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Abstract—In the power grid, Supervisory Control and Data
Acquisition (SCADA) systems are used for executing various
applications for monitoring and controlling purposes, which in
turn enable stable operation of the grid. The integrity and
timely delivery of SCADA data is critical to the operation of the
grid and this makes them an attractive target for cyber-attacks.
However, SCADA systems have various vulnerabilities which may
be exploited to launch attacks, leading to a number of security
challenges. To address one of these security challenges, this paper
proposes a technique for detecting data manipulation attacks on
SCADA systems. The proposed methodology is based on utilizing
synchrophasor measurements from Phasor Measurement Units
(PMUs) that are increasingly being deployed in power grids.
The proposed method exploits the correlation between SCADA
and PMU data, and the classification of tampered and real data
is done through a difference measure developed in this paper.
Simulations performed on real grid data show that the detection
technique is highly effective at attack detection.

I. INTRODUCTION

SCADA systems have traditionally played a vital role in

the control of various critical infrastructures like power grids,

water distribution and irrigation networks, communication

networks as well as oil and gas pipelines. In power grids,

SCADA systems collect information from field instruments

via Remote Terminal Units (RTUs) or Programmable Logic

Controllers (PLCs) installed at various substations and transfer

them to the central master station at the control center [1]. The

RTUs commonly provide the active and reactive power flows,

power injections, magnitudes of line currents and bus voltages

measured at the substations at a refresh rate of about 2 to 5

seconds.

SCADA systems were developed decades ago as isolated

networks but the need to remotely monitor and control sys-

tems has resulted in the interconnections with the enterprise

communication infrastructures and thereby the Internet. Fur-

thermore, since network security was a matter of little concern

at the time when SCADA was developed, security was not

designed into the system. The system design aimed to max-

imize functionalities, accessibility, and easier debugging, and

some of these very features make it more vulnerable to cyber-

attacks. In recent times, both capabilities to attack the SCADA

systems as well as the number of cyber-attacks reported are

on the rise [2]. In its annual Threat Report for 2015, Dell

Security reported that worldwide cyber-attacks on SCADA

systems have been increasing at an alarming rate with the
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number of incidents reported increasing from 163,228 in 2013

to 675,186 in 2014. Since many such incidents go unreported,

the actual number may be much higher [3]. Vulnerabilities

associated with SCADA systems include direct tampering of

the RTUs, denial-of-service attacks, deletion of system files,

modifying data logs, unauthorized changes to commands or

alarm thresholds etc. Note that the use of leased lines, as pre-

ferred by utilities, does not ensure security. Tapping these lines

as well as compromising frequency hopping spread spectrum

radio and other wireless communication mechanisms, which

are frequently used to control RTUs is not difficult [4].

This paper addresses the problem of detecting data modi-

fication attacks on SCADA systems in power grids. In such

attacks the adversary modifies the contents of the data packet

containing SCADA measurements, with the objective of bias-

ing the state estimates of the grid. Such incorrect state esti-

mates may lead the operator to take incorrect control actions

or dispatch decisions, which in turn may cause disruption of

operation, damage to equipments, injury to personnel, mone-

tary losses, and even blackout. The proposed detection method

is based on using measurements from synchrophasors, that are

becoming increasingly popular for wide-area monitoring and

control of the power grid. The synchrophasor system consists

of PMUs which measure bus voltage magnitude and phase

angle, branch current magnitudes and phase angles, frequency

and rate of change of frequency at the buses where they are

installed. These measurements are generated at a rate of 20,

30 , 50 or 60 samples per second and are accurately time-

stamped using inbuilt or external GPS units. These fast and

synchronized measurements enable dynamic state estimation

over a wide geographical area, thereby aiding in increasing

the reliability of the system. However, due to the high cost

of PMUs as well as their communication facilities, limited

number of PMUs have been installed grid-wide [5]. The

deployment is taking place in phases and is expected to

continue over the near future.

The main contribution of this paper is a technique for using

already existing SCADA systems and a limited number of

PMUs in order to verify the integrity of the SCADA datasets

and detect cyber attacks, if any. The proposed methodology is

based on exploiting the correlation between SCADA and PMU

measurement data. We first develop a metric to quantify the

difference between the SCADA and PMU measurements based

on two factors: the divergence and the correlation coefficient.

The metric is then used to detect malicious modifications in

the SCADA data. The proposed detection technique works



irrespective of the strategy used for PMU placement. Our

methodology has been verified using simulations on real data

from the New York power grid.

The rest of paper is organized as follows. Section II dis-

cusses the related work. In Section III, we define the threat

model. Section IV explains the basis of the detection scheme.

The attack detection scheme is then discussed in Section V. In

Section VI, simulation results are provided for verifying the

effectiveness of the detector. Finally Section VII concludes the

paper.

II. RELATED WORK

In the recent times, utilities and Independent System Op-

erators (ISOs) are increasingly focusing on the security of

SCADA and synchrophasor systems. Research efforts are

underway for developing mechanisms for preventing as well

as detecting cyber-attacks on these systems.

In 2009 it was first shown that, if the grid configuration

information is available, it is possible for a malicious attacker

to design coordinated attacks which can bias the system

states without being detected by traditional bad data detection

schemes [6]. Such attacks have been referred to as false data

injection attacks. Indices were introduced for quantifying the

least effort needed by attackers to design successful false-

data injection attacks while avoiding bad data detection in [7].

There has been research on the formulation of attack vectors

and optimal placement of sensors for injecting spurious data

by the attacker. The authors in [8] have shown that it is a

necessary but not a sufficient condition to protect at least a

certain number of measurements in order to be able to ensure

observability and enable detection of such attacks. In [9], a

Bayesian framework which leverages the knowledge of prior

distribution on the states for performing attack detection was

proposed. The problem of estimating the smallest number of

meters that are required to be compromised by the attacker

has been modeled in [10], [11]. In [12], irreducible attacks

have been defined and an algorithm which is based on graph

theory for finding all irreducible attacks has been proposed.

Two algorithms are proposed for determining the placement

of encrypted devices in the system in order to maximize the

detection of stealthy false-data attacks in [13]. In [14], a mech-

anism based on evaluation of the equivalent line impedances

for detecting data manipulation attacks in synchrophasor data

has been proposed. To the best of our knowledge, the existing

false-data injection attack detection techniques assume that the

defenders have some number of secure PMUs. But no PMU

can be expected to provide absolutely accurate data and zero

possibility of corruption by attackers at all times. Therefore,

detection techniques are required that can detect manipulation

of data by adversary without requiring such assumptions.

III. SYSTEM AND THREAT MODEL

The system model assumed in this paper is that all buses

are equipped with SCADA capabilities. Therfore, active or

reactive power flows and power injection measurement data

are available at these buses. However, PMUs are available

only on a subset of the buses and these PMUs have sufficient

channels to measure the voltage magnitude and angle of the

bus, the current magnitudes and angles of all branches incident

to that bus, as well as the frequency and the rate of change of

frequency.

The threat model assumed is that the adversary has com-

promised one or more of the sensors, network routers or/and

communications links. At each of the compromised nodes,

the adversary has the ability to manipulate measurement data

in order to bias the power system state estimates. PMUs are

more sophisticated devices and due to the use of NASPInet

architecture, the communication systems of synchrophasor

systems are assumed to be more secure than that of SCADA

[15]. It is assumed that the attacker has limited resources and

can only successfully compromise the SCADA system. The

data is assumed to be either unencrypted or the encryption has

been broken. The attacker may even directly compromise the

sensors and in that case it is not necessary to break encryption

or steal cryptographic keys.

The data manipulated by the malicious attacker can bias the

system state estimates and thereby influence the control center

into taking suboptimal dispatch decisions or wrong control

actions. This can lead to the adversary’s monetary gains,

operation disruption or equipment damage. To maximize the

damage, the objective of the adversary is to manipulate data

to the maximum extent possible since larger biasing is more

likely to lead to erroneous actions of greater consequence.

However, even relatively small changes can cause uneconomic

dispatch choices. Our objective is to develop a detection

technique that will effectively detect such cyber attacks.

The adversary may manipulate the SCADA measurements,

i.e. the active or reactive power measurements. Two kinds

of attacks are considered: ramp and step. In ramp attack,

the attacker slowly and monotonously changes the data from

its original value to make detection difficult. In step attack,

the attacker abruptly changes the SCADA measurement data

in order to influence the operators into taking immediate

erroneous control actions which may be damaging for the

system.

IV. THE BASIS OF DETECTION MECHANISM

In the system model assumed in this paper, PMUs are

present on some buses while SCADA measurements are

available on all buses. So we can classify the buses into two

kinds: PMU buses and non-PMU buses. The non-PMU buses

can be classified according to the degree of their connection

with the closest PMU bus. The non-PMU buses connected

directly to any PMU bus are called 1st degree non-PMU

buses and their pseudo-measurements computed using the

measurements from the assigned neighboring PMU bus are

called 1st degree pseudo measurements. The buses connected

to any 1st degree non-PMU bus and not connected to any

PMU bus are called 2nd degree non-PMU buses and their

computed pseudo measurements are called 2nd degree pseudo-

measurements and so on.



For the PMU buses, both PMU and SCADA measurements

are available. These SCADA and PMU measurements are

essentially the sensor values of the same system and have a

known relation. We quantify the difference measure between

these two datasets to determine whether they conform with

each other or if false data is present. The PMU data is used to

compute the pseudo-measurements of the corresponding 1st

degree non-PMU buses and communicated to them. These

buses, in turn, calculate the difference measure between the

1st degree pseudo-measurements and the SCADA datasets to

determine presence or absence of cyber-attacks and location,

if any. The method is implemented at all the buses in a

percolation-like manner till all the buses have been checked

for possible data modification.

Consider a power system with N buses, labeled as i =
1, 2, · · · , N . At the PMU buses, whenever a set of SCADA

data comes in, the verification process begins. Every SCADA

data typically consists of an associated time-tag, say tS . Let

the active and reactive power flowing from bus i to bus k,

as measured by the SCADA system, be denoted by PS
m,ik

and QS
m,ik, respectively. Here, m denotes the measurement

serial number corresponding to the SCADA time-tag tS . The

PMU and SCADA datasets can be time-synchronized based

on the correlation coefficient between the datasets since the

coefficient will be maximum when the two measurements

correspond to the same time.

The PMUs measure the voltage and all the currents incident

on the bus where it is installed. The estimated bus voltage mag-

nitudes and phase angles at bus i corresponding to time-tag

tS are denoted by Vi,m and θi,m, respectively. The magnitude

and the phase angle of the current flowing from PMU-bus i

to bus k are denoted by Iik,m and δik,m respectively. One of

the PMU buses is selected as the reference bus. The phase

angle of the reference bus is subtracted from all the phase

angle measurements to obtain the phase angles with respect

to the reference bus. Line power flows are calculated using

these voltage and current phasor measurements. Assuming the

voltage magnitude is a phase-to-neutral value, which is the

case for positive-sequence measurements, three-phase active

and reactive power flows on lines can be calculated as follows:

PP
ik,m = 3Vi,mIik,m cosφik,m (1)

QP
ik,m = 3Vi,mIik,m sinφik,m (2)

where φik,m = θi,m − δik,m. Since all the derivations are

provided for power flows on the line between buses i and k,

from here we will omit the subscript ‘ik’ for the simplicity of

notations.

V. DIFFERENCE MEASURE AND ATTACK DETECTION

In this section, we describe the difference measure that is

used for determining whether the SCADA and PMU mea-

surements conform with each other and detect presence of

modified data, if any. The values of active and reactive power

flow calculated using PMU data are compared with the power

measurements obtained from the SCADA system using a

difference measure described in this section. This difference

measure takes in account both the relative Euclidean distance

between the two datasets as well as the correlation between

them. Thus, the difference measure consists of two factors: (i)

Divergence factor and (ii) Miscorrelation factor.

A. Divergence Factor

The power flows computed using the two systems, i.e.

SCADA and PMU system, are never exactly the same. This

is because of different scaling factors, biases or calibration

of the different sensors [16]. The difference between the two

measurement systems can be modeled as the sum of a constant

bias and noise. The difference in the active and reactive powers

is given by,

PP
m − PS

m = Kp + vp,m (3)

QP
m −QS

m = Kq + vq,m (4)

where K is the constant bias that depends on the various

scaling factors, biases or calibrations errors of the associated

sensors and v is noise which is assumed to be normal with

zero mean and standard deviation σ.

Therefore, the Euclidean distance between the the power

flows computed using the two measurement systems can be

monitored to determine whether the datasets are diverging

from one another. Let the window for calculation be w samples

points. The divergence factor is the ratio of the Euclidean

distance between SCADA and PMU-generated active/reactive

power for the current window (which consists of the latest

w sample points) to the past window (which consists of w

sample points preceding the current window). The expression

for the divergence factor is:

ep,m =

√

∑m

j=m−w+1
(PS

j − PP
j )2

√

∑m−w

j=m−2w+1
(PS

j − PP
j )2

(5)

eq,m =

√

∑m

j=m−w+1
(QS

j −QP
j )

2

√

∑m−w

j=m−2w+1
(QS

j −QP
j )

2

. (6)

Using Equation (3) in Equation (5), we get,

ep,m =

√

∑m

j=m−w+1
(Kp − vp,j)2

√

∑m−w

j=m−2w+1
(Kp − vp,j)2

=

√

1 +
σ2
p,m − σ2

p,m−w

K2
p + σ2

p,m−w

.

(7)

If the distribution of the datasets in the current window and

the past window are same, then σp,m ≈ σp,m−w. Hence the

second term in the expression will be almost zero, making

the divergence factor approximately one. Also, it should be

noted that, as the bias value i.e. Kp increases, the sensitivity

of the divergence factor decreases. Hence, the expected bias

value is initially estimated empirically using measurements

from both the datasets and subtracted before computing the

Euclidean distances. It is taken to be the mean of the differ-

ence between PMU and SCADA vectors for any particular

electrical quantity. Therefore, the modified expression for the



divergence factor for mitigating the loss of sensitivity due to

bias becomes:

ep,m =

√

∑m

j=m−w+1
(PS

j − PP
j −K ′

p)
2

√

∑m−w

j=m−2w+1
(PS

j − PP
j −K ′

p)
2

. (8)

Here, K ′

p is the estimated expected bias between the SCADA

and PMU datasets and K ′

p ∼ Kp. Even if the estimated bias

is not exactly equal to the current bias value, we can say

Kp−K ′

p = cp, where cp is very small in value and negligible

in most cases. The modified divergence factor in the normal

case, when there is no attack is therefore given by:

ep,m =

√

1 +
σ2
p,m − σ2

p,m−w

c2p + σ2
p,m−w

=
√
1 + sn (9)

where, sn =
σ2

p,m
−σ2

p,m−w

c2
p
+σ2

p,m−w

is the sensitivity of the divergence

factor in the normal case, when there is no attack.

The modified divergence factor for the reactive power

datasets is similarly given by:

eq,m =

√

∑m

j=m−w+1
(QS

j −QP
j −K ′

q)
2

√

∑m−w

j=m−2w+1
(QS

j −QP
j −K ′

q)
2

. (10)

Also, the following expression can be derived for the reactive

power datasets in case of no attack:

eq,m =

√

1 +
σ2
q,m − σ2

q,m−w

c2q + σ2
q,m−w

. (11)

Let the elements of the attack vector be denoted by ap,j . In

the presence of an attack, the modified SCADA data is given

by, PS′

j = PS
j − ap,j . The divergence factor can be computed

for the transition period, when the current window has attack

(i.e. modified measurements) while the past window doesn’t.

For the current window, the difference between the two active

powers is given by:

PP
j − PS′

j = Kp + vp,j + ap,j (12)

where, j = m − w + 1,m − w + 2, · · · ,m − 1,m. In case

of step attack, if the attack vector elements are assumed to be

constant at a, the divergence factor is given by:

ep,m =

√

1 +
σ2
p,m − σ2

p,m−w

c2p + σ2
p,m−w

+
a2 + 2cpa

c2p + σp,m−w

(13)

ep,m =
√
1 + sn + sa (14)

where, sa =
a2

+2cpa

c2
p
+σp,m−w

is the sensitivity to injected false

data in case of attack. As the magnitude of the attack vector

elements increases, sa increases. Also, it is seen that the bias-

correction leads to the divergence factor being more sensitive

to attacks.

B. Miscorrelation Factor

If both the SCADA and PMU data sets are true (i.e. un-

modifed), they will have a high correlation and the correlation
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Fig. 1. Plots showing correlation factor and divergence factor in case of no
attack.

coefficient is expected to be close to 1. However, if false-data

is injected in any of the data sets, the correlation coefficient

will decrease in value. The vector consisting of latest w data

points for a given bias is denoted by:

Pm = [Pm−w+1, · · · , Pm−1, Pm]T (15)

Qm = [Qm−w+1, · · · , Qm−1, Qm]T (16)

The correlation coefficient between the two sets of data are

calculated as follows:

rp,m =
Cov(PP

m,PS
m)

√

V ar(PP
m)

√

V ar(PS
m)

(17)

rq,m =
Cov(QP

m,QS
m)

√

V ar(QP
m)

√

V ar(QS
m)

. (18)

We know that in the normal case without attack,

PP
j = PS

j +Kp + vp,j j = 1, 2, · · · ,m. (19)

Therefore, the covariance and the variances can be expressed

as:

Cov(PP
m,PS

m) = V ar(PS
m) + Cov(vp,m,PS

m) (20)

V ar(PP
m) = V ar(PS

m) + V ar(vp,m). (21)

If the noise is assumed to be negligible compared to the true

power values, rp,m ≈ 1. Thus, if the two datasets are true,

they are highly correlated and the value of the correlation

coefficient is almost equal to 1.

However, when false data in injected in the SCADA mea-

surements, PP
j = PS′

j + ap,j + vj + Kp j in presence of

attack, Therefore, the expressions for covariance and variance

can be derived as follows,

Cov(PP
m,PS′

m) = V ar(PS′
m)+Cov(vp,m,PS′

m)+Cov(ap,m,PS′
m)

(22)

V ar(PP
m) = V ar(PS′

m) + V ar(vp,m) + V ar(ap,m). (23)



If the attack vector is non-negligible, the denominator of the

correlation coefficient increases in value while the numerator

may increase slightly or may decrease due to low or negative

value of Cov(ap,m,PS′
m). Therefore, the correlation coeffi-

cient deviates from 1.

The miscorrelation factor is taken as the difference between

1 and the absolute value of the correlation coefficient.

cp,m = 1− |rp,m| (24)

cq,m = 1− |rq,m|. (25)

Therefore, as the correlation between the two datasets de-

creases, the miscorrelation factor increases in value. It is close

to zero when the two datasets are highly correlated. Figure 1

shows the divergence factors and miscorrelation factors for the

PMU and SCADA datasets of reactive power flowing in a line

when there is no attack. The PMU data have been obtained

from the NY power grid. Since corresponding SCADA data

were not available, but representative state estimator data were

available, we have used that as a substitute for SCADA data.

C. Difference measure

The difference measure between the two sets of data is ex-

pressed as the product of divergence factor and miscorrelation

factor:

dp,m = ep,m × cp,m (26)

dq,m = eq,m × cq,m (27)

In case of true data, the divergence factor is expected to

be close to one and the miscorrelation factor is expected

to be much less than one. Hence, the difference measure is

expected to be less than 1. However, in case of false-data

attack, the divergence factor is expected to exceed 1 and the

miscorrelation factor is expected to be closer to one. Therefore,

the overall difference measure is expected to exceed 1.

If the difference measure computed for SCADA and PMU

datasets at any point is computed to be more than one, then we

can say that the datasets are not conforming with each other

and the presence of false data is inferred. Figure 2 shows

the plot of the divergence factors, miscorrelation factors and

difference measures for a line when there is ramp attack on

SCADA data between measurement number 4001 and 5000,

with maximum manipulation of 5% at measurement number

4500. Figure 3, on the other hand, shows the plots when there

is step attack of 5% on SCADA data between measurement

numbers 4000 and 5000. From both these sample figures, it is

evident that when there is no attack the divergence factor is

close to 1 in value. However, when there is presence of attack,

the divergence factor increases significantly. The miscorrela-

tion factor remains low in normal cases but increases to close

to 1, when there is attack. The resulting difference measure is

observed to exceed 1 when there is attack.

VI. SIMULATION RESULTS

In this section we present simulation results to verify the

proposed detection mechanism. Real PMU data collected from
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Fig. 2. Plots showing active power on line between buses 1 and 2 and the
related factors and difference measure.
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Fig. 3. Plots showing reactive power on line between buses 2 and 4 and the
related factors and difference measure.

various locations in New York have been used to verify the

mechanism. Sets of more than 9000 samples of measurements

of PMU data from two buses with two lines connected to one

bus and three lines connected to the other, have been used for

evaluating the effectiveness of the proposed detection method.

Representative state estimator data has been used in place of

SCADA data. To simulate an attack, the values of the SCADA

measurements were altered. Two sets of simulations have been



Algorithm 1 SCADA Data Attack Detection Using PMU Data

1: loop

2: for arrival of mth SCADA measurement at bus i do

3: SCADA measurement on line ik: PS
m,ik, QS

m,ik;

4: SCADA measurement time-tag = tS

5: PMU measurements at tS : Vi, θi, Iik, δik;

6: Calculate PMU-generated active power: PP
j,ik

7: Calculate PMU-generated reactive power: QP
j,ik

8: Calculate divergence factors: ep,ik,m, eq,ik,m
9: Calculate miscorrelation factors: cp,ik,m, cq,ik,m

10: Determine difference measure for active and reac-

tive power: dp,ik,m, dq,ik,m
11: if (dp,ik,m > 1) ∨ (dq,ik,m > 1) then

12: Generate data integrity attack alarm;

13: end if

14: end for

15: end loop when session is terminated

performed: firstly with modification in SCADA active power

data and secondly with modification in SCADA reactive power

data.

In order to evaluate the effectiveness of the proposed data

manipulation attack detection mechanism, we consider two

types of attacks that may be executed on SCADA data: ramp

and step. Different levels of modifications have been simulated

for both the attack types, the level of modification being the

percentage of increase of the manipulated value from the true

measurement value. For each set of SCADA data, five levels of

modifications have been simulated, that is, 0% or no change,

2%, 5%, 10% and 20% changes.

We evaluate the performance of the proposed detection

mechanism in terms of its accuracy (ACC), false positive

(FP) rates, and false negative (FN) rates. The accuracy is the

probability of correct detection. The false positive rate is the

probability that a data manipulation attack alarm is raised

when in reality there was no data manipulation. The false

negative rate is the probability that a data manipulation attack

goes undetected.

TABLE I
OVERALL DETECTION RESULTS USING PROPOSED DATA MODIFICATION

ATTACK DETECTION ALGORITHM.

Modification Ramp change Step change

percentage A FP FN A FP FN

0 80 0 20 80 0 20

2 85 0 15 80 0 20

5 100 0 0 90 0 10

10 100 0 0 95 0 5

20 100 0 0 100 0 0

The overall results of detecting data manipulation attacks

are provided in Table I. The accuracy of the detection scheme

is above 80% in all cases. The accuracy increases with increase

in the modification level or if the modification is in the form

of step-change.

It should be mentioned here, that the data used for the

simulation are disturbance data. Even in the presence of

disturbances, the proposed detection mechanism detects most

of the attacks accurately.

VII. CONCLUSIONS

This paper proposes an effective and distributed method of

detecting data attacks on SCADA systems in the power grid. It

uses the available PMU measurements to perform validation

of the SCADA datasets. It does not matter what placement

scheme has been followed to place the PMUs as long as there

are a few PMUs spread over the grid. The detection technique

is found to be accurate, computationally inexpensive and can

even detect attacks with manipulation as low as 2%.
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