
A Reconfigurable and Secure Firmware Updating
Framework for Advanced Metering Infrastructure

Prosanta Gope
Department of Computer Science

The University of Sheffield, UK
p.gope@sheffield.ac.uk

Biplab Sikdar
Department of ECE

National University of Singapore
bsikdar@nus.edu.sg

Abstract—Smart meters play an important role in modern
power grids by providing fine-grained power consumption data
and enabling services such as dynamic pricing and demand-side
management. The smart metering devices are firmware-driven,
where it is important that the devices be able to securely update
their firmware on a regular basis to fix bugs, and improve as well
as add services. In this paper, we propose a new privacy-aware
secure firmware-updating framework called PRSUF (Privacy-
aware Reconfigurable Secure-Firmware Updating Framework)
to securely update the firmware in smart metering devices.
The proposed the framework allows a hardware intrinsic secret
to being updated and stored in a secure and efficient way.
One of its key differentiating features is that, unlike existing
mechanisms, the proposed scheme does not require storing any
keys in the meter’s non-volatile memory (NVM), thereby making
it is secure against a number of physical and side-channel
attacks. As compared to state-of-the-art solutions, the proposed
security framework has notable features such as reconfigurability,
protection against cloning and downgrading, detection of theft
of services and tampering with the firmware and the hardware,
etc.

Index Terms—Advanced metering infrastructure, Smart Meter,
Secure firmware update, Downgrading attack, Privacy.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) promises to usher
in a slew of new communications technologies centred on
industrial applications. IIoT-based smart grid (SG) technology,
in particular, is expected to play a key role in the next-
generation power grid system. The smart grid is an electrical
framework built on the Internet of Things (IoT) that integrates
information and communication technology (ICT) with bi-
directional intelligent systems across energy generation,
transmission, distribution, and consumption in order to create
a system that is sustainable, secure, dependable, robust, and
cost-effective. A key feature of smart grids is the integration of
two-way power flow along with communications and control
[2]-[4]. Intelligent two-way devices such as smart meters,
sensors, and actuators are used throughout a smart grid from
power production to consumption. As a critical infrastructure,
the smart grid and its components are immensely attractive
to adversaries. For instance, incidents of power outages in
Ukraine in December 2015 were directly triggered by cyber-
attacks, leaving thousands of people without electricity for
prolonged periods of time and causing enormous financial
losses. Other studies have highlighted the possibility of

catastrophic but feasible cyber-attacks on the power grids (e.g.,
the UK and US grids), which would lead to large scale power
outages and financial losses [1]. Therefore, it is essential to
examine existing vulnerabilities as well as any potential threats
to safety in the smart grid infrastructure and develop solutions
to mitigate them [11]. The Advanced Metering Infrastructure
(AMI) plays an important role in smart grids by providing
a real-time, two-way communication channel from the grid
operator to the consumer, thereby enabling services such as
dynamic pricing, demand-side management, etc. Usually, there
are two main components in the smart meter infrastructure:
the smart meter and a server operated by a service provider
or utility company. A smart meter is an electronic device
that collects and records various data from the consumer
premises, such as electricity consumption, voltage levels,
current, and power factor, which are then sent to the service
provider. The service provider uses a database server to store
data, issue bills, update prices dynamically, and use the data
to facilitate supply and demand management. However, the
communication between the smart meter and service provider
passes through the public Internet and wireless links and
provides adversaries opportunities to intercept, eavesdrop,
alter, and delete the messages, and then perform other serious
attacks such as impersonation, Denial of Service (DoS),
cloning, and tracking attacks.

A. Problem Statement and Motivation

The endpoints of AMI such as the smart meters are
particularly vulnerable to attacks due to their limited
computational capabilities and lack of sophisticated in-built
security features. The Internet connectivity of smart meters
can be exploited by attackers to discover new weaknesses
and exploit emerging vulnerabilities reported about specific
devices [4]. Smart meters are made up of a number of
electronic components, such as a network interface card
(NIC) and a micro-controller, which run firmware programs
that control, monitor, and process the data in the device.
Moreover, the firmware plays an important role in enabling
the implementation of higher layers (such as the drivers, user
interface, etc.). Vendors of smart meters periodically need
to develop and upgrade the firmware in order to address
discovered faults, enhance operation, and add new features to

Henning Schulzrinne
978-1-6654-3254-2/22/$31.00 ©2022 IEEE

the device. However, unauthorized modification of firmware
and its installation on vulnerable devices is a serious threat
[23], with numerous examples of real-world demonstrations
of attacks [24-26]. For example, dishonest users may try
to modify their devices to avoid payments and malicious
adversaries may push insecure firmware masquerading as
firmware upgrades [5]. While efforts have been made to
secure firmware updates, existing approaches have multiple
drawbacks (e.g., the use of a common key to encrypt different
firmware versions). In addition, the lack of awareness and
excessive downtime and overhead associated with installing
updates results in many smart-metering devices not receiving
firmware updates or security patches [10]. In order to address
the existing security issues associated with smart meter
firmware, we propose a privacy-aware reconfigurable secure-
firmware updating framework, called PRSUF, that can securely
bind a firmware with the smart meter’s unique, hardware-
intrinsic cryptographic key. The use of device-specific keys
tied to the hardware of the device protects against illegal
firmware upgrades. In order to prevent the downgrading of
firmware, when a new firmware version is distributed, the
proposed scheme reconfigures the PRSUF, which results in
a renewed hardware-intrinsic cryptographic key. With this
feature, the smart meter will not be able to run the previous
version of the firmware since the cryptographic key has
changed.

The rest of the paper is organized in the following way.
Section II provides a brief description of physically unclonable
functions (PUFs), fuzzy extractors, and the adversary model
considered in this paper. Section III presents the details of
the proposed PRSUF along with a protocol concept. Security
analysis of the proposed scheme is presented in Section IV.
Section V provides the implementation details and finally,
concluding remarks are given in Section VI.

II. BACKGROUND AND RELATED WORK

A. Physically Unclonable Functions

Physically Unclonable Functions are most often physical
circuits that map a binary input (i.e., a bit-string challenge) to
a single or multi-bit output, called the response [6-7]. PUFs are
based on exploiting the variations in the physical structure of
each integrated circuit that is caused during the manufacturing
process to create challenge-response mappings that are unique
to a particular integrated circuit. These micro-variations in
the physical structures allow strong entropy to be derived in
order to generate unpredictable challenge/response behaviour,
rather than through the use of a mathematical function. A PUF
can be denoted as R ← P(C) where R and C denote the
challenge and response, respectively. The goal of PUFs is to
enable strong security for authentication solutions that remain
lightweight for scenarios where cryptographic resources are
limited. Their assumed properties include being unclonable,
unpredictable, reliable, and tamper-evident. PUFs can be
divided into two types, Strong PUF and Weak PUF. This is not
a distinction of their security, but rather how many CRPs they
support. Weak PUFs support very few (or sometimes only one)

CRPs, making them useful for a key generation [7]. For strong
PUFs, the number of CRPs is significantly large that even
attackers can access, having throughout knowledge of CRPs is
impossible. In addition, since the strong PUF has a large set of
CRPs and they are randomly selected in usage, the probability
that the attacker has knowledge about the CRPs currently used
is even smaller [7]. According to the exponential amount of
CRPs explained above, the strong PUF is commonly used for
device authentication. With the property of random deviation
in manufacturing hardware, the strong PUF has an unclonable
physical structure designed to prevent an attacker from easily
modelling its behaviour. In this paper, we use a weak PUF for
our construction of the secure firmware updating framework.

B. Fuzzy Extractor

The operation of PUFs can be quite sensitive to
environmental and operating conditions, leading to a noisy
PUF output. For reliability in noisy PUF environments, a
fuzzy extractor (FE) may be used to eliminate of noise in
the PUF response [8-9]. The fuzzy extractor technique is
a tuple (M,Γ, t), where M represents a metric space, Γ
denotes the bit length of the input, and t is the error tolerance
threshold. This technique mainly includes two algorithms [41]:
a probabilistic generation function Gen(·) and a deterministic
reconstruction function Rec(·). The success of FE is based on
the similarity of the original and the noisy output of the PUF.

C. Security Objectives

We mainly consider five important security requirements,
i.e., forward unpredictability, backward unpredictability, non-
resettability, protection against downgrading attacks, and
privacy of the smart meters against any eavesdropping or
tractability attacks.

• Forward unpredictability: In case of forward
unpredictability, even if adversary A knows an adaptively
chosen set of input/output pairs of the PRSUF for any
previous state, A must not be able to predict the final
output key (K) and current state (S).

• Backward unpredictability: In case of backward
unpredictability, A must not be able to predict the output
key (K), and the state S for any previous state (before
reconfiguration), even if the adversary can adaptively
obtain input/output pairs for the current state of the
PRSUF.

• Privacy: Smart meters handle the private information of
their users. Hence, it is desirable that communication
between the server and the devices must be
anonymous/confidential. An eavesdropper should
not be able to identify the device and also should not be
able to trace the device.

• Non-resettability: It must be infeasible for an adversary
A to set the state of the PRSUF to the desired value.

• Protection against downgrading attacks: An adversary A
should not be able to downgrade the firmware (running
on a smart meter) to older versions and take advantage
of the previously available features with security holes.

TABLE I
COMPARISON

Properties [15] [16] [20] [21] [22] Ours
Unpredictability χ

√
χ

√ √ √

Privacy χ χ χ χ
√ √

Non-Resettability
√

χ
√ √

χ
√

Downgrading Attack Progression
√

χ χ
√

χ
√

Physical-Security of SM χ χ χ χ χ
√

• Other objectives: Apart from the security objectives listed
above, the proposed scheme also considers a few more
imperative security properties such as security against
impersonation or forgery attacks, cloning attacks, replay
attacks, etc.

D. Assumptions

First, it is assumed that a PRSUF instance is valid only for
a dedicated session of the execution of the secure firmware
update protocol, and it cannot be used in another session.
In our proposed reconfiguration protocol, all activities made
during the setup (i.e., enrollment) phase are assumed to
be unavailable to any adversary. Therefore, an adversary
can attempt to attack only during the reconfiguration phase.
Finally, we assume that a PUF is present in every smart
metering device, referred to as a system-on-chip (SoC). If the
PUF is disconnected from the smart metering device, it is
presumed to become useless and destroyed. Furthermore, we
also assume that the adversary may have physical access to the
smart meter and the proposed PRSUF construction. However,
any attempt to tamper with the integrated PUF, or any changes
to the device’s function, renders it worthless.

E. Related Work

The use of PUFs has been explored in literature in the
context of several security objectives. These include PUF-
based solutions for authentication, firmware attestation, data
provenance, as well as data integrity [11-14]. A traffic-aware
firmware update mechanism for mobile IoT environments is
proposed in [17] and is aimed at controlling the spread of
malware. The mechanism relies on intermediate nodes for
firmware updates and has high time complexity. There exists
a large body of work on detecting attacks in IoT networks
(see [18] for a survey), such as the one in [19], which
uses a machine-learning-based model to detect such attacks.
However, these mechanisms are not secure against physical
attacks on the devices. Finally, analytic frameworks for
patching have been proposed in the literature, such as in [20].
However, such techniques are based on the frequent exchange
of update messages, which is not always practical. In the
context of firmware updates for smart meters, a safe firmware
update technique for devices connected to an alternating
current network is proposed in [15] to avoid malicious
firmware upgrades. In their scheme, a pre-defined sequence of
variations in base frequency opens an update window in which
devices receive firmware update requests. In [16], the authors
described a technique for remote firmware updating for devices

Fig. 1. Smart metering infrastructure.

in AMI networks and introduced firmware update management
and network service management systems. Likewise, [21]
provided an example of how to perform a remote firmware
update over the AMI network. In [22], the authors introduced
a new smart meter firmware update mechanism using random
linear network coding and attribute-based signcryption (CP-
ABSC). To the best of our knowledge, this paper is the
first that combines privacy, reconfigurability, and security
in designing a reliable firmware update protocol for smart-
metering infrastructure (as shown in Table 1).

III. PROPOSED SCHEME

In this section, we first present the proposed reconfigurable
secure-firmware updating framework and subsequently, we
introduce a protocol to show how the proposed PRSUF can
be applied in practice.

A. System Model

The system model considered in this paper is shown
in Fig. 1, and consists of three major entities: a server
operated by a utility service provider (USP), a group of
home area networks (HANs), and smart meters (SMs). Border
router elements connect smart-metering devices to the verifier
over the Advanced Metering Infrastructure (e.g., based on
6LoWPAN and ZigBee).

B. PRSUF Construction

We now introduce a reconfigurable construction of a secure-
firmware updating framework (as shown in Fig. 2), which is
the underlying foundation of the proposed protocol (presented
in Section III.B). The proposed construction consists of five
major components: a control logic circuit and a conventional
weak PUF (such as static random-access memory (SRAM)
PUF), fuzzy extractor, two non-volatile memories (NVMs),
and a one-way collusion-resistant hash function. The control
logic circuit consists of a dedicated function: Recon(·). To
change the settings of the PRSUF, the circuit uses the

Fig. 2. PRSUF: Reconfigurable firmware updating framework.

Recon(·) function for reconfiguring its current state S to
a new independent random state S

′ ← Recon(S) (when
required), and this state (S

′
) is then maintained in a secure

private NVM (non-volatile memory) of the device. The error
correction on the noisy PUF output R is performed by using
a Fuzzy Extractor (FE) and helper data stored in a public
NVM. Next, the output of the FE and the current state is
used to generate a secret round key (K) through a one-way
collusion-resistant hash function, which is only valid for a
specific round. The secret round key is used to encrypt/decrypt
the new version of the firmware with instructions or patches.
During the execution of the secure firmware update protocol
(described in Section III.B), the Recon(·) function is called to
update the PRSUF’s state and reconfigure it, i.e., S

′ ← h(S).
The function (Recon(·) and the one-way collusion-resistant
hash function h(·)) are publicly known (e.g., well-known hash
functions). An adversary A will not be able to control or
change the state to a value of its choice. Details related to
the construction of the proposed PRSUF are depicted in Fig.
2 and the implementation details of PRSUF are presented in
Section V.

C. Secure Firmware Updating Protocol for the Smart-
metering Devices

This section presents the details of the operation of the
proposed PRSUF and describes how it can be applied at the
protocol level to securely update firmware for smart meters.
The proposed protocol consists of two phases: Setup Phase
and Reconfiguration Phase.

1) Setup Phase: A client/customer first needs to register
its smart meter through a predefined setup phase, before
it is used in the field. In the setup phase of the protocol,
the smart meter Mx first sends a request message
with its unique identity, i.e., Set1 : {Regreq ,Mx} to
the server. After receiving message Set1, the server
generates an initial state S0 and a random number τ ,
and then derives the first state S1 = h(Mx ||S0) and
the first secret round key K1 = h(Mx ||S1). Then, the

server encrypts the first version of the firmware swv1
using the secret key K1, i.e., ∆ = EK1 [swv1] and
also generates a one-time temporary identity TID1 =
h(τ ||Mx ||mk), where mk denotes the master key of
the server. Finally, the server composes a message
Set2 : {S0 ,TID1 ,∆}, sends it to the device through
a secure channel, and also stores {Dx , S1,TID

1} in
its database for further communication. Upon receiving
message Set2, the smart-meter generates the first state
S1 = h(Mx ||S0) and a random challenge C . Then,
the smart meter extracts the PUF output R ← PM (C)
and then derives the helper data w = FE.Gen(R,Mx).
Finally, the device stores {w,TID1 ,∆} in its public
NVM and also stores {S1, C} in its private NVM. Now,
the smart meter can decrypt ∆ using the secret round
key K1 and install the firmware swv1.

2) Reconfiguration (Firmware Updating) Phase: In order
to upgrade the firmware from swvi to swvi+1, the system
needs to be completely reconfigured for the usage of a
new key by executing the reconfiguration protocol (as
shown in Fig. 4). In this regard, both the smart meter
and the server need to update the shared secret round
key from the previous round (i.e., Ki) to Ki+1. This
phase of the protocol consists of the following steps.
Step #1: The client/consumer who wants to upgrade
the firmware running on its smart meter forms a update
request message, i.e., MSG1 : {Requp,TID i} and then
sends MSG1 to the server.
Step #2: Upon receiving message MSG1, the server
first checks the one-time temporary identity TID i in
its database and if the sever cannot finds TID i , then
it aborts the execution of the protocol. Otherwise, the
server loads the current state Si in its memory and
computes Ki = h(Dx ||Si). Then, the server creates a
“Rcnf ” message and encrypts the message using Ki .
Next, the sever derives σi = h(∆i||Ki) and composes a
response message MSG2 : {∆i = EKi

[Rcnf], σi} and
sends it to the smart meter.
Step #3: After receiving message MSG2, the smart
meter first loads the challenge C in its memory from
the private NVM and then extracts the noisy PUF output
R

′
= PM (C) and derives its id Mx = FR.Rec(R

′
,w)

and the secret round key Ki = h(Mx ||Si). Then,
the smart meter verifies the parameter σi. If the
verification is successful, then the device decrypts
∆i and obtains the “Rcnf ” message. Subsequently, it
generates a “Rconf_ok” message and reconfigures the
current state Si to Si+1 = h(Si), and computes
Ki+1 = h(Mx ||Si+1), EKi+1

[Rcnf_ok], and σi+1 =
h(EKi+1

(Rcnf_ok)||Ki+1). Finally, the device composes
a message MSG3 : {EKi+1

[Rcnf_ok], σi+1} and sends it
to the sever.
Step #4: Upon receiving message MSG3 from the smart
meter, the server reconfigures Si using Si+1 = h(Si)
and generates the new shared round key Ki+1 =
h(Mx ||Si+1). Then, the server decrypts EKi+1

[Rcnf_ok],

Fig. 3. Reconfiguration phase of the proposed secure firmware updating protocol.

and checks the response. If the server successfully
validates the response, then the server uses the updated
key Ki+1 to encrypt the new version of the firmware
with instructions or patches, i.e., EKi+1 [swvi+1] and also
derives ψ = h(EKi+1

[swvi+1]||Ki+1) and TID i+1 =
h(TID i ||Ki+1). Next, the sever composes a message
MSG4 : {EKi+1

[swvi+1], ψ} and sends it to the smart
meter through the Internet. Subsequently, it replaces
TID i with TID i+1 and Si with Si+1 .
Step #5: After receiving message MSG4, the smart
meter first checks ψ (in order to validate the integrity of
the message). If the smart meter validates the parameter
ψ successfully, then it decrypts EKi+1

[swvi+1] and runs
the updated version of the firmware. Finally, the device
reconfigures its identity TID i+1 = h(TID i ||Ki+1) and
updates TID i with TID i+1 and Si with Si+1 .

IV. SECURITY EVALUATION

This section analyzes the security of our proposed scheme.
In this regard, we show our PRSUF construction (the
underlying foundation of the proposed firmware updating
protocol) is secure, and for that, we define an unpredictability
game.

A. Unpredictability Property of PRSUF

The unpredictable behaviour of a PRSUF is defined by a
game between an adversary A and a challenger C, which
is a desirable imperative quality to provide security against
any known attacks (such as man-in-the-middle attacks or
impersonation attacks).
Setup: Challenger C issues a PRSUF to adversary A.
Queries: A queries the PRSUF Φ times using challenges αi

(where 1 ≤ i ≤ Φ) and receives the PUF output βi (βi ←
PRSUFM (αi)).

Output: At the end of the game, A outputs a CRP pair
(α∗, β∗).

We say A wins the game if he/she can output a valid
PUF response β∗. Otherwise, the behavior of the PUF is
unpredictable and no polynomial adversary can predict the
PUF output with significant success probability.

Definition 1. A PUF is said to be (q, ϵ)-unpredictable if
there is no ppt (probabilistic polynomial time) adversary A
that issues at most q queries to the PRSUF and can win the
game with probability greater than ϵ.

Backward and Forward Unpredictability: Next, we define
backward- and forward-unpredictability of a PRSUF in terms
of a two-stage game between an adversary A and a challenger
C. In the first stage, A is given oracle access (i.e., access
to the interface) of the PRSUF, from which A can obtain
challenge/response pairs (CRPs) at will. This stage models the
ability of A to obtain challenges and responses (with respect
to a fixed internal PRSUF state) by passive eavesdropping.
We also give A access to the internal PRSUF state in order to
model hardware attacks against the PRSUF implementation.
Once A has learned enough CRPs, the challenger performs
the reconfiguration operation and finally gives A oracle access
to the reconfigured PRSUF such that A can obtain CRPs of
the reconfigured PRSUF. At the end of the game, A needs to
output a non-trivial CRP (α#, β#).

More formally, A = ((A§,A†)) consists of two probabilistic
polynomial time algorithms, where A§ interacts with the PUF
before reconfiguration and A† thereafter. A engages in the
following experiment:

Setup: The adversary A = (A§,A†) is given an arbitrary
state ς of the PRSUF by the challenger C who sets up an
PRSUF. Then, in Phase 1, A§ queries the PRSUF up to qx

times and at the end of this phase, A§ stops and outputs to
the log file F that is used as input to A†.

Reconfiguration: Now, the challenger C resets the PRSUF,
which updates its internal state to ς∗. Then, in Phase II, A†
is initialized with state ς∗ and the log file F from A§. Now,
A† is allowed to query the reset PRSUF up to qy times.

Outputs: At the end of the game, A† outputs a non-trivial
CRP (α#, β#) of the PRSUF.

We say that A wins the forward-unpredictability game if β#

is a valid PRSUF response to query α# that was not included
in the qy queries. Therefore, with this unpredictability, once
the PRSUF is reset, the adversary cannot output a valid CRP
for the reset PRSUF. On the other hand, we say that A
wins the backward-unpredictability game if β# is a non-
trivial (valid) PRSUF output to the query α# that was not
part of the qx queries. This unpredictability implies that
an adversary with access to the PRSUF will not be able
to predict a valid response of the PRSUF before the reset
happened. Accordingly, a PRSUF is backward (or forward)
unpredictable, when there is no PPT adversary A that can
win the game with significant success probability.

Definition 2. A PRSUF is said to be a (qx , qy , ε)-secure
backward and forward unpredictable PUF if there is no PPT
adversary A who makes at most qx queries in Phase 1 and at
most qy queries in Phase II, is able to win the above backward
and forward unpredictability game with probability greater
than ε.

B. Security Analysis

Using the security model that was previously mentioned,
we present a security analysis of the suggested PRSUF
architecture in this section.

Theorem 1: The proposed reconfigurable construction
can ensure forward and backward unpredictability, if the
underlying PhysicalFunction(PUF) is a (Φ, ϵ)-unpredictable
PUF and h is a secure one-way collision-resistant hash
functions.

Proof. To prove this theorem, we use the above backward
and forward unpredictability game, where an adversary A is
allowed to access of the PRSUF attached with the device and
to obtain a set of CRPs from that. Assume that A = (A§,A†)
breaks the backward-and forward unpredictability of the
PRSUF with non-negligible probability. We now construct an
adversary B that breaks the unpredictability of the underlying
physical PRSUF with the same success probability as A. B
selects an arbitrary state ς of the PRSUF then passes it to
A§ and executes a black-box simulation of the challenger C
of the backward and forward unpredictability game (shown
in Theorem 1). Now, for a challenge αj received from A§,
B queries the PRSUF and stores (αj , βj) in a log file F
and forwards βj to A§. At some point, A§ stops and outputs
some log file F∗. After that, B changes the PRSUF state
to ς∗ for resetting the configuration of the PRSUF. Next, B
initializes A† with state ς∗ and log file F∗ and continues to
simulate C. Now, when A† sends a challenge αj , B queries

Fig. 4. Example of the proposed PRSUF architecture.

TABLE II
IMPLEMENTATION COST ESTIMATE FOR PRSUF IN GATE EQUIVALENT

(GE)

Component Cost Estimate Comments
PUF 14,743 GE SRAM-PUF

Private NVM 1,367 GE 256-bit 2T MTP NVM
Public NVM - EEPROM

FE 7,456 GE BCH Encoding
Control logic 4,635 GE MUXing, I/O, etc.

Hashing 23,780 GE SHA-256
Encryption/Decryption 12,315 GE 128-bit AES-CBC mode

Fuses 156 GE 2T OTP anti-fuses

the PRSUF and stores (αj , βj) in a log file F and forwards
βj to A†. Finally, A† stops and outputs a CRP (α#, β#) of
the PRSUF. Since B has never queried α# to the PRSUF,
this contradicts the unpredictability property of the PRSUF.
Hence, the success probability of B is similar as A. As
mentioned before, the security of the proposed scheme is
based on the unpredictability property of the PRSUF, where an
adversary should not be able to predict any PUF response for
a given challenge. Therefore, no adversary can differentiate
the encoded PRSUF outputs such as X = β2†

i ⊕ ki and
β∗
i+1 = βi+1⊕ki from a randomly chosen string. Hence,

our proposed authentication scheme is secure against under
unpredictability game. ■

V. IMPLEMENTATION DETAILS AND COST EVALUATION

In order to estimate the number of resources required
for the implementation of the proposed PRSUF framework,
we consider an example design architecture of the proposed
PRSUF (as shown in Fig. 4). Based on our design, the
following components are required:

• PUF: SRAM memory (2 MB)
• Fuzzy Extractor: Golay(24, 12, 8) code (for constructing

the device’s ID Dx)
• Public NVM: Assumed to be an electrically erasable

programmable read-only memory (EEPROM), external to
the SoC embedding the PRSUF, for storing helper data (2
MB). The size of the public-NVM needs to be the same
as that of the SRAM.

• Private NVM: 256 bits 2T multi-time programmable
(MTP) private NVM (also known as logic NVM) to store
the state.

• Hashing Functionality: We use the collision-resistant
SHA-256 algorithm.

• Encryption/Decryption: AES-CBC 128-bit has been
used for the required encryption/decryption in PRSUF.

• Fuses: Here, we use one-time programmable fuses to
manage (disable or enable based on the requirement) the
data and control paths associated with enrollment.

Table II shows the estimated cost of implementing the
proposed PRSUF construction, where, for each component
of the PRSUF, an area estimation in Gate Equivalent (GE)
has been considered. From Table II, we can see that as
compared to a conventional PUF implementation (such as
SRAM PUF, which is still vulnerable to downgrading attacks),
PRSUF incurs some additional resource costs (in terms of
NVMs, hashing, etc.), which is acceptable for protection
against downgrading attacks. In this regard, the proposed
PRSUF framework is reconfigured with the new version of
the firmware, where the result of each reconfiguration process
is an unpredictable secret key K . Updating the key on a regular
basis also provides protection against any older version of
the firmware from being run on the device. Furthermore, if
we assume that the attacker has knowledge of a previously
valid state, it will still be difficult for an adversary to
write any arbitrary data to the NVM due to the presence
of a hash function in the NVM write path. However, this
mechanism does not prevent an attacker from attempting to
use a previously known state Si−1 in order to write Si into
the NVM. The proposed PRSUF construction can prevent
such attacks by disabling the external NVM write path after
enrollment (as shown in Section V). Besides, the proposed
PRSUF framework can guarantee security against cloning
attacks, which involves extracting the secret from a targeted
smart metering device and copying it to form a clone. In
the case of PRSUF, the secret state is stored in the private
NVM and the underlying PUF is unclonable. Hence, it will
be difficult for an attacker to obtain the secret state and also
to replicate the PUF responses in the cloned system. Finally,
since the smart-meter uses a different temporary id (TID) in
each session that helps to preserve privacy of the system.

VI. CONCLUSION

In this paper, we presented a reconfigurable firmware
updating framework for smart meters that base its security on
a combination of the physical properties of a PUF and secret
state information stored in a private NVM. From the analyses,
it can be argued that the proposed construction is secure
against some of the imperative attacks such as man-in-middle,
cloning, and downgrading attacks. Although the proposed
construction requires a little more additional resources as
compared to traditional PUFs, we believe that this cost is
acceptable for the sake of security and new functionalities.

REFERENCES

[1] E. Oughton et al., “Stochastic counterfactual risk analysis for
the vulnerability assessment of cyber-physical attacks on electricity
distribution infrastructure networks,” Risk Analysis, vol. 39, no. 9,
pp.2012-2031, 2019.

[2] Q. Yang et al., “Advanced power electronic conversion and control
system for universal and flexible power management” IEEE Trans. Smart
Grid, vol. 2, pp. 231-243, Jun. 2011.

[3] P. McDaniel and S. McLaughlin, "Security and privacy challenges in
the smart grid", IEEE Security Privacy, vol. 7, no. 3, pp. 75-77.

[4] A. Spadafora, “Smart-metering Devices Still Major Target for
Cyberattacks.”

[5] L. Ilascu, “When their firmware is vulnerable, its up to you to protect
your smart devices,” Accessed: 5 May 2019.

[6] P. Gope, and B. Sikdar, "A Comparative Study of Design Paradigms
for PUF-based Security Protocols for IoT Devices: Current Progress,
Challenges and Future Expectation," IEEE Computer Magazine, DOI:
10.1109/MC.2021.3067462, 2021.

[7] P. Gope, and B. Sikdar, "A Privacy-Aware Reconfigurable Authenticated
Key Exchange Scheme for Secure Communication in Smart Grids,"
IEEE Transactions on Smart Grid, DOI: 10.1109/TSG.2021.3106105,
2021.

[8] Y. Dodis et al., “ Fuzzy extractors: How to generate strong kesy
from biometrics and other noisy data.” In Advances in Cryptology -
EUROCRYPT ’2004, Lecture Notes in Computer Science. Springer-
Verlag, Berlin Germany, 2004.

[9] C. B¨osch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls.
Efficient helper data key extractor on fpgas. In Proceedings of CHES,
pages 181–197, 2008.

[10] S. Cheng, et al., “Traffic-Aware Patchin for Cyber Security in Mobile
IoT,” in IEEE Communications Magazine, vol. 55, no. 7, pp. 29-35, July
2017.

[11] P. Gope and B. Sikdar, “Lightweight and Privacy-Preserving Two-Factor
Authentication Scheme for IoT Devices,” in IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 580-589, January 2019.

[12] X. Li et. al., “A Robust ECC-Based Provable Secure Authentication
Protocol With Privacy Preserving for Industrial Internet of Things,” in
IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3599-3609, August 2018.

[13] M. Aman et al., “HAtt: Hybrid Remote Attestation for the Internet of
Things with High Availability,” in IEEE Internet of Things Journal, vol.
7, no. 8, pp. 7220-7233, August 2020.

[14] J. Kong, et al. “PUFatt: Embedded platform attestation based on novel
processor-based PUFs,” in Proc. ACM/EDAC/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 2014, pp. 1-6.

[15] L. Katzir and I. Schwartzman, “Secure firmware updates for smart grid
devices," in Innovative Smart Grid Technologies (ISGT Europe), pp. 1-
5., 2011.

[16] Y.-j. Kim et al., “A remote firmware upgrade method of nan and han
devices to support amis energy services,” in International Conference
on Hybrid Information Technology, pp. 303-310, 2017

[17] S. Cheng et al., “Traffic-Aware Patching for Cyber Security in Mobile
IoT,” in IEEE Commun. Magazine, vol. 55, no. 7, pp. 29-35, July 2017.

[18] Q. D. Ngo, et al. “A survey of IoT malware and detection methods based
on static features,” in ICT Express, vol. 6, no. 4, pp.280-286, 2020.

[19] N. Guizani and A. Ghafoor, “A Network Function Virtualization System
for Detecting Malware in Large IoT Based Networks,” in IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp. 1218-1228, June 2020.

[20] M. Vojnovic and A. J. Ganesh, “On the race of worms, alerts, and
patches,” in IEEE/ACM Trans. Netw., vol. 16, no. 5, pp. 1066-1079,
October 2008.

[21] J. Simmins, “Remote meter firmware update,” in American Electric
Power, Use Case Document, 2011.

[22] S. Tonyal et al., “An Attribute & Network Coding-based Secure
Multicast Protocol for Firmware Updates in Smart Grid AMI Networks,”
in Computer Communications Workshops (INFOCOM WKSHPS), pp.
97-102, 2018.

[23] A. Qasem et al., “Automatic vulnerability detection in embedded
devices and firmware: survey and layered taxonomies,” ACM Computing
Surveys, vol. 54, no. 2, pp. 1-42, 2021.

[24] C. Konstantinou and M. Maniatakos, “Impact of firmware modification
attacks on power systems field devices,” Proc. IEEE SmartGridComm,
pp. 283-288, Miami, FL, November 2015.

[25] A. Khattak, et al., “Smart meter security: Vulnerabilities, threat impacts,
and countermeasures,” Proc. International Conference on Ubiquitous
Information Management and Communication, pp. 554-562, Phuket,
Thailand, January 2019.

[26] P. Gope, et al., "QR-PUF: Design and Implementation of A RFID-based
Secure Inpatient Management System Using XOR-Arbiter-PUF and
QR-Code," IEEE Transactions on Network Science and Engineering,
DOI:10.1109/TNSE.2022.3186478, 2022.

