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Abstract—Phasor measurement units (PMUs) play a crucial
role in ensuring the reliable operation of modern power grid
monitoring systems, such as wide-area measurement systems
(WAMS). These systems heavily rely on accurate time syn-
chronization, typically achieved through the Global Positioning
System (GPS). However, the open nature of civilian GPS sig-
nals exposes PMUs to potential time synchronization attacks
(TSA), where malicious actors manipulate PMU time stamps
by transmitting deceptive GPS signals in close proximity to the
PMUs. In this paper, we propose a framework for TSA detection
using machine learning (ML) models at the control center of
a WAMS. The feature set used includes power and correlation
distortion measurements, which can be extracted in real-time
using any generic GPS receiver. We propose a spoof detector
based on representation learning, which offers advantages over
supervised ML methods by not requiring exhaustive coverage of
all possible attack scenarios during training. Instead, it can be
trained using only authentic GPS features. Experimental results
highlight that our proposed method performs comparably or
even surpasses the performance of the compared ML algorithms.
This improvement is particularly evident when considering the
TEXBAT subtle attack scenario DS-7, where the ML methods
struggle to detect the presence of spoofers. In contrast, our
proposed method achieves a detection probability of 98% at a
false alarm probability of 2.5%.

Index Terms—Detection technique, GPS spoofing attacks,
PMU, representation learning, Smart Grid, TSA.

I. INTRODUCTION

In the realm of modernized electrical distribution grids, such
as the smart grid, continuous monitoring plays a vital role in
ensuring the stability of the system. Wide-area measurement
systems (WAMS) employ phasor measurement units (PMUs)
to facilitate real-time monitoring of synchrophasors [1] that
are a measurement techniques utilized in power systems to
capture both the magnitude and phase angle of a sinusoidal
voltage/current waveform at a specific moment, enabling real-
time monitoring and control of the power system dynamics.
The sampling frequency of these values typically ranges
from 10 to 50 Hz, depending on the distribution system’s
requirements.
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Given that PMUs are distributed across different geograph-
ical locations, it is crucial to synchronize their generated
samples with Coordinated Universal Time (UTC) for temporal
alignment. Although minor timing errors have negligible im-
pacts on PMU measurements, significant timing discrepancies
can have severe consequences as stated in the IEEE-C37.118
standard. For example, a time stamp error exceeding 26.5 µ-
seconds could potentially lead to power grid blackouts [1].
To ensure precise synchronization, PMUs rely on the timing
signal provided by the Global Positioning System (GPS),
which offers reliable and highly accurate time references. The
GPS timestamps, along with the synchrophasor measurements,
are transmitted to the control center for system status analysis
and to devise appropriate control measures.

PMUs obtain the GPS timing signal either through the
public L1 channel or the new L1C channel [2]. Unlike the
encrypted P(Y) military channel, these signals are unsecured
and follow open standards. Additionally, the GPS ephemeris
and satellite data are publicly accessible. As a result of being
low power and open-standard, these signals are vulnerable to
various sources of radio frequency (RF) interference, including
intentional or unintentional interference. Intentional interfer-
ence can be categorized as jamming or spoofing interference,
where jamming interference involves high-power noisy trans-
missions in the GPS L1 band that completely overpower the
authentic signal. Although this type of interference is relatively
easier to detect, spoofing interference can be incredibly subtle
and poses a significant threat to GPS-dependent applications.

The availability of programmable simulators and software-
defined radios has significantly facilitated the act of spoof-
ing GPS signals. Spoofing attacks can be classified into
three categories based on their implementation complexity;
simplistic, intermediate, and sophisticated [3]. Among the
various intermediate spoofing techniques, induced spoofing
(also known as carry-off spoofing) is the most prevalent and
detrimental. It involves capturing the receiver’s code tracking
loop by transmitting a counterfeit signal precisely matched
to the frequency and code phase of the genuine signal. Once
the correlation peak at the targeted receiver aligns completely,
the spoofer gradually gains control over the tracking loop



by manipulating the power and code rate of the counterfeit
GPS signal [4]. In the absence of effective spoofing coun-
termeasures at the targeted receiver, it remains unaware of
the manipulation and continues to lock onto the spoofed
signal. As a result, spoofer can manipulate the timing and
positional information embedded in the GPS signals, leading
to significant downstream consequences.

In the context of smart grids, an adversary can launch
a time synchronization attack (TSA) by manipulating the
timestamps generated by the GPS module integrated into a
PMU. This form of attack induces a phase angle shift in the
PMU measurement, causing erroneous state estimations and
generating incorrect control decisions at the control center,
potentially resulting in large-scale power outages [1], [5].

Ensuring the reliable and secure operation of power grids
necessitates TSA detection. Several approaches have been pro-
posed to tackle this issue, including the utilization of multiple
PMUs, generator data, GPS signal statistics, and machine
learning (ML) algorithms. Sabouri et al. [6] employed the rotor
angles of different generators to train a multi-layer perceptron
(MLP)-based spoofing detector. Zhu et al. [7] developed a
detection method that relied on the PMU locations and GPS
signal statistics at the receiver. Fan et al. [8] proposed the use
of multiple PMUs and the characteristics of various power grid
sensors for TSA detection. Xie et al. [9] utilized the terminal
voltage, rotor speed and angle of generators to propose a quasi-
dynamic estimator for spoofing detection. Huang and Li [5]
trained a vector neural network by employing the phase coding
of PMU measurements to extract and encode the relationships
between their phase and magnitude for TSA detection.

Various techniques that rely on GPS signal statistics and
receiver properties have also been proposed, categorized
as authentication-based, multiple-antenna-based, inertial- and
sensor-based, and single-antenna-based methods [4]. The most
practical and widely deployable approaches are those that
require no additional hardware and can be implemented
through a software or firmware update. These methods include
monitoring the received power via automatic gain control
(AGC) [10], monitoring the receivers’ autocorrelation profile
of the tracking loop [3], [11], and a combination of both [4],
[12]. These techniques employ Bayesian detection framework.

In recent times, several supervised ML algorithms have also
emerged as viable options for GPS spoofing detection. These
methods leverage features obtained from various blocks of
a typical GPS receiver, including RF, acquisition, tracking,
and position-velocity-time (PVT) blocks. Studies highlighted
in [13]–[16] have demonstrated the effectiveness of these
algorithms, achieving rates as high as 95% in correctly identi-
fying the counterfeit signals. Notably, these ML methods offer
multiple advantages. They eliminate the need for meticulous
selection of signal models and prior distributions for authentic
and spoofed signals. Furthermore, they can be trained in a
data-driven manner, providing flexibility and adaptability. Ad-
ditionally, ML techniques based on artificial neural networks
(ANN) have proven successful in tackling complex problems
without relying on intricate signal modeling.

When dealing with time-series classification, however, su-
pervised ML models face certain challenges. For instance, they
have a tendency to over-fit when the dataset size is small or
when testing samples closely resemble those in the training
set. Moreover, supervised learning models often exhibit poor
performance when tested on datasets that significantly differ
from the training data. In this paper, we initially highlight
that the exceptional performance observed in supervised ML
methods [13]–[16] can be attributed to the close resemblance
between the test set and the training set. Additionally, we
demonstrate that these methods may struggle in detecting
unseen spoofing attacks.

To address this issue, we propose a representation learning
based GPS spoofing detector. This detector is trained on clean
and authentic datasets, enabling it to capture the essential
underlying structural information. Consequently, the trained
detector can effectively detect spoofing even in datasets it
has not encountered before. Notably, our proposed detector
demonstrates robust performance against sophisticated spoof-
ing attacks. Furthermore, the training feature set comprises
of a combination of signal power measurements and signal
quality monitoring (SQM) metrics acquired in real-time from
the RF and tracking stages of a generic GPS receiver.

Our proposed detection framework involves the transmis-
sion of both normal measurement data and computed GPS
receiver features from each PMU to the control center. The
control center utilizes these features to train supervised ML
or representation learning-based detectors for spoof detection.
Once trained, the control center can assess the authenticity
of the received GPS features from the PMUs. In the event
of a positive spoof detection, the control center can employ
computationally intensive TSA mitigation techniques, such
as those outlined in [17], to safeguard against the use of
counterfeit time stamps in power grid control.

The paper’s structure is as follows. In Section II, we
begin by introducing the TEXBAT dataset, then proceed to
detail the approach for feature extraction, and outline the
employed ML models. Section III discusses the proposed GPS
spoof detection model, followed by the explanation of the
detection framework. The performance evaluation of both the
ML models and the proposed representation learning-based
detector is presented in Section IV. Finally, the concluding
remarks are provided in Section V.

II. METHODOLOGY

A. TEXBAT Dataset

The primary aim of this research is to detect instances of
GPS spoofing in the GPS signals used by PMUs located at
grid stations or generation points. To accomplish this, we
employed the Texas Spoofing Test Battery (TEXBAT) dataset1,
which is publicly available and consists of binary recordings
of various spoofing scenarios performed on civil GPS L1 C/A
signals [18]. The recorded samples in the TEXBAT dataset
have the following specifications: 16-bit resolution, centered

1https://radionavlab.ae.utexas.edu/texbat/



at a carrier frequency of 1575.42 MHz, a bandwidth of 20
MHz, and a complex sampling rate of 25 Msps. Given that
PMUs are consistently situated at fixed locations and rely on
timing data derived from GPS signals, and recognizing that the
TSA seeks to manipulate these timestamps to desynchronize
synchrophasor measurements, our study zeroes in on partic-
ular static TEXBAT datasets that simulate time push attacks.
These include DS-0, containing authentic GPS signals; DS-2,
featuring a spoof signal with a high power advantage of 10
dB; and DS-3, containing a spoof signal with a small power
advantage of 1.3 dB. In both of these datasets, the objective
of the spoofer is to manipulate the measured GPS time of
the target receiver by gaining control of its tracking loop.
Additionally, we included the DS-7 dataset, which is similar to
DS-3, but is the most challenging as it not only has relatively
matched power, but it also performs carrier phase alignment.

For our analysis, we selected signals from 50 to 300 seconds
from DS-0, DS-2, and DS-3, and 100 to 450 seconds from
DS-7. This selection limits the dataset size while covering the
timeframe during which the spoofed signal is introduced and
takes control of the target receiver’s tracking loop.

B. Feature Extraction
To analyze the GPS signals, we used a MATLAB based

open-source, single antenna based GNSS receiver called FGI-
GSRx [19]. Our feature set comprises of 6 run-time measure-
ments which can be generated using the output of the RF and
tracking blocks of any generic GPS receiver. To ensure stable
measurements, we averaged each feature over a 20 ms time
window, taking into account the high signal sampling rate of
the receiver. This approach allowed us to achieve a sampling
rate of 50 Hz while maintaining the measurement reliability.

• Received Power: As, for the case of GPS L1 band, most
of the signal power is centered at the L1 carrier frequency
in a small bandwidth of 2 MHz. Let yRF [n] be the
complex-valued baseband samples at the output of the
receivers’ RF block. We pass it through a low pass filter
with a bandwidth of 2 MHz to get a filtered version
ỹRF [n], then for a given time interval, received power
(in dBW) can be computed as

P [k] ≜ 10 log10

 1

N

kN∑
n=(k−1)N+1

|ỹRF [n]|2
 (1)

here N is the number of samples in a 20 ms time window.
• Carrier to Noise Ratio (C/N0): Another power mea-

surement feature comes from C/N0, however, directly
measuring C/N0 is not feasible and requires estimation.
In our study, we utilize the widely recognized Narrow-
band Wide-band Power Ratio (NWPR) method [19, 1.7.3]
to estimate this metric. By considering both received
power and C/N0, we enable the trained classifier to
effectively differentiate between genuine interference and
cases of spoofing [12].

• Ratio Metric [20]

mratio ≜
I−d + I+d

I0
(2)

• Delta Metric [20]

mdelta ≜
I−d − I+d

I0
(3)

• Early Late Phase Metric [21]

melp ≜ tan−1

(
Q−d

I−d

)
− tan−1

(
Q+d

I+d

)
(4)

• Symmetric Differences [4]

msd =
|ψ−d − ψ+d|

σN0

(5)

here Id and Qd are the tracking correlators’ In-phase and
Quadrature components. We consider three correlators synced
as prompt (d = 0), early (d < 0), and late (d > 0) correlators.
Our early and late correlators were kept at d = 0.5 chips. ψ is
the complex-valued correlator output and σN0

is the standard
deviation of ψ2 samples in the spoof free case.

We chose four different SQM metrics due to their com-
plementary nature as each metric provides unique insights.
For instance, when the value of melp is large, we tend to
observe smaller values for mdelta and mratio, as noted in [11].
Additionally, the metric msd captures the absolute difference
between early and late correlators, scaled by the standard
deviation of the noise (in the absence of spoofing). Notably,
this metric exhibits high values during and after the complete
takeover of the receiver’s correlator peak. The selection of
these metrics allows us to gather comprehensive information
about the spoofing scenario and its impact on the GPS receiver.

The feature extraction process resulted in a dataset denoted
as X = R55000×6, with 36% genuine and 64% spoofed
samples. Each feature was scaled to the range of [0,1] to
facilitate ML.

C. Machine Learning Models

In our paper, we incorporated three extensively utilized and
effective ML models as base learners: the Random Forest clas-
sifier (RFC), Support Vector Machines (SVM), and Artificial
Neural Network (ANN). These models have also demonstrated
successful application in GPS spoof detection in prior works
such as [13], [14], [16]. For their implementation detail, reader
is referred to [22]. To ensure optimal performance, we fine-
tuned the hyperparameters of each model using a grid search
method. For the RFC model, we trained it with 11 estima-
tors, while the SVM model utilized the radial basis function
(RBF) kernel. The ANN model was constructed with 3 fully
connected layers, consisting of 20−10−1 nodes respectively.
The first two layers employed the PReLU activation function,
while a sigmoid function was applied at the final node.

III. REPRESENTATION LEARNING BASED DETECTOR

In supervised learning, ML-based detection models are
trained using data instances from both spoofed and authentic
classes. On the other hand, representation or profiling-based
detection models are trained solely on authentic data instances,
treating it as a single class. These trained models can then be
used to determine if a test sample belongs to the same class



it was trained on or not. The objective is to develop a robust
model that can handle various attack instances without requir-
ing retraining whenever a new attack variation is encountered.
This type of detector is commonly referred to as a zero-day
detector [23]. Latent variable models, such as autoencoders
(AE), are particularly useful in this context. These models aim
to learn the underlying explanatory factors (latent variables)
from high-dimensional data samples by compressing them into
low-dimensional representations. An AE consists of encoder
and decoder networks: the encoder maps the input x to a
compressed latent variable z, and the decoder attempts to
reconstruct the input as x̃. The model is trained end-to-end
by minimizing the reconstruction error ϵ = ∥x − x̃∥2. After
training, the model excels at reconstructing samples from the
training class, but it struggles to accurately reconstruct samples
from other classes.

A. The Variational AutoEncoder Model

There have been several updates to an AE model, out of
which the Variational AE (VAE) is the most popular [24].
Instead of generating a latent vector z directly, in VAE, the
encoder outputs mean (µ) and variance (σ) vectors constituting
a latent probability distribution qθ(z|x) from which z is
sampled. As a result of this probabilistic setup, no two input
samples have the same latent representation, which essentially
forces the encoder to map similar input samples into a small
region of the latent space. The latent variable z is input to
the probabilistic decoder which reconstructs x using pϕ(x|z)
distribution. The model is trained by maximizing the the
variational lower bound [24] given by

L(θ, ϕ;x) = −DKL(qθ(z|x)||p(z))+Ez∼qθ(z|x)(log pϕ(x|z)).
(6)

Here the first terms is called the latent loss computed as
the Kullback-Leibler divergence (KLD) between the learned
distribution qθ(z|x) and some prior distribution p(z), which
is typically set to be standard Normal N (0, 1). The second
term is the reconstruction error term computed using the Bi-
nary cross entropy between reconstruction and input samples.
Under this setting, the latent loss forces the latent distribution
qθ(z|x) to be symmetric around origin, ensuring a connected
latent space. This is beneficial for our case as we want samples
similar to the training class to lie as close to origin as possible,
thereby, the distance from the origin can then be used as
an indicator whether the testing sample is coming from the
training set or not.

Our VAE encoder was constructed using a 3-layer neural
network, with node configurations of 20−10−4, and PReLU
activation functions applied to all layers except the last one.
The latent dimension was set to 2. The VAE decoder, on
the other hand, utilized a 3-layer neural network with node
configurations of 10−20−n, where n corresponds to the input
dimensions. PReLU activation functions were employed for all
inner nodes, while the final layer had no activation function.
Additionally, we chose a latent dimension of 2 in order to
facilitate easier visualization of the encoded representations.

B. Detection Framework

We will now present the proposed detection model, which
utilizes the trained VAE encoder on authentic GPS signal
samples. The underlying principle is that the VAE encoder
maps authentic samples to the origin of the latent space, while
spoofed samples are mapped away from the origin. Conse-
quently, we can utilize the euclidean distance of the mean
latent variable from the origin, represented as ζ(x) = ∥µz∥2,
as an indicator function for classification into genuine or
spoofed categories. In this context, ∥ ·∥2 denotes the ℓ2-vector
norm. By defining a classification threshold τ , if ζ(x) ≤ τ ,
the sample x is classified as genuine; otherwise, it is classified
as spoofed.

The selection of an appropriate threshold, denoted as τ ,
plays a critical role in determining the overall detection
performance. To ensure its relevance, we associate τ with the
desired false positive rate (FPR), which is typically specified as
part of a detector’s technical requirements. Upon completion of
model training, we apply the indicator function ζ(·) to all the
training samples and set τ to the threshold value that achieves
the specified FPR for the training set. For instance, if the
desired FPR is set at 1%, we consider samples as spoofed
if their corresponding ζ values exceed the 99th percentile for
the entire training set. In the experimental section, we assessed
the model’s performance across different FPR settings, namely
[5%, 1%, 0.1%], which represents a typical design choice for
a detector.

By employing the representation learning-based detector,
we aim to overcome the challenges associated with unseen
attack patterns and improve the model’s ability to differenti-
ate between genuine and spoofed samples, as evidenced by
the distinct and discriminative latent representations achieved
through the VAE encoder, see Fig. 2.

IV. EXPERIMENTAL EVALUATION

The implementations of all models discussed in this section
were carried out in Python 3.9. The RFC and SVM models
were implemented using the Scikit-Learn library [25], while
the ANN and VAE models were trained using the PyTorch
library in Python [26]. To optimize the loss functions of the
ANN and VAE models, we utilized the Adam optimizer with
learning rates of 1e−3 and 5e−4, respectively. The training
process involved 50 epochs, with a batch size of 256. Evalua-
tion of all methods was conducted based on overall accuracy
as well as probability-based metrics, such as probability of
detection (PD), false alarm (PFA), and miss-detection (PM).

A. Supervised Learning

In our initial test, we utilized the TEXBAT datasets and
performed a 50-50 split to create separate train and test sets.
The RFC, SVM, and ANN models were trained on the training
set and subsequently evaluated on the testing set. Remarkably,
all three models achieved accuracy scores exceeding 99.5%. To
delve into the reasons behind such exceptional performance,
we conducted a comparison between each individual time
sample from the test set and all samples in the training set.



Fig. 1. Training and testing set sample difference distribution.

This allowed us to identify the sample from the training set
that was closest to each test sample, and we recorded the
ℓ2 distance between them. The resulting histogram of these
distances is depicted in Fig. 1. Notably, the histogram clearly
illustrates that the samples in the test and training sets are
extremely similar, indicating their equivalence. This finding
provides an explanation for the high accuracy obtained by the
RFC, SVM, and ANN models. Consequently, we assert that a
simple train-test split should be approached with caution when
working with high-frequency time series data, such as that of
GPS spoofing datasets.

In our second test, we aimed to assess the generalization
capability of the ML models when confronted with entirely
unseen data. To achieve this, we employed a leave-one-out
train-test strategy, where the models were trained on all but
one dataset and evaluated on the remaining dataset. This
approach ensured that the models were exposed to multiple
GPS attack and clean scenarios during training, while being
tested on an unseen attack dataset, thereby discouraging the
mere memorization of the training datasets. The results of this
test are presented in Table I. From the table, it can be observed
that the authentic dataset proved to be the easiest to classify, as
all three models achieved accuracy rates above 99%. Similarly,
for the DS-2 dataset, which contained a spoofed signal with
an approx. 10 dB power advantage, all methods exhibited a
PD exceeding 99.7%. However, their PFA also exceeded 10%.
Regarding the DS-3 dataset, featuring a 3 dB power advantage,
both SVM and ANN achieved 100% PD and less than 1%
PFA, while RFC only managed a PD of 79%.

Moving on to the DS-7 dataset, which involved power-
matched and highly subtle GPS spoofing attacks, all three
ML models completely failed in their detection performance.
The SVM achieved the highest PD of 36%, underscoring the
limitations of supervised ML approaches when confronted
with unseen attack patterns at the receiver. This highlights a
significant drawback of supervised ML models, namely their
inherent inability to handle previously unseen attack patterns.

B. Representation Learning

In our final test, we employed our proposed representation
learning-based detector, described in Section III, to address
the limitations highlighted in the previous section and en-
hance its resilience to attack variations. We trained our VAE
model following the methodology outlined in Section III-A,

TABLE I
PERFORMANCE UNDER LEAVE-ONE-OUT TRAINING STRATEGY.

Model Test DS ACC PD PFA PM

RFC

Authentic 99.70 - 0.30 -
DS-2 96.58 99.72 13.43 0.28
DS-3 84.60 79.15 1.29 20.85
DS-7 4.28 0.11 0.00 99.89

SVM

Authentic 99.12 - 0.88 -
DS-2 97.39 99.95 10.78 0.05
DS-3 99.88 100.00 0.43 0.00
DS-7 38.86 36.19 0.00 63.81

ANN

Authentic 99.21 - 0.79 -
DS-2 96.22 99.96 15.71 0.04
DS-3 99.82 100.00 0.63 0.00
DS-7 31.70 28.73 0.00 71.27

utilizing the authentic dataset for training. Subsequently, the
trained encoder and the authentic dataset samples were utilized
to compute the classification threshold τ for different false
positive rates (FPRs) of [5%, 1%, 0.1%]. Using the trained
encoder, we mapped data samples from every dataset into their
respective 2D latent representations. The visual representations
of these mappings are presented in Fig. 2. Notably, the
samples from the authentic dataset were mapped close to the
origin of the latent space, signifying VAE’s effective training.
Conversely, the spoofed samples from the DS-2 dataset were
mapped considerably farther away from the origin. Similarly,
a significant portion of the DS-3 samples were also mapped
away from the origin, with only a few samples remaining close
to it. Intriguingly, several samples from the sophisticated attack
dataset DS-7 were mapped very close to the origin, indicating
their resemblance to the authentic samples. This phenomenon
explains why the supervised learning-based methods mis-
classified them, as demonstrated in Table I.

The computed threshold τ , which can be interpreted as the
radius of a circle centered at the origin, is utilized to classify
whether a data point is spoofed or genuine. The classification
results for different input FPRs are presented in Table II.
Notably, even with a lenient 5% FPR, the detection rates for all
datasets surpass 99.63%, albeit with a higher PFA exceeding
10%. However, when employing a stricter FPR of 0.1%, the
detection rates for DS-2 and DS-3 datasets remain close to
100%, while the detection rate for DS-7 drops to 91.78%.
Additionally, the PFA decreases significantly for all datasets.

As illustrated in Fig. 2, a few data points from the DS-
7 dataset are located in close proximity to the origin of the
latent space. Consequently, for a sufficiently low FPR, these
points fall below the classification threshold, resulting in a
reduction in both the detection rate (PD) and the PFA. Thus,
the selection of the threshold can be determined by striking
a balance between the PD and PFA for the subtle attacking
scenario presented in DS-7.

V. CONCLUSION

In this article, we introduced a novel framework for detect-
ing time synchronization attacks on synchrophasors using six



Fig. 2. Latent variables extracted by the VAE from TEXBAT datasets.

TABLE II
PROPOSED DETECTOR’S GPS SPOOFING DETECTION SCORES UNDER

MULTIPLE FALSE POSITIVE RATES.

FPR/PFA 5% 1% 0.10%

Test DS ACC PD PFA ACC PD PFA ACC PD PFA

Authentic 94.32 - 5.68 98.93 - 1.07 99.90 - 0.10
DS-2 94.37 100.00 23.60 96.84 99.99 13.19 99.61 99.96 1.51
DS-3 96.96 100.00 10.92 98.95 100.00 3.77 99.75 100.00 0.89
DS-7 99.22 99.63 10.29 98.36 98.39 2.47 91.78 91.46 0.82

easily computable features from a generic GPS receiver. The
PMUs share these features, along with their measurements,
with the control center for training/testing models to detect
GPS spoofers. Our study revealed the limitations of supervised
ML models in handling high sampling rate time series data, as
they tend to over-fit and require data from all possible attack
scenarios for effective training. In contrast, our representation
learning-based detector, employing a variational autoencoder
trained solely on authentic datasets, outperformed supervised
ML models, especially for the DS-7 attack scenario. A major
advantage of our detector is its robustness in detecting spoofing
without exhaustive coverage of all possible attack scenarios
during training. This enables the control center to employ
more advanced mitigation methods to counter spoofing effects
before making smart grid control decisions.
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