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Abstract—Demand Response (DR) mechanisms aim to bal-
ance power supply and demand in smart grids by modulat-
ing consumers’ demand and adjusting electric price based on
power consumption patterns and forecasts. Deep Learning (DL)
networks have been proved to have better detection of False
Data Injection (FDI) attacks in such DR system than traditional
statistical methods. Adversarial Machine Learning (AML) attacks
can generate finely perturbed data that can mislead or disrupt
the normal performance of a DL network and bypass DL-based
attack detection in DR systems. However, existing AML attack
methods in DR systems require a substitute model to generate the
adversarial data and rely on the transferability of the data to attack
the target DL models or the others. In this paper, a novel attack
method called Ensemble and Transfer Adversarial Attack (ETAA)
is proposed to improve the transferability of adversarial attacks
across different DL models. This method has a general framework
and is able to work with various existing gradient-based attacks.
Moreover, to reduce the power company’s awareness of FDI attack
in the demand data, a zero-mean plane projection is applied to
limit the perturbations during adversarial data generation. The
evaluation results show that the proposed ETAA method can
achieve higher attack success rate across different models and the
zero-mean projection method can keep the final total adversarial
power demand to be closer to the original normal demand.

Index Terms—Smart grid, demand response, false data injection,
deep learning, adversarial machine learning.

I. INTRODUCTION

Power grids strive to maintain a match between power supply
and customer demand and Demand-Response (DR) schemes
have been proposed to achieve this objective. Under a typical
DR scheme, different types of price strategies like Time-of-
Use rates, Real-Time Pricing and Day Ahead Pricing may be
applied, and customers schedule their power usages according
to the unit price with the purpose to reduce the total elec-
tricity bill by decreasing usage during peak hours [1]. Also,
the utility company can be better prepared for the upcoming
power demand and therefore reduce operational costs while
maintaining and operating the grid system [2].

Considering the typical FDI attacks where attackers im-
plement strategies like directly injecting data, compromising
transmitted data or hacking smart devices, the consequences
of successful attacks could lead to different levels of impacts
in the DR system. These impacts include the fluctuations in
the power flow and incorrect power flow analysis of a grid,
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physical damages to the devices due to the working states
exceeding safe limits and insufficient power generation that
cause blackout. Thus, such attacks can cause economic losses
for the power company and disrupt the normal operations of
affected industries [3], [4]. Besides the traditional mathematical
and statistical attack detection methods, Deep Learning (DL)
networks have been proven to be applicable in smart grid
systems [5]–[9], and are able to protect the DR schemes from
FDI attacks. Recently, Adversarial Machine Learning (AML)
techniques have been studied and the results show that DL
networks have the risk of misbehaving when AML techniques
are used on them [10]. AML could add perturbations to the
input of a DL network to deceive that DL network by leading
to false predictions. If the attackers have the knowledge of the
targeted DL network parameters, the attack is named as white-
box attack. In reality, most attacks cannot access the information
of the targeted model, and the attack is called black-box attack.

In previous work [11], the AML techniques against the DL-
based FDI detection in DR systems have been explored and the
vulnerabilities of existing systems to AML attacks have been
evaluated. However, the work in [11] only considered using
a single DL model to generate adversarial demand data and
to believe that the generated data itself has the transferability
to allow them to attack the other DL networks successfully.
Moreover, it did not consider the stealthiness of the generated
data. The sum of adversarial power demand may have large
difference from the normal power demand, which may draw
attention from the utility company. Therefore in this paper, we
propose a new attack framework called Ensemble and Transfer
Adversarial Attack (ETAA) to generate the adversarial FDI data
for the DR schemes. This ETAA is able to work with any
gradient-based adversarial attack method and to reduce the dis-
crepancy between different models to improve the transferability
of attacks. Moreover, the method of projecting perturbations to
a zero-mean plane is applied to ensure that the sum of total
adversarial demand power is close to normal demand which
helps to hide it from the operator’s notice.

The main contributions of this paper are as follows:

• We propose the Ensemble and Transfer Adversarial Attack
(ETAA) framework which is able to reduce the gap of gra-
dient directions between white-box and black-box models.

• We evaluate ETAA combined with existing gradient-based
attacks and show that the attack success rate increases with
better transferability than standalone method.

• We introduce the zero-mean projection method to limit the
perturbations and therefore to make the final adversarial
demand data closer to the original normal data.978-1-6654-3254-2/22/$31.00 ©2022 IEEE



The organization of the rest of this paper is as follows.
Section II reviews existing DR schemes, DL techniques, and
AML methods. Section III describes the attack model proposed
for this paper and the details of existing gradient-based AML
methods and our ETAA method. Section IV presents the evalua-
tion results of the proposed attack and comparison with existing
methods. Section V concludes the paper.

II. RELATED WORK

A. Demand Response Schemes

Figure 1 shows the typical communication process in a DR
scheme. To initiate the process, the utility company sends
the original unit price to the customer side ahead of the real
electricity usage (e.g., a day). This is a list of prices for each
time slot of a day. Then, at user side, customers schedule
their appliances’ consumption (e.g., starting time and running
duration) in different time slots based on the price. Next, an
aggregator collects the demand forecasts from all customers.
After the utility company receives the accumulated demand
forecasts, its uses its optimization process to adjust the unit
price. Then, this adjusted new unit price is sent to customers
again. This communication process is repeated and stops when
both customers and utility company arrive at their optimization
goal. On the day of real usage, the households follow their
schedule to run appliances and the billing is calculated based
on the actual consumption.

In this paper, we consider an attack scenario where attackers
want to reduce their electricity bill by providing fake data into
the demand forecasts. We assume that attackers can manipulate
some households’ demand data or are able to hack into the
network and modify the accumulated demand forecasts. As
stated in [3], when the attacker has access to the aggregated
demand forecasts, he can perform FDI attacks to modify the
power demand forecasts and gain monetary benefits by intro-
ducing false predicted peak consumption at specific time slots
to the utility company during the prediction phase. With the
general assumption that the unit price increases with the demand
and usage of a pricing slot, the attacked time slot will have
higher unit price. During the prediction phase, because of this
higher unit price, the other users will consider rescheduling
their consumption by moving their usage from original time
slot to another time slot with cheaper unit price. This action of
rescheduling will cause the real power usage during attacked
time slots to be lower and the unit price during real usage is
actually lower than the optimized unit price during prediction
phase. Therefore, the attackers can have a lower bill if they run
their appliances in those attacked time slots.

B. Deep Learning

Deep Learning (DL) is subset of Machine Learning (ML) and
has better performance than general ML to handle large amounts
of data and to extract features in higher dimensions. Since smart
grids generate a large amount of data, DL methods are able to
solve problems like load forecasting, event classification, fault
detection and attack detection. The use of DL models for load
forecasting has been demonstrated in [12], [13]. DL methods

Fig. 1. Distributed DR communication sequence.

such as Convolutional Neural Networks (CNN), Recursive Neu-
ral Network (RNN) and Long-Short-Term Memory (LTSM) can
also perform classification and identification tasks (e.g., classify
the power quality disturbances) [14] or to detect malicious
devices [15] in power systems. In addition, it is more common
to use DL methods to detect the FDI attacks as proven by
[5]–[8]. Specifically, [9], [16] also focused on the stealthy and
covert FDI attacks. Besides the FDI detection in state estimation
and power flow monitoring, there are few researches on the
DR applications. The latest work that uses CNN to detect FDI
attacks in DR schemes is [17], and it can obtain higher accuracy.

C. Adversarial Machine Learning

Adversarial Machine Learning (AML) was first introduced
in [18] as a deceptive method against computer vision neural
networks. The input pixel values of an image are perturbed
by AML method without being detected by human eyes and
the network is fooled by the adversarial data to give a wrong
label for the image. When this is considered in a general
DL case, AML methods modify the inputs of a DL model
and thereafter the model would give wrong predictions. Since
then, AML techniques have gained interest among researchers
and various methods have been developed. Fast Gradient Sign
Method (FGSM) [19], Fast Gradient Value (FGV) [20], and
DeepFool [21] are the well-known AML algorithms. Moreover,
AML applications in power systems have been considered in
recent studies. The vulnerabilities of DL applications and AML
applications have been discussed in [22]. In [23], the authors
used Saliency Map Attack to conduct AML against power grid
state estimation. In [24], the vulnerabilities in load forecasting
model based on historical data are exploited to show the possible
AML attack. There is the latest work in [11] that an iterative
FGV method is used to generate the adversarial FDI data for
the DR schemes. However, this work is done only using a CNN
model to generate the adversarial data to attack another black-
box CNN model. There is lack of attack transferability for the
others models. Similar to the iterative FGV method, there are
other state-of-the-art iterative gradient methods like the Basic
Iterative Method (BIM) [19] which is an extension of FGSM,
and Momentum Iterative Fast Gradient Sign Method (MIM)
[25] which further uses the accumulated momentum of gradients
to update the direction. These methods have better black-box
attack transferability, but further modifications are required to
perform the stealthy FDI attack in DR schemes.



III. ATTACK DETAILS

A. FDI Attack

Consider the same settings and attack purpose as in [11],
[17], where one whole day of 24 hours is divided into 48 time
slots and each time slot is 30 minutes. The normal collected
demand forecasts is represented by D = [d1, d2, · · · , dn]
and n = 48. The attacked demand forecasts now become
D̂ = [d̂1, d̂2, · · · , d̂n]. In this paper, we assume the attackers
have no specific time slot goal, which means they may want
to increase the values at any random time slot i. Therefore,
d̂i ≥ di. Moreover, to perform successful FDI attacks that
result in bill reduction, the modified demand data should have
enough increment. Based on the evaluations in [3], the injected
false demands are started from 0.1% of the overall demand to
show the successful significant cost benefits to the adversary.
If the 0.1% increment is not met, the perturbed data is still
labeled as normal. On the other hand, generated adversarial
data that has at least one demand data at any time slot whose
increment is larger than 0.1% of the overall demand, will be
labeled as attacked. For a DL detection model fθ, the prediction
output is fθ(D). In addition, to make the adversarial data to
be stealthy, the sum of modified demand forecasts should not
change significantly compared to the normal demand forecasts.
Therefore,

∑
(D) ≈

∑
(D̂). Thus, the attackers should try to

modify the values in D to become higher and at the same
time, the modified values should be able to bypass the detection
model to achieve a hidden FDI attack. In summary, the attack
is modeled as follows:

max : D̂ (1)

subject to :fθ(D̂) = normal, (2)∑
(D̂) =

∑
(D). (3)

B. Gradient Attacks

Most of the existing AML attacks use the gradient methods.
The gradient of the targeted label’s loss with respect to the
input of a model is computed. Based on the gradient ascent or
gradient descent method, the input data is modified along the
gradient direction. Some of the gradient-based attacks are:

1) FGSM: Fast Gradient Sign Method is a fast method which
only does a one-step modification to the input data. The gradient
of the loss with respect to the input is calculated and the sign
of gradient would be the perturbation added to the input data.
The update equation is:

D′ = D + ε× sign(∇DL(fθ(D), Y )). (4)

where ε is the updating factor, L(fθ(D), Y ) is the loss of input
D with respect to target label Y and ∇D is the function to
compute the gradient of loss with respect to the D.

2) BIM: BIM is the iterative extension of FGSM, and has
higher success rate than the single step FGSM. The formula is:

D′i+1 = D′i + ε× sign(∇D′
i
L(fθ(D

′
i), Y )). (5)

with D′0 = D and ε is the updating factor.

3) MIM: In MIM, the momentum of previous computed
gradients is accumulated to decide the update direction in the
iterative process. The equations are:

gi+1 = µ× gi +
∇D′

i
L(fθ(D

′
i), Y )

‖∇D′
i
L(fθ(D′i), Y )‖

, (6)

D′i+1 = D′i + ε× sign(gi+1) (7)

where gi is the momentum of the computed gradients in the
i-th iteration. The factor µ controls the ratio of the momentum
to be accumulated.

C. Ensemble and Transfer Adversarial Attack

Most of the existing gradient-based attacks require a substi-
tute model of the targeted model to generate adversarial data,
and then use the transferability of the adversarial data to conduct
attacks on unseen black-box models. Such attacks may not
perform well because of the differences between substitute and
black-box models in terms of their structures and parameters.
To improve the transferability of such transfer-based adversarial
attacks, we propose the Ensemble and Transfer Adversarial
Attack (ETAA) method. This method is able to generate the
adversarial data that has better transferability to attack various
models by narrowing the gap of gradient directions between
substitute/white-box model and black-box models.

The overall process of ETAA method is shown in Figure 2.
Basically, there are K iterations to generate the adversarial DR
demand data. In each iteration, there are two main stages: the
ensemble stage and the transfer stage. The ensemble stage is
the simulation of white-box attack to generate adversarial data
based on the ensemble of 5 different models. The adversarial
data is modified along the gradient direction computed from
the fused entropy loss. The modification of adversarial data in
ensemble stage can repeat N times. Next, the transfer stage
acts like a black-box attack where a single model is randomly
selected from the 5 models to be the transfer model to allow the
data to explore more gradient information and thus to improve
the transferability. Then, the generated adversarial data from
ensemble stage is further modified by adding perturbations
obtained from the transfer model. For instance, the initial
normal data is xi and the final adversarial demand data xk
is obtained after K iterations. From this whole process, the
gap of the gradient directions between black-box and white-
box models is gradually narrowed. The adversarial data updating
process can be any gradient-based AML method as described in
previous sections. Therefore, this proposed ETAA is flexible and
easily implemented. In the following sections, the BIM updating
method is used as an example to explain the details of ETAA.

1) Ensemble Stage: The idea of ensemble stage is to explore
more gradient information among different substitute models
and therefore to allow the adversarial data to become more
generalized. The adversarial data is updated in the computed
gradient direction based on the ensemble logits of those models.
In ETAA, we use 5 different widely-using DL models to
compute the ensemble logits. The selected 5 models are listed in
the Table I under Ensemble Model. Ideally, the more ensemble
models would be better to achieve higher transfer attack rate by



Fig. 2. Overview of Ensemble and Transfer Adversarial Attack framework.

exploring more gradient directions. In this paper, we use these
5 models as typical representative because they are the most
common DL networks to deal with classification and regression
problems [26].

To start the ensemble stage, the initial adversarial data is xi,0.
The ensemble logits logitsens are obtained from the 5 models:

logitsens(xi,0) =

5∑
m=1

(wm × logitsm(xi,0)). (8)

The 5 models are denoted as m1 to m5. The logitsm(xi,0) is
the individual logits obtained from each model and the wm is
the weighting factor for each logit and

∑5
m=1(wm) = 1. In

ETAA, the wm have the equal value and the average logits of
5 models is obtained. Then, the cross entropy loss is calculated
based on this average logits:

Lens(xi,0) = −Y × log(softmax(logitsens(xi,0))). (9)

Lens(xi,0) is the loss to the current data xi,0 and Y is cor-
responding label. As in the gradient-based AML attack, the
adversarial data is updated along the direction which maximizes
this loss:

xi,1 = xi,0 + ε× sign(∇xi,0
Lens(xi,0)). (10)

Here xi,1 is the adversarial data after 1 step of updating
process. Equation (10) is repeated N times and xi,n is the final
adversarial data obtained from the ensemble stage.

TABLE I
DL MODELS IN ETAA

No. Ensemble Model
1 CNN
2 MLP
3 RBF
4 LSTM
5 GRU

No. Detection Black-box Models
1 CNN-E
2 MLP-B
3 GRU-B

Note: Ensemble models are the models to be used in ETAA ensemble stage
for the fused logits calculation which are further used for the adversarial data

updating. The detection black-box models are used to evaluate the attack
performance of the adversarial data generated. CNN-E is an existing detection
model [17]. MLP-B and GRU-B are two black-box models that are different

from the MLP and GRU model.

Algorithm 1 Ensemble and Transfer Adversarial Attack method
Require: x0, N , K

1: k = 1
2: while k ≤ K do
3: n = 1
4: while n ≤ N do
5: Compute the average logits of the 5 ensemble

modes using Equation (8) and the cross entropy loss
Lens(x0,n) using Equation (9).

6: Obtain the perturbation δ using Equation (13).
7: Obtain projection δ0−mean = δ − δTn

||n||2 × n.
8: Update x0,n = x0,n + δ0−mean.
9: n = n+ 1

10: end while
11: Compute the cross entropy loss of x0,n using the transfer

model: Ltf (xi,n) using Equation (11).
12: Obtain the perturbation δ using Equation (13).
13: Obtain projection δ0−mean = δ − δTn

||n||2 × n.
14: Update xk = x0,n + δ0−mean.
15: k = k + 1
16: end while
17: Final adversarial data: xk
18: return xk

2) Transfer Stage: This is the stage to simulate a black-
box attack and the adversarial data xi,n from ensemble stage
is further modified. Here, one DL model is randomly selected
from the 5 ensemble models to act as the black-box model. This
model is called the transfer model and is denoted as mtf . The
logits logitstf (xi,n) are obtained from this transfer model with
the input of xi,n. Then the cross entropy loss is:

Ltf (xi,n) = −Y × log(softmax(logitstf (xi,n))). (11)

Therefore, the adversarial data is updated in the gradient direc-
tion that would maximize the loss function of Ltf (xi,n):

xi+1 = xi,n + ε× sign(∇xi,n
Ltf (xi,n)). (12)

This transfer stage is a single step to update the adversarial
data and the transfer model is just a simulation of a black-box.
The ensemble stage and the transfer stage together make one
essential attack step. This attack step should be repeated K



times to perform the complete ETAA and the final adversarial
data is denoted as xk as shown in Figure 2. In this way, by
iteratively going through ensemble models and transfer models,
the gaps of the gradient directions between substitute model and
black-box models are gradually narrowed. The final adversarial
data should have better transferability when it attacks the other
models.

3) Zero-mean Projection: In addition, to make the FDI attack
to be stealthy, there is a limitation on the generated adversarial
data. The perturbations added into the adversarial data during
each update process should be considered. The sum of the
generated xk should be close to the original normal data, and
this is same as Equation (3). That is to say, the perturbations
applied to the data should have a zero mean such that when a
value at any time slot has increased by a certain amount, there
must be other time slots that has values decreased by the same
amount. Thus, we use a method to project the perturbations onto
a hyper-plane of zero-mean. The perturbation of data during the
updating process is denoted as δ:

δ = ε× sign(∇xi,nL(xi,n)). (13)

where L() is the corresponding loss function in ensemble
or transfer stage. The zero-mean hyperplane consists all the
elements of v whose mean is zero and nT v = 0, and n is the
vector of all ones with the same length as v. Then, the normal
of the zero-mean hyperplane is n. Therefore, the projection of
the perturbations δ is done by:

δ0−mean = δ − δTn

||n||2
× n. (14)

δ0−mean is the modified perturbations that should be added
to the adversarial data at each updating process when moving
along the gradient directions that maximize the loss function.
Equations (10) and (12) now becomes:

xi+1 = xi + δ0−mean. (15)

Algorithm 1 shows the overall procedure for the ETAA to
generate adversarial data for the DR schemes. x0 is the initial
data and represents the normal demand values. After going
through k iterations of attacks, the final adversarial data is xk.

IV. RESULTS

The simulations of the attacks are conducted using real-life
data. The dataset used is synthesized from the Pecan street
dataset and is the same as the one used in [11], [17]. To further
examine the performance of the proposed ETAA method, 3
different black-box models are tested as FDI detectors. These
models are listed in the Table I under Detection Black-box
Models. The CNN-E is the same detector model in [17]. The
MLP-B and GRU-B are trained separately and have different
parameters and structures as compared to MLP and GRU used
in ensemble stage. Overall, 10000 normal data are randomly
sampled from the dataset and used as the input to the ETAA
method to generate the final adversarial FDI data. The existing
BIM and MIM methods are also implemented with various
single DL models to compare the results with ETAA.

1) Metrics: The first metric is the Attack Success Rate
(ASR). This is the percentage of generated attacked label data
that can bypass the detection of DL models among all data.
The formula is ASR = FN

n , where n=10000. A higher value
ASR means the attack is more successful. Another metric is
the difference of the sum of demand. Since we are using 10000
samples to generate the adversarial data, we use the average of
the 10000 differences, that is SDavg . This value should be as
small as possible to ensure there are no significant changes to
the total demand pattern and for the attack to be stealthy.

2) Attack Success Rate: The overall evaluation results are
shown in Table II. Each individual ensemble model and the
black-box models are used to make predictions on the gener-
ated adversarial data from BIM, MIM, ETAA with BIM, and
ETAA with MIM. It is obvious to see that the ETAA method
has improved the transferability of the adversarial attacks by
comparing the average ASR under ensemble models and black-
box models. The highest average ASR is 95.56% when using
our ETAA with BIM method for ensemble models, which shows
the generated adversarial data has reduced the gradient direction
gap and can fool the other DL models with higher probabilities.
The ETAA method not only performs well for the ensemble
models, it also obtains high ASR for these black-box models.
ETAA with BIM achieved the highest ASR of 82.69% for MLP-
B and 91.06% for GRU-B. It is also noted that ETAA with
MIM also performs well for GRU-B with a similar high ASR of
91.04%. Another point is that although the MIM method using
RBF mode obtains the highest ASR for CNN-E, the average
ASR for black-box is comparable to our ETAA method. These
results prove that the proposed ETAA method is able to improve
the attack transferability to the black-box attacks. The proposed
ensemble stage and transfer stage narrow the differences of
gradient directions between various DL models and thus the
transferability of generated adversarial data can be improved.

3) Difference in Sum of Demand: The simulation results
of the SDavg are also listed in Table II. The smallest
value is 11.84kW when using the ETAA with MIM, while
ETAA method with BIM also can get a similar value of
12.13kW. Therefore, the proposed ETAA method can generate
the adversarial data with the smallest changes to the total sum of
demand and it can help the adversarial data to be stealthy. There
are fewer changes to the total demand pattern. This result has
shown that the proposed zero-mean projection of perturbations
works successfully. It also shows that MIM method with RBF
model has larger SDavg than our ETAA method, even though
it has similar ASR results as our ETAA in black-box attacks.
Here we can see that the proposed ETAA method can generate
adversarial demand data with higher transferability and at the
same time maintains the data modifications to be as small as
possible to ensure the stealthiness of the attack.

V. CONCLUSION

Existing works have analyzed and executed attacks to fool DL
models in smart grids and specifically in DR applications. Most
of the gradient-based AML attacks can generate adversarial data
and use them directly to attack unseen black-box DL models
based on their transferability, but with limited success. To



TABLE II
THE ATTACK SUCCESS RATE AND SDavg UNDER DIFFERENT ATTACKS

Attack Success Rate (%) SDavg(kW )
Method Substitute Model Ensemble Models Black-box Models

CNN MLP RBF LSTM GRU Avg CNN-E MLP-B GRU-B Avg
CNN 69.72 19.33 16.97 35.45 34.00 35.09 19.44 25.38 27.85 24.22 43.33
MLP 14.83 44.10 16.45 24.00 23.38 24.55 12.21 24.27 22.43 19.64 56.84

BIM RBF 52.21 66.88 87.49 72.53 76.3 71.08 57.32 71.08 72.81 67.07 63.67
LSTM 22.12 15.8 11.94 64.86 31.76 29.30 7.32 18.99 30.41 25.01 234.17
GRU 23.13 22.62 20.43 45.38 58.52 34.02 17.01 32.51 32.61 32.10 192.66
CNN 99.39 11.72 8.52 36.70 33.17 37.90 13.27 14.93 26.53 18.24 55.91
MLP 11.53 58.32 14.05 25.52 22.92 26.47 9.15 19.68 22.42 17.08 35.09

MIM RBF 53.96 71.61 96.26 82.08 85.45 77.87 60.09 77.61 82.33 73.54 55.71
LSTM 28.50 22.86 22.03 95.19 67.21 47.16 11.69 30.96 60.89 34.51 346.09
GRU 29.07 23.35 22.07 79.16 98.88 50.51 12.02 35.73 60.41 36.05 353.33

ETAA with BIM - 96.38 93.35 94.65 96.69 96.75 95.56 41.87 82.69 91.06 71.87 12.13
ETAA with MIM - 95.67 91.15 91.90 96.72 96.54 94.39 46.84 82.28 91.04 73.38 11.84

Note: The highest ASR under each category like the different detection model and average value is made bold. ETAA method can have comparable ASR to
existing methods and can outperform the existing methods in attack transferability. The smallest SDavg is made bold. This value is smallest when using our

proposed ETAA with MIM gradient attack.

further improve the transferability of adversarial data, this paper
proposes the ETAA method. The proposed technique contains
two stages, the ensemble stage and transfer stage, where the
gradient information in different models is fetched and the
gap of gradient direction is reduced. Furthermore, zero-mean
projection is applied during the process to move data along the
gradient direction so that the final adversarial data has minimal
changes in the sum of demand data. Extensive evaluation has
shown that the ETAA method can improve the transferability
of adversarial data as compared to existing methods.
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