then the
source and location of the data is indeed true.

Proof. The adversary A may try to invalidate the data sent to
the server. The security game between C and A is given as
follow:

1) C uses an IoT device ID1 and the server to launch the
proposed protocol.

2) A queries the server and the IoT device ID1 a polynomial
number of times using SendID, SendS, Drop, and
Monitor.

3) A ties to impersonate an IoT device by invoking the
SendS oracle.

4) A wins the game if the server accepts the tampered data
sent by A.

A must generate a valid authentication parameter V1
in order to pass the data integrity check during the
proposed protocol’s data transfer phase. To do so, A
needs Ri and the valid wireless fingerprint F1G. The
advantage of the adversary is given by AdvProvA =[
(Pr[Ri

′
= Ri]− AdvPUFA )× (Pr[F1G∗ = F1G]− AdvFPA )

]
.

However, by Lemmas 1 and 3, A can only randomly guess

Ri, i.e., Pr[Ri
′

= Ri] = AdvPUFA . Similarly, by Lemma 2,
Pr[F ∗1G = F1G] = AdvFPA . Thus, AdvProvA = 0.

Theorem 7. Privacy: The proposed protocol achieves
anonymity of the IoT devices.

Proof. If two successful runs of the proposed protocol by
the same IoT device with the server cannot be correlated
by A, then the proposed protocol is termed untraceable. The
following security game can be used to model this attack:

1) C chooses two IoT devices ID1 and ID2 and uses each
one of them to launch the proposed protocol with the
server.

2) A queries the server and the IoT devices a polynomial
number of times using SendS, SendID, Monitor, and
Drop.

3) C randomly chooses one of the IoT devices ID∗.
4) A queries the server and the IoT device ID∗ a

polynomial number of times using SendS, SendID,
Monitor, and Drop.

5) A announces her/his guess ID′.
6) if ID′ = ID∗, A wins the game.
The adversary’s advantage of a successful guess for ID′

can be modeled as AdvPri1A = 2 × (Pr[ID′ = ID∗] −
1
2 ). By lemma 4, the advantage of A in correlating the
pseudonym identities of ID∗ can be modeled as AdvPri2A =
Pr[Corr(SIDi, SIDi+1) 6= 0]. The advantage of the ad-
versary in winning this game can be modeled as AdvPriA =
AdvPri1A + AdvPri2A − AdvPri1A × AdvPri2A . If an adversary
makes a random guess for ID∗ then he/she has no advantage,
i.e., Pr[ID′ = ID∗] = 1

2 . Using Lemmas 1, 3, and 4, we can
conclude that AdvPriA = 0.

Lemma 8. The proposed protocol is protected against DoS
attacks.

Proof. An adversary A may attempt to break the synchro-
nization between an IoT device and the server by block-
ing/dropping specific packets, e.g., Message 3© in Figure 6
and Message 2© in Figure 8. However, the IoT device stores
an emergency identity list while the server stores a list of
emergency identities as well as CRPs to deal with these kinds
of situations.

Lemma 9. The proposed protocol is secure against physical
and cloning attacks.

Proof. IoT devices do not store any secrets in their memory.
Furthermore, the PUF and the micro-controller are inseparable
and it is not possible to eavesdrop on their communication
[28]. Thus, according to Lemmas 1 and 3, we can conclude
that the proposed protocol is safe against physical and cloning
attacks.

Lemma 10. The proposed protocol is safe against ephemeral
secret leakage attacks.

Proof. The IoT device and server establish a common ses-
sion key ki = H(N1 ⊕ N2) ⊕ H(IDA ⊕ Ri) during the
authentication phase, where N1 and N2 are short term secrets.
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Fig. 9: Experiment Layout.

Assume that A has revealed the short term secrets. However,
it is computationally infeasible for A to calculate ki with out
knowledge of IDA and Ri. Thus, according to Lemmas 1 and
4, it is evident that the proposed protocol is resilient against
ESL attacks.

VIII. SECURITY VERIFICATION AND SIMULATIONS

ProVerif (PV) [35], an automated security verification tool,
was used to perform rigorous simulations and experimentation
to verify the security properties. ProVerif has been used to
check the proposed protocols against the following security
properties: mutual authentication, impersonation attack resis-
tance, data tampering attack resistance, ephemeral secret leak-
age attack resistance, perfect forward secrecy, strong secrecy,
and strong anonymity. The PV simulation scripts with the
implementation source code can be found in [36].

IX. EXPERIMENTAL VALIDATION

We used MICA-Z motes with the CC2420 transceiver
to conduct our experiments. These motes can communicate
using the IEEE 802.15/Zigbee protocol and can output 8-
bit unsigned LQI values. The experimental setup includes a
typical indoor laboratory environment with furniture and WiFi
devices including a base station, an actual IoT device, and
two attackers A1 and A2 as shown in Figure 9. Note that the
distance between the adversaries and the legitimate IoT device
is greater than at least a single wavelength.

We conducted two sets of experiments: firstly, the IoT
device can move around to different locations inside the labo-
ratory area called High Mobility, and secondly, the IoT device
moves sporadically inside a small space in the laboratory
called Low Mobility. The wireless channel between the IoT
device and the base station, and the adversaries and the base
station was monitored for a duration of one hour and the
corresponding ∆ values are shown in Figures 10(a) and 10(b)
for 32-byte wireless fingerprints. We observe a clear distinc-
tion between the ∆ values of the adversarial channels and
the legitimate channel. We observe threshold values of 0.9441
(log100.9441 = −0.25) and 1.0233 (log101.0233 = 0.1) for
the low mobility and high mobility scenarios, respectively.

(a) Low Mobility

(b) High Mobility

Fig. 10: Comparison of ∆ values for legitimate channel and
adversarial channels using 32-byte fingerprints.

We compare the accuracy of our technique with the state-
of-the-art work in [20]. The Pearson correlation coefficient r
is used by the technique in [20] with a threshold value of 0.9
for r [20]. The comparison is made using two performance
metrics, i.e., the probability of false alarm and the probability
of missed detection. The probability that a legitimate channel
is mistakenly flagged as an adversarial channel is termed as
the probability of false alarm. Similarly, probability of failing
to detect an adversarial channel in termed as probability of
missed detection.

The results for the two scenarios considering three different
sizes of the wireless fingerprints, i.e., 16, 32, and 64 bytes are
given in Tables III and IV. Where PFA denotes the probability
of false alarm for the channel between the legitimate IoT
device and base station, i.e., the ratio of the number of
times the proposed technique flagged a legitimate channel as
compromised to the total number of times the channel was
checked. Similarly, PMD1 represents the probability of missed
detection for the channel between A1 and base station, i.e., the
number of times the proposed technique failed to detect A1 to
the total number of times the channel was checked. Similarly,
PMD2

represents the probability of missed detection for the
channel between A2 and base station.

For the low mobility scenario, we observe that for a finger-
print size of 32 bytes or more, the proposed technique made
no errors in classifying the wireless channels. However, the
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technique proposed in [20], has a high PFA of 40% even
when the fingerprint size is 64 bytes. This shows that the
performance of the proposed technique is significantly better
than the technique in [20]. We observe similar results for
the high mobility scenario where the proposed technique can
accurately detect adversarial channels when the fingerprint size
is 64 bytes or more. However, we observe a 70% PFA for [20]
even with 64 bytes fingerprints. Note that the fingerprints must
be 2392 bytes long in [20] in order to achieve comparable
accuracy. This further shows the superiority of proposed
technique over the technique in [20].

TABLE III: comparison of the proposed protocol with refer-
ence [20]: low mobility.

Finger-
print
Size

PFA (%) PMD1 (%) PMD2 (%)

Prop-
osed

[20]
%

Impro-
vement

Prop-
osed

[20]
%

Impro-
vement

Prop-
osed

[20]
%

Impro-
vement

16 0 67.4 100 8.5 11.1 23.4 0 12.5 100
32 0 57.1 100 0 5.3 100 0 11.8 100
64 0 40 100 0 2.6 100 0 0 0

TABLE IV: Comparison of the proposed protocol with refer-
ence [20]: high mobility.

Finger-
print
Size

PFA (%) PMD1
(%) PMD2

(%)

Prop-
osed

[20]
%

Impro-
vement

Prop-
osed

[20]
%

Impro-
vement

Prop-
osed

[20]
%

Impro-
vement

16 19.05 66.67 71 12.5 12.5 0 7.6 33.3 77.1
32 18.1 63.6 71.5 5.88 6.7 12.2 0 25 100
64 0 70 100 0 0 0 0 0 0

X. ENERGY REQUIREMENTS

The AVRORA energy analysis tool was used to evaluate the
energy requirements of the proposed protocol on the MICA
2 mote platform. The proposed protocol was also compared
with a new data provenance protocol for IoT by Sanchez et
al. [8] with regard to energy consumption. Note that a full
protocol description with authentication, data integrity, and
privacy preservation is missing in [20]. Therefore, we do not
consider [20] in this section.

The results for the average energy consumption for the CPU
and radio subsystems for 100 runs of the protocol are shown
in Table V for 128, 192, and 256 bits key sizes. The wireless
fingerprints are considered to be 64 bytes long. The CPU and
radio subsystem energies include the energy consumed by the
security sub-system, as well as other tasks including boot, idle
state, etc.

We observe that the proposed protocol consumes 83% and
73.5% less CPU and radio energy, respectively, than the
protocol in [8] for a key size of 256 bits. This reduced
energy consumption shows that the proposed protocol has
significantly lower computation complexity. Moreover, the
higher energy consumption in the other tasks column in Table
V shows that the higher computational complexity of [8]
results in the radio subsystem staying active for a longer period
of time. Similarly, if the key size is increased by 64 bits, the
CPU and radio energy consumption is increased by 45,347 µJ

TABLE V: Energy Consumption

Key
Size

Protocol Proposed by [8]
Proposed
Protocol

Total
Impro-
vement

%
Protocol
µJ

Other
tasks
µJ

Total
µJ

Protocol
µJ

Other
tasks
µJ

Total
µJ

CPU
128-bits 47,653 30,131 77,785 508 26,490 26,999 12
192-bits 87,656 33,694 121,351 618 26,491 27,110 77
256-bits 131,223 37,257 168,480 728 26,492 27,220 83

Radio
128-bits 1,924 82,036 83,961 2,993 49,634 52,627 59
192-bits 2,488 139,148 141,637 3,560 49,152 52,713 62
256-bits 305,176 196,261 199,312 4,127 48,670 52,798 73

and 57,676 µJ, respectively, for [8]. However, for the proposed
protocol we observe a mere increase of 110 µJ and 85 µJ.
This shows that the proposed protocol has significantly lower
energy requirements.

XI. CONCLUSION

This paper presented a protocol to establish data provenance
in the IoT. The protocol uses PUFs to verify the source of
data. Wireless fingerprints derived from the wireless channel
between an IoT device and wireless gateway are used to
verify the location of data. In particular, LQI values are used
to generate the wireless fingerprints. The proposed protocol
uses light weight symmetric cryptography for security and
also provides privacy preservation. Experiments conducted
on MICA-Z motes in an indoor environment showed that
the proposed technique for wireless fingerprints can detect
attacks with high accuracy. Moreover, the energy requirement
for the proposed protocol is significantly lower than existing
techniques.

The future work for this paper may include a multiple-hop
provenance protocol for IoT swarms, dynamically registering
IoT devices without the need of an operator, and applying
further optimizations to improve the accuracy of detecting
attacks while using even shorter fingerprints.
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