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Abstract—Distributed demand response (DR) is used in smart
grids to allow utilities to balance the power supply with the
demand by modulating the consumer’s behavior by varying the
price according to consumption patterns and forecasts. False data
injection (FDI) attacks of DR can cause large economical losses for
utilities, equipment damage, and issues with power flows. Recently,
FDI attack detection methods based on deep learning models
have been proposed and these methods have better detection
performance as compared to traditional approaches. However,
deep learning based models may be vulnerable to adversarial
machine learning (AML) attacks. In this paper, we demonstrate
the vulnerability of state-of-the-art deep learning based FDI attack
detectors in DR scenarios to AML attacks. We propose a new
black-box FDI attack framework to fabricate power demands in
distributed DR scenarios that is capable of deceiving deep learning
based FDI attack detection. The evaluation results show that the
proposed AML framework can significantly decrease the FDI
detection models accuracy and outperforms other AML techniques
proposed in literature.

Index Terms—Smart grid, demand response, false data injection,
deep learning.

I. INTRODUCTION

With the rapid development and integration of information
and communication techniques, traditional power grids have
transformed into smart grids. Smart grids contain heterogeneous
components such as sensors, meters, and actuators to make
it more intelligent, efficient, and distributed. To achieve cost
effective power supply in smart grids, demand response (DR)
schemes have been proposed and developed. In such schemes,
utility companies drive consumer to change their power usage
based on the supply by providing them with financial con-
siderations, using schemes such as Day Ahead Pricing, Real-
Time Pricing and Time of Use rates [1]. DR schemes also help
users to have more control on decisions related to their power
consumption and to reduce the electricity bill by decreasing
usage during peak times. Moreover, with the reduced total peak
demands, utility companies can maintain and operate the grid
system with lower costs and utilize the grid better [2].

While DR has many advantages, its reliance on communi-
cation with smart meter makes it vulnerable to cyber attacks.
For example, attackers can launch false data injection (FDI)
attacks on the DR by injecting data, compromising transmission
signals, or hacking meter devices to cause incorrect power
flows, physical damage to the grid, insufficient generation, or
to gain monetary benefits [3], [4]. Therefore, FDI detection is a
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necessary component for reliable DR schemes. In recent years,
researches have shown that deep learning (DL) techniques may
be used to detect FDI attacks in smart grids [5]-[9]. However,
studies have shown that DL models are vulnerable to adversarial
machine learning (AML) [10]. In AML attacks, perturbations
are added to the input data of the DL model to deceive it into
making false predictions.

This paper explores AML against DL based FDI detection
methods, especially in distributed DR schemes. The objective of
the paper is to critically evaluate such attacks and demonstrate
the vulnerabilities of existing systems. In the overall scenario
considered in this paper, the adversary performs FDI attacks
by modifying the power consumption data and defenders use
DL-based models to detect the FDI attacks. We propose a
Simple Iterative FDI Attack framework that is capable for
breaching state-of-the-art DL based FDI attacks and highlight
the vulnerabilities of existing FDI detection techniques. The
main contributions of this paper are as follows:

e We show the vulnerabilities of state-of-the-art DL-based
models for FDI attack detection in distributed DR schemes,
where attackers are able to bypass the detection mecha-
nism.

o We propose the Simple Iterative FDI Attack framework
which is a black-box method to modify the power con-
sumption data which can bypass state-of-the-art DL-based
FDI attack detection mechanisms with high probability.

o We analyze the performance of well-known AML algo-
rithms against distributed DR schemes using both white-
box and black-box methods.

The rest of the paper is organized as follows. Section II
describes the related work on distributed DR schemes, DL
models, and AML attack. Section III shows the details of
attack models and presents the proposed Simple Iterative FDI
Attack framework. Section IV presents the simulation results
and finally, Section V concludes the paper.

II. RELATED WORK
A. Distributed Demand Response Schemes

Distributed DR schemes are aimed at increasing the effec-
tiveness and efficiency of power grids by helping to maintain
the balance between supply and demand. DR mechanisms
achieve this balance by using time-varying pricing to change the
power consumption patterns of users. Since manual response to
dynamically changing price incentives is inconvenient for users,
distributed DR schemes implement a combination of home
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energy management system (HEMS) and advanced metering
infrastructure (AMI) to assist users. The HEMS automatically
performs the optimization process for users to decide the best
schedule of electricity consumption, while satisfying the power
requirement and lowering the overall cost [11], [12]. Within
the distributed DR scheme, individual users have their own
cost function to minimize their bill or to maximize the power
consumption. Due to privacy concerns related to collection of
individual demands [13], utility companies usually do not get
the power demand directly. Instead, a trusted and independent
aggregator is used that is positioned between users and utility
companies. Utility companies adjust the power supply and unit
price based on the aggregated demand forecasts of residential
users. Figure 1 shows the communication process of distributed
DR schemes. At a specific period before the electricity usage
(e.g., a day), the utility company sends an initial unit price to
users. HEMS uses predefined settings like application starting
time, running duration, and the initial unit price to schedule the
households consumption. The individual demand forecasts from
residents are then sent to the aggregator. Next, the aggregator
combines all the forecasts and sends the total demand forecast
to the utility company. After receiving the cumulative demand
forecasts, the utility company adjusts the unit price according
to its own optimization function and sends the new unit price
back to users. This process is repeated until both users and
utility company achieve their optimization goals.

As shown in [3], FDI attacks on power demands can lead to
false peak consumptions at specific time slots, causing them
to have high unit price. Then, other users will adjust their
applications demand away from the slot. As a result, there is
low real demand during the attacked time slot and the attacker
can enjoy a lower unit price during this time slot.

B. Deep Learning Models

Deep learning techniques use neural networks to learn multi-
ple representations of the underlying patterns in the data. While
its applications originated in the image and computer vision
field, they are now widely considered in power systems. The
use of DL methods for load forecasting has been explored in
[14]. In [15], an IoT-based DL system is introduced which
considers the influences of environmental factors. DL-based
architectures are proposed in [16] and [17] to detect and classify
power quality disturbances, while [18] focus on identification
of compromised devices in smart grids. As for the FDI attacks,

[9], [10], [19] focus on detecting stealthy and covert attack.
However, these papers focus on FDI attack detection for state
estimations and the monitoring of grid power flows. The existing
work on DL-based FDI attack detection in power demand
applications such as distributed DR schemes is limited. In
[20], a convolutional neural network (CNN) is used to detect
FDI attacks in distributed DR schemes and their results show
successful detection of FDI attacks with higher accuracy.

C. Adversarial Machine Learning

AML was introduced in 2013 [21] to work against neural
networks used in computer vision. Subsequently, AML meth-
ods have been widely researched. Fast Gradient Sign Method
(FGSM) [22], Fast Gradient Value (FGV) [23], and DeepFool
[24] are the state-of-art AML algorithms. There are some
existing studies that have considered AML in power system
DL applications. The authors of [25] discuss the vulnerabilities
of DL applications in power system. In [26], adversarial DL
against power state estimation using Saliency Map Attack is
explored while [27] exploited vulnerabilities in load forecasting
based on historical data.

To the best of our knowledge, there is no existing research
on AML against FDI attack detection in DR applications.
Therefore, to fill the research gap, this paper focuses on AML
attacks against the FDI attack detection model in distributed DR
schemes. The state-of-the-art CNN model from [20] is selected
as the attack target because it is the latest and best FDI detection
method for distributed DR applications.

III. ATTACK MODEL
A. FDI Attack

Consider the same scenario as in [20], one whole day is
divided into 48 time slots of each 30 minutes. The attacker
aims to increase the demand power in some time slot to project
a fake peak demand. The adversary may do it for its own
personal monetary gains or to cause damage, inefficiency, or
losses in the power grid. Let the normal aggregated demand
forecasts be D = [dy,ds, - ,d,] and n = 48. After the FDI
attack, we have D = [d},d}, e ,dAn]- Under a targeted FDI
attacker, the adversary has a specific time slot as the target,
e.g., to increase the values for 30th time slot, in which case
the desired d;o should be larger than dsp. Under a non-targeted
FDI attack, there is no specific time slot and the demand value
may be increased at random time slot ¢, and therefore ciz- is
larger than d;. A successful FDI attack should increase the peak
value at any time slot by at least 0.1% of the daily aggregated
demands. CNN-based models are good to use in time series
data classification [28] and therefore could be use in distributed
DR schemes to detect the FDI attack. The fy is the detection
model and fy(D) is the prediction. Therefore, the FDI attack
aims to achieve false negative evasions while obtaining higher
values of D. The attack may be modeled as:

mazx D (1
subject to : fg([)) = normal. 2)



B. AML Methods

AML methods usually compute the gradient of targeted
label’s loss with respect to input for a given DL model and
thereafter to update the input, resulting in a misclassification.
For distributed DR schemes considered in this paper, the CNN-
based model is used for FDI detection. Therefore, this model
may be deceived by AML methods such as FGV [23], FGSM
[22], and DeepFool [24].

1) FGV: This method is a one-step update to the input which
calculates the gradients of the loss with respect to the input and
maximize the loss. This update can be expressed as

D':D+6XVDL(f9(D),Y). 3)

In our case, D is the vector of demand values, Y is the label
(attack or no attack), L is the loss function, and € is a constant
to control the size of the update. The final result D’ is the
adversarial data which may lead fy to give wrong classification.

2) FGSM: This method is similar to the FGV method, except
that it uses the sign of the gradients:

D' =D +ex sign(VpL(fo(D),Y)). )

3) DeepFool: DeepFool is an iterative method which keeps
updating the input until the input is slightly beyond the hy-
perplane of classification. Considering the FDI attack in dis-
tributed DR schemes, the large peak values of D will decrease
continuously until it is predicted as normal (no attack) by the
CNN-based FDI detection model. The following expression is
processed repeatedly until a “normal” label Y is achieved:

p=p- D) 7 X VLD Y).

IVpL(fs(D),Y)

In general, adversarial attacks can be of two types: white-
box and black-box. In the white-box attack case, the adversary
knows everything about the model being attacked. Therefore,
the adversarial data are generated from a pre-trained model
which is exactly the same as the model f. In the black-
box attack case, the adversary has no knowledge about the
detection model and needs to create its own pre-trained model
/. In the context of this paper, a black-box case refers to
the scenario where the adversary has no knowledge about the
original model f but can access to the training dataset for that
model. Therefore, it is possible for the adversary to generate a
f' which has similar prediction performances and to generate
the adversarial data D.

C. Simple Iterative FDI Attack framework

From results reported in existing literature, it is known that
iterative AML methods like DeepFool can generate perfect
adversarial data but they have low transferability. This is be-
cause these methods have a repeated process to obtain the
adversarial samples and stop immediately when the samples
are misclassified by a given model. Therefore the samples
are unique to a given model and the transferability are low.
Moreover, the AML methods like FGV and FGSM which
use a single step to modify the input by using the gradient
descent algorithm to find the adversarial directions that can
lead to misclassifications seem to have better transferability

among different models. To achieve better transferability while
performing a black-box FDI attack detection in DR applications,
we propose the Simple Iterative FDI Attack (SIFA).

With the objective to generate FDI samples against the
distributed DR scheme, the values in the demand forecast D
should be as large as possible and should follow the constraints
in Equation (2). Therefore, the SIFA method uses the normal
demand forecasts as inputs and the perturbations that are
computed using the pre-trained model fy are added to the
inputs to produce adversarial FDI demands. The SIFA method is
proposed under the assumption that the attacker has the access
to the historical demand forecasts to retrieve the normal demand
values. The generated samples should be able to bypass the
DL model-based detection techniques in order to successfully
execute a FDI attack against the DR scheme. The general
process of the SIFA method can be expressed as:

o Obtain pre-trained model fy (black-box/ white-box).

o Compute a perturbation pert using the pre-trained model.

o Obtain adversarial FDI demand D, = D + pert.

e D, should bypass the detection model fq: fq(D,) =

normal

o The overall idea can be modeled as:

maz: D, (6)
subject to : fy(D,) = normal. (7

The proposed SIFA method also uses the gradient descent
algorithm to find the direction that can lead to misclassifications
by updating the samples in the same direction of the gradient
descent. However, we make this process to be repeated. The
gradient g of the loss function with respect to the input D is
obtained by ¢ = VpL(fo(D),Y) where fy is the pre-trained
model and Y is the label corresponding to “attack”. Normally,
the single-step FGV directly uses this gradient to obtain the
small perturbations pert = € X g and e controls the extent of
the modifications. However, this is a single step to update the
values in D and the changes along the gradient direction may
not be big enough for a model to make a misclassification.
Therefore, to further modify the D, we propose to compute it
iteratively using:

Dk+1 :Dk+€vakL(f9(Dk)?Y) (8)

In this way, D keeps changing its values in the direction of
gradient of the loss and it moves further away from the original
label after many steps. Moreover, in order to avoid local maxima
or local minima of the values, it is preferable to use flexible
weightages of changes. Therefore, the constant € is changed to
+ Where £ is the current number of steps. The degree of change
for D is large at the beginning steps and gradually decrease for
subsequent steps. The computation now becomes:

Dyt =Dy + 2 X Vp, L(fo(Dx),Y). ©))

As the name SIFA suggests, the proposed method is simple
and only introduces minimal changes but is effective at gen-
erating adversarial FDI samples in distributed DR applications
and to bypass the FDI detection mechanism. Compared with
the existing FGV and FGSM methods, the proposed SIFA
method has more computation complexity due to the iterative



Algorithm 1 Simple Iterative FDI Attack method

Require: D, e, step
k=1

adversarial data D,gq, = D
return D4,

2: while k£ <= step do

3:  compute gradient g = V4L (fo(D),Y,)
4 update D =D+ X g

5: k=k+1

6: end while

7

8:

TABLE I
CNN MODEL STRUCTURES

Layers | model f;(Ir=0.001) model f;(Ir=0.001)
1 input 48 input 48
2 Covld 48, kernel 7 Covld 128, kernel 5
3 Covld 24, kernel 7 nil
4 flatten flatten
5 dense 90 dense 256
6 dropout 0.3 dropout 0.35
7 dense 2 softmax dense 2 softmax

calculations. The steps to generate adversarial FDI demands
are listed in Algorithm 1. The input D is the normal demand
forecast, € is a constant to control the extent of change, and
step is a constant to limit the maximum number of iterations.
The gradient g is computed with respect to D using the pre-
trained model fy. Y, is the label of being attacked because
we are finding the perturbations along the gradient direction to
attacked label. Therefore, D is modified gradually to get the
final adversarial FDI sample D4, which has higher likelihood
of being misclassified by the detection model.

IV. RESULTS

We conduct simulations using real-life data and compare
the proposed technique with FGV, FGSM, and DeepFool. The
dataset used for the evaluation is that used in [20] which is
synthesized from the Pecan street dataset. There are a total of
186093 sets of demand forecasts in the training dataset and
10054 of them are FDI attacked. There are a total of 91659
sets of demand forecasts in the test dataset and 4946 of them
are FDI attacked. A CNN model for FDI detection is the attack
target which is built following the same parameters as in [20]
and is denoted by f;. Another CNN model f; is built separately
without the knowledge of f;, which is used to mimic black-box
attacks. The model fj, is trained with different parameters that
result in the best prediction performance using same training
dataset. The details of the CNN models are shown in Table I
and Table II shows their best detection results.

For the AML attack simulations, 10000 normal demands
that are randomly selected from training dataset are used to
generate the FDI attacked demands. For the black-box setting,
the adversarial samples are generated using the model f; which
shows attackers are trying to produce FDI demands based on
their own model. For the white-box setting, the adversarial
samples are generated using the model f; which is the same as
the detection model f; and this allows us to consider attackers

TABLE II
CLASSIFICATION PERFORMANCES OF WHITE-BOX (f3) AND BLACK-BOX
(f») MODELS

Model | Accuracy | precision Recall F1
fa 0.978307 | 0.922259 | 0.654488 | 0.765048
o 0.978463 | 0.952496 | 0.632430 | 0.760145

that have complete knowledge of the detection model. The
performance of the AML attacks are determined by evaluating
the prediction recall made by the detection model f; on the
demands generated. The recall is the percentage of captured
adversarial FDI data among the total generated adversarial FDI
data.

A. State-of-The-Art AML Methods
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Fig. 2. Plot of normal and FDI attacked demand forecasts generated by FGSM.

Figure 2 presents a comparison between the normal and
attacked demand forecasts generated by FGSM method (when
epstlon = 0.27). It can be seen that there are obvious
increments in the demand forecasts during time slots 30-35.
These fake peak demands correspond to the FDI attack on the
distributed DR scheme.

Figure 3 shows the detection recall for both FGV and FGSM
methods. The ¢ values are from 0 to 1 with a step size of
0.01. It shows FGV has better attack performance than FGSM
under both black-box and white-box settings. FGV achieves a
recall of 0.25 under white-box setting and a recall of 0.6316
under black-box setting with e = 0.01. This shows that FGV
is able to bypass the CNN-based FDI detection with much
higher probabilities. We note that FGSM cannot generate true
adversarial demands with small € values under white-box and
black-box scenarios, and therefore, there is no recall. FGSM
can generate adversarial demands only when e is large enough.
FGSM has a recall of 0.9429 under a white-box scenario when
e = 0.27, and a recall of 0.9793 under a white-box scenario
when € = 0.27. The results show that FGSM is able to generate
adversarial demands with larger values of e but the likelihood of
these generated attacked demands to be detected by CNN-based
FDI detection is quite high. Figure 4 shows the corresponding
false negatives when using FGV and FGSM. The false negative
number shows how many of the generated FDI demands are



TABLE III
DEEPFOOL PERFORMANCES

Setting Recall | False Negatives
white-box 0 8273
black-box | 0.7056 2512

able to evade the FDI detection mechanism. The FGV method
has 2329 false negatives under the white-box setting. The FGV
method under black-box and FGSM under white-box scenarios
both have about 500 false negatives.

Detection recall for FGSM and FGV under different eps
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Fig. 3. Prediction recall under black-box and white-box settings.
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Fig. 4. False negatives under black-box and white-box settings.

Since DeepFool is an iterative method and does not use the
parameter e, its results are displayed separately in Table III.
Under the white-box setting, DeepFool gets 8273 false negatives
and the recall is 0. This shows that if attackers have the perfect
knowledge of any detection model, they can run the optimal FDI
attack on the distributed DR system and bypass the detection
mechanism. For the black-box setting, DeepFool results in 2512
false negatives and the recall of prediction is 0.7056. Among
these three methods, DeepFool performs the best to bypass FDI
detection with a recall of 0 under white-box settings. For black-
box settings, FGV performs the best with a prediction recall of
0.6316.

detection recall
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Fig. 5. Prediction recall using SIFA method under white-box setting

B. SIFA Method

The proposed SIFA method is also done in both white-box
and black-box settings. The 2D plots are used to show the
performance under different values of € and step. The right
column color bar shows the intensity level of recall values.
From dark blue to light yellow, it represents value from 0
to 1. Figure 5 shows the detection recall under a white-box
setting. The lowest detection recall is about 0.0007 when
e = 0.01 and step = 100. This shows that the proposed SIFA
method’s performance under white-box attack is comparable to
the DeepFool method and is much better than the FGV and
FGSM methods. It also shows that greater the value of e, the
larger the detection recall, and greater the step value the smaller
the detection recall, when the SIFA method is used under white-
box setting. Figure 6 shows the attack performance under black-
box setting. From the results, the best performance is obtained
when € = 0.01 and step = 8 and the detection recall is 0.4235,
which is smaller than the FGV recall of 0.6316. Therefore,
the SIFA method performs the best with highest bypassing
rate among all the AML techniques under black-box attack.
It can be seen from the results that the detection recall would
gradually increase to 1 when € or step increase. In addition,
the maximum false negatives under white-box setting for the
SIFA method is 6767 and it is 1062 under black-box setting.

100 detection recall

step

0.08 0.1 0.20

Fig. 6. Prediction recall using SIFA method under black-box setting



TABLE IV
COMPARISON OF RECALL OF ALL FOUR METHODS

Setting FGV FGSM | DeepFool | SIFA(our method)
white-box | 0.2500 | 0.9429 0 0.0007
black-box | 0.6316 | 0.9793 0.7056 0.4235

Both these values achieved by the SIFA method are smaller than
that for the DeepFool method but larger than that of FGV and
FGSM methods. Table IV shows the comparison of the lowest
prediction recalls for all four methods and the lowest recall
value among the four is shown in bold fonts. It can be seen that
the proposed SIFA method performs well under both white-box
and black-box settings. This method has good transferability
and can effectively generate adversarial FDI samples to bypass
the detection methodology.

V. CONCLUSION

Distributed DR schemes are an emerging way to achieve
effective and efficient power supply management in smart grids.
Owing to their vulnerability to cyber attacks, various defense
mechanisms have been proposed for DR schemes, with DL-
based methods being the most promising for detecting FDI
attacks on demand forecasts. However, these methods are vul-
nerable to AML attacks. Well-fabricated samples could deceive
the DL models and lead to unexpected malicious results. In
this paper, we reviewed the DL-based approach to detect FDI
in distributed DR schemes and showed that AML attacks can
generate false peak demand forecasts that can bypass detection.
We proposed the Simple Iterative FDI Attack and the evaluation
results demonstrated that the proposed method is effective at
generating fake demand forecasts and to evade the CNN-based
detection mechanism with higher rate under black-box attack.
Future work in this direction could focus on the different attack
purposes such as grid blackout instead of energy theft. And also
the defense and mitigation methods could be researched.
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