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Abstract—In recent years, global greenhouse gas emissions
have become an important issue. Electrical Vehicles (EVs) are a
promising solution to reduce greenhouse gas emissions. However,
widespread adoption of EVs is hindered in part by ‘“range
anxiety” wherein the remaining drivable distance is unknown.
Models that can predict the energy consumption of EVs can not
only address this issue, but also assist in optimizing charging
patterns. This paper proposes a model for EV energy con-
sumption prediction that adopts relevant factors (temperature,
road gradient, vehicle loading, etc.) to characterize a driver’s
real-life vehicle usage. By using a novel transformation of the
input data, the proposed model can output the consumption
prediction of multiple users simultaneously. Additionally, the
model can process multiple types of car models that effectively
use information specific to that group. The results show that the
system can parallelize the prediction task with desired accuracy
when compared to the single-output system and offers the ability
to model different EV models at the same time.

Index Terms—Electrical Vehicle, Convolutional Neural Net-
work, Energy Consumption prediction, Parallel processing

I. INTRODUCTION

Fossil fuel combustion is the major source of C'Os. As
being highly reliant on fossil fuels for energy generating, the
transportation sector is responsible for large quantities of C'O,
emissions, accounting for around one-third of energy-related
C'O, emissions from end-use sectors. Therefore, improving the
energy efficiency of and reducing emissions from transporta-
tion systems play a key role in controlling general emissions
and limiting global warming. According to the latest statistics
published by International Energy Agency (IEA), road trans-
portation accounts for three-quarters of C'O- emissions from
the current transport systems. With the highest percentage of
total transport-related emissions, road transport emissions have
received considerable critical attention, which has heightened
the need for advanced vehicle and fuel technologies. Among
such technologies, electrification has been widely considered
a promising potential long-term solution to reduce emissions
from road transport. Studies such as that conducted in [1] have
shown that electric vehicles (EVs) using electricity generated
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by low-carbon sources contribute to a significant reduction in
CO> emission from road transport.

The potential environmental benefits are a strong motivator
for the adoption of EVs. However, this adoption has not gone
fast as desired. One of the barriers to widespread adoption is
drivers’ range anxiety (i.e., the driver’s fear that the remaining
energy of EVs is inadequate to reach their designated desti-
nation). The major causes for the anxiety are uncertainty in
the remaining driving range and the sparse public charging
infrastructure network. Accurate estimation of the remaining
driving range has been heralded as a promising measure to
alleviate drivers’ anxiety. Estimating the remaining driving
range requires both the evaluation of the remaining energy and
the prediction of the possible energy consumption. Usually, it
is easy to evaluate the remaining energy based on the state
of charge presented on any vehicle dashboard. Energy con-
sumption prediction, therefore, has become a central issue for
the estimation of the remaining driving range. More recently,
in addition to traditional machine learning (ML) models like
Gaussian mixture models (GMM), Support Vector Machines
(SVM), etc., and neural networks have applied to explore
better approaches for the prediction of energy consumption.

There are different existing approaches that aim to obtain
the energy consumption prediction of EVs. Analytical mod-
els utilize a set of physical equations to model the engine
activities. However, it is a challenge to acquire all relevant
parameters required by equations. Statistic models generate
mathematical representations from sampling data. The models
are heavily data-dependent and usually concentrate on linear
correlations. Machine learning methods with neural network
implementation improve the prediction by taking non-linear
correlations into consideration. With different architectures
and inputs, neural networks method can obtain the energy
consumption prediction at different resolutions and improve
the performance by processing the input in time-series format
(per-second data). However, existing techniques have less
considerations with regard to bigger scale of data to generate
a possible consumption profile of the remaining energy at
a higher frequency. Additionally, there is a lack of studies



to distinguish the difference inside a training data group
if multiple sub-group properties (multiple car models) are
presented.

To address these concerns, this paper proposes a neural
network architecture that aims to obtain the energy consump-
tion profile of EVs. In contrast to existing work, the proposed
model can also process multiple groups of data (corresponding
to different car models) at the same time. Each group of the
data generates a consumption prediction with consideration of
its own sub-group property. By using the same size of input
data, the model also proves the efficiency of information utility
by achieving equal or better accuracy compared to the single-
output architecture control model.

The overall structure of the study takes the form of five sec-
tions, including this “Introduction” section. Section II presents
an overview of the current status of related works. Section
IIT describes the proposed modeling approach, including data
collection, preprocessing, and ML model elaboration, while
model results are discussed in Section IV. Finally, the con-
cluding remarks are presented in Section V.

II. RELATED WORK

In recent years, numerous attempts have been made to
predict the energy consumption of EVs. According to previous
efforts, the major prediction approaches used to estimate en-
ergy consumption include analytical models, statistical models,
and machine learning models. Analytical models describe the
essential processes relevant to vehicle dynamics with a set of
physical equations. According to the equations, the net force
contributes to the motion of a vehicle, and/or the required
power to generate the force is calculated. Subsequently, the
energy consumption can be calculated based on its relationship
with force [2], [3] (F x d, where F' is the net force that
contributes to the motion of a vehicle and d is the distance
traveled), or power [4], [5] (P x t, where P is the required
power and ¢ is the operation time).

Statistical models use a set of statistical methods to generate
a mathematical representation of the relationships between
the energy consumption of a vehicle and plausible impact
factors. Statistical models are data-dependent. Sampling data
is required to deduce empirical relationships between the
predictor variable and the response variable. Predefining the
relationship between variables is the first step of statistical
models [6]. For example, in regression analysis (a widely
used approach to build a statistical model) the relationship
is expressed as an equation with unknown coefficients which
can be estimated based on sampling data. Previous studies
have applied linear regression models to predict EV energy
consumption [7], [8]. Liu et al. also conduct studies on the
impacts of temperature [9] and road gradient [10] on energy
consumption separately.

Machine learning models consist of traditional machine
learning models and neural network based methods. The
neural network based methods demonstrate better potential
for the development of models for computation of power.
Studies [11], [12] try to model driver’s behavior with (ANN)

architecture with vehicle speed, acceleration, jerk, and road
information as input. The results show that neural networks
are a promising method for predicting energy consumption.
To focus on the EV model performance, another method is
proposed in [13], where a convolutional neural network is
built to predict the energy consumption for real-time output.
However, the input parameter only contains 3 features that
are considered. As mentioned in [14], other factors also have
an impact on energy consumption and need to be considered.
Furthermore, the model is trained based on one specific type
of EV model. The result is not transferable and each additional
EV model requires a separate model to obtain the desired
output.

III. METHODOLOGY
A. Dataset

To obtain data that can represent different driving behaviors,
emobpy [15] is adopted as a simulation model to generate
training and testing data. emobpy is an open-source tool for
battery electric vehicles to generate time series data using
Python. It contains various settings to select driver behavior
as well as vehicle models. To simulate the driving behavior
profile, there are configurations to define the probability map
of “departure and destination”, “distance and duration”, as well
as “trips per day”. The probabilities set can closely simulate
the driving behavior in Germany by achieving cumulative
distribution of trips and mileage as compared to underlying
German mobility statistics [16]. On the other hand, there are
three categories of drivers defined in the trip rule to select trips
based on weekends and weekdays. The trip rules and category
probability are listed in Table I. Full-time commuters and part-
time commuters have more stable trips per day compared to
non-commuters since they need to travel to workplaces. As
for the vehicle, there are multiple built-in EV models with
parameters of battery capacity, motor type, torque, etc. Instead
of random selection, four EV models are selected evenly in
the population to focus on the subgroup characteristic study.
During the data generation phase, a driver category is selected
based on the probabilities listed in Table I, and then one of
the four EV models is assigned to that driver. By setting the
time to one year and time resolution to 15 minutes, one driver
will have a 35040 data-points with timestamps. Overall, the
simulation generates records for 200 users that contain seven
million data-points with timestamps using Algorithm 1. The
records are split into 90% as the training dataset and 10% as
the testing dataset.

B. Features and their transformation and normalization

Instead of just focusing the engine efficiency like [13], we
consider additional factors that have an impact on battery
consumption in real life. Based on the analysis in [14], wind
speed, temperature, inclination, and loading, etc. all have an
impact on battery consumption. Considering the factors that
are in the simulation tool, we select the available features
that are listed in Table II. Wang et al. [17] proposed an
encoding method to map the time series data as images



TABLE I: Driver category and rule setting

Condition Full-time commuters Part-time commuters Non-commuters
Weekday [ Weekend Weekday [ Weekend Weekday | Weekend
Category probability 0.4 0.3 0.3
Minimum Number of trips 1 1 1 1 1 1
Last trip destination Home Home Home Home Home Home
Minimum time at home 9 6 9 6 9 6
Trip to work At least 1 | Based on need | At least 1 | Based on need N.A. N.A.
Minimum time at workplace 7 3 3.5 3 N.A. N.A.
Maximum Time at workplace 8 4 4 4 N.A. N.A.
Minimum state duration at workplace 35 3 35 3 N.A. N.A.
Minimum state duration except for workplace 0.25 0.25 0.25 0.25 0.25 0.25

Algorithm 1: Dataset Generation Algorithm

TABLE II: Selected features and description

Initialize Categories, vehicle brand, and mean passenger

numbers and then assign probability

// CFT : full —time commuter

Feature name Description

Number of passengers to obtain vehicle

Number of passengers loading

Vehicle speed Speed at different timestamps

Worldwide Harmonized Light Vehicles

// CPT : part —time commuter
// NFT : non — commuter
Catyalues < [CFT : 0.4, CPT : 0.3, NFT :0.3]

// Distribution : 0.4,0.3,0.2,0.1
mean_passenger_number < [1.5,2,2.5, 3]

Driving Cycle

Test Cycle (WLTC) or Environmental
Protection Agency (EPA)

Road gradient

Describes the slope in radians

Built in road type to obtain rolling

// wvehicle_selection and distribution
Volkswagen <+ ID.3: 0.25

BMW <+ i3s Edition RoadStyle 42 kWh : 0.25
Audi < e — tron Sportback 55 quattro: 0.25
Tesla < Model X Long Range (SR): 0.25

for counter =0, counter < 200, counter + + do
Pick driver category vehicle_model

set rules of category based on Table I
set total hours = 8760

set time step = 0.25

set Trips per day

set Distance and duration

Generate the travel summary profile

set vehicle_model

set mean_passenger_number

set the rest of the parameter

Generate the Consumption time_series file
Combine data to form dataset

end

known as Gramian Angular Fields (GAF). The time series data
F = {f1, f2, -+, fn} is normalized to an interval between
[—1,1] by:

7, = (i = max(F)) + (f; - min(F))
' max(F) — min(F)

(D

Road type resistance coefficient

Temperature Ambient temperature in Kelvin

Wind speed Local wind speed

Weekend Weekend or weekday indicator
Category Indicate if driver is full-time/part-

time/non-commuter

After feature scaling, we can convert the features to polar
coordinates with value and time stamps using:

¢ = arccos(f;), —1< fi <1,f; € F,
)

tﬁi, t; €N

r =
where t; represents the time stamp and N represents the
distance span of the polar coordinate system. The GAF matrix
is defined as the inner product of the time series feature:

FroJi ;i P

where [ is the unit vector. Thus, we can get a N x N square
matrix where [N is the number of timestamps that represents
the temporal relations between timestamps.

3)

C. Transformation

Inspired by the fact that linear transformation retains the
data properties with shifting and scaling, we can take its
advantage to achieve parallel processing as well as study
subgroup properties by searching for an appropriate linear
transformation. 2D-Discreet Cosine Transformation (2D-DCT)
[18] is selected as the transformation method to retain the



Algorithm 2: Data Preprocessing

input : Individual driving record
output: T'ransformed input

Load dataset from the path
Drop unwanted columns

Create dictionary ranged (0, N —
1) based on vehicle_selection

Rzx_i < 9 features from Table 11
Ry_i < Time series consumption
// i < dict{vehicle_model}

// General process

Rz_i < Rx_i.reshape(—1,48,9)
Rzx_i < add 2 pad at bottom

Rz _i < transpose(0,2,1)

Rz + concatenate Rx_t on axis 2

Ry_i + Ry_i.reshape(—1,48,1)
Ry_i < add 2 pad at bottom

Ry_i + transpose(0,2,1)

Ry < concatenate Ry_i on axis 2

// transform and create dataset
for rows in Rz do
Create input matriz S // 100 x 100

for model in models do
Get N based on model dictionary

14+ Nx50, j < 50%x(N+1)

r < int(N/2) x50, 1 < 50 x (N%2 + 1)
S_temp < Rz[:,i: j]

S_temp < normalize from Eq.1

S_temp < GAF representation from FEq.3
S_temp <+ 2D — DCT from Eq.4

S[:,r i+ 50,1 : 14 50] « S_temp

end
S « Invers 2D — DCT

end

feature independence when parallel processing multiple inputs
simultaneously. 2D-DCT is defined as:

Ni—1 Ny—1 - 1
Xptg2 = ) D Tninacos |:]V1 <n1 + 2) k1}

n1:0 n2:0
by 1
Ccos |:]\72 <n2 + 2) kz} 4

k=0,--- ,N—1

The transformation also has the property that convolution be-
fore transformation equals multiplication after transformation:

{g*h}(X)=T"YG - H} (5)

where % denotes the convolution operation and - denotes
point-wise multiplication. During the data preprocessing stage,
the input is generated through Algorithm 2. The input data
(100 x 100) is split into four 50 x 50 regions. The mixing
output from each region is a convolutional result from the
transformed message and position shifting matrix (the matrix
is 50 x 50 in size with a value of 1 at the center of the matrix).
Figure 1 demonstrates the mixing process of a data input that
contains normalization, GAF matrix conversion, as well as
the 2D-DCT transformation before entering the convolutional
neural network.

F={fy, fs, ..., f2a} 100 X 100 X 9
/—}%
Normalize to (-1,1) %
F={f1, f, ..., f2a}
Convert to GAF 2D -DCT ~ Brand 2
matrix ’
Brand 3 Brand 4
\%(_/
50X50X9
2

(‘Z:\
&
&

Fig. 1: Illustration of data preprocessing for one subgroup.

D. Network

Convolutional neural networks are good at learning the
characteristics of images [19], [20] such as Alex, Image-net,
etc. The image encoding input is designed to go through a
convolutional neural network. The network typically consists
of convolutional layers, Rectified Linear Units (ReLUs), max-
pooling layers, as well as fully connected layers. There are
changes at the fully connected layer with the change of the
output format as shown in Figure 2. The last fully connected
layer X, is defined as:

— Single-output model: X ,,; = 1 for period consumption
prediction; X,,; = 100 for timestamp consumption
prediction

— Multiple-output model: X ,,; = 4 for period consumption
prediction; X, = 200 for timestamp consumption
prediction

To prevent the dead neuron challenge, Leaky ReLLU is adopted
to replace normal ReLU function.

100X 100X 9
49X49X32 4000 1000 Xout

12X12X64

24X24X68  jax24x128

12X12X128 9216

Fig. 2: Convolutional neural network architecture.



TABLE III: Comparison of time-series output to total sum
output

Xout =1 Xout = 100
Test Name
MSE MAE MSE MAE
Mean test 327 6.62 1.39 0.45
Std test 3001 16.8 11.55 1.09
Median test 10.4 3.23 0.03 0.17

E. Objective functions and optimizer

Mean average error (MAE: defined in Eqn. (6)) and mean
squared error (MSE: defined in Eqn. (7)) are commonly
adopted for regression task evaluation:

MAE Loss:%i‘m—ﬁ 6)
i=1
1 & <\ 2
MSE Loss = — Y (Y _ Y) 7

i=1

where Y; is the predicted output from the neural network for
the i-th time interval and Y; is the actual consumption. We
adopt both functions in the different training sessions to find
the optimum decision.

Adam optimizer [21] is selected during the training back-
propagation process to update the weight of the neurons. We
also adopt the adaptive learning rate method with starting
learning set to 0.001.

IV. RESULTS
A. Time series output

To obtain the energy consumption during each prediction
interval, we implemented two networks with different ap-
proaches. The first one is to directly output the total energy
consumption prediction as a single value. Thus, we set X,
to 1 at the last fully connected layer. The other one is to
output the energy consummation per time interval and sum the
result to obtain the total consumption prediction. This setup
requires the last fully connected layer X, to be set to 100.
Comparing the output from different set ups of the network,
we can see the time-series output setup is better in terms of
the mean value as well as the standard deviation as compared
to the total consumption prediction output, as shown in Table
III. The two models were trained under MAE as the objective
function. The performance difference is observed because of
the additional penalty from the MSE function.

B. MSE versus MAE

During the training session, the MAE objective function
has better performance compared to the MSE function in
two aspects: convergence and speed of convergence. Since
the target consumption contains lots of 0 values within the
time series representation, the MSE function may fail to
converge during the training (observed during the training
for the time-series representational single-output model). As
for the convergence speed, it is also observed that adopting

=== Training loss

1000 Validation loss

800

600

Loss

400

200

0 10 20 30 40 50 60 70

Number of Epoch

(a) Loss during training for MAE objective function.
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(b) Loss during training for MSE objective function.

Fig. 3: Convergence speed comparison between MAE and
MSE as objective function.

MSE as the objective function (Figure 3b) makes the training
process slower to converge compared to the MAE objective
function (Figure 3a) as shown in Figure 3.

As mentioned in Section IV-A, training fails to converge
quickly when MSE is adopted as the objective function. To
achieve quicker convergence, we implement a cumulative sum
operation for the timestamp representation output:

Yijn =Y +Y; ®)

This implementation reduces the number of 0 values in the
target time series array as shown in Figure 4 and successfully
makes the training process converge. Table IV shows the
performance change before and after cumulative sum imple-
mentation.

C. Farallel processing performance

With the 2D-DCT implementation, the model can process
four groups (corresponding to different car models) of data in



=== Cumulative value
Discrete value

20

o

Energy Consumption

—

0 20 40 60 80 100
Timestamp

Fig. 4: Tllustration of the O value reduction from cumulative
sum.

TABLE IV: Model performance comparison before and after
convergence

No cumulative sum With cumulative sum
Test Name
MSE MAE MSE MAE
Mean test 1.5e10 31570 121 4.07
Std test 2e8 2166 1143 6.94
Median test 1.5e10 31931 21.36 3.55
10w Actual
Predicted
8

Energy Consumption

Timestamp

Fig. 5: Nlustration of predicted value failing to catch up with
the speed of increment

parallel. Each of the subgroups contains 50 x 50 data to form
the 100 x 100 input as network input. Table V lists the models
with setting variations on output mode, objective function,
as well as cumulative sum implementation. It contains two
evaluation metrics:

— Per timestamp accuracy: The accuracy is calculated based
on each timestamp. The result represents the average
performance of the output neurons.

— Consumption over period accuracy: The accuracy is
calculated based on the overall consumption over the
timestamp. The result represents the capability of pre-
dicting driver behavior at a larger scale of time.

We observe that the multiple-output models offer equal or
better results regardless of the chosen objective function for
both metrics. This can be explained based on the fact that the
target signal is sparse, and multiple drivers’ data contribute
more non-zero values at the output which makes it easier
for the model to learn the pattern during training. Besides,
the multiple-output model also provides visibility on per EV
model accuracy (TableVI); the model also demonstrates that
fewer timestamps or smaller input matrix can also achieve
the same accuracy. On the other hand, although cumulative
sum implementation can help in model convergence during
training, it still under-performs when compared to the direct
output model when the model can converge itself. It can also
lead to results where the cumulative output can increase very
fast if the output target is large in magnitude. The network
tends to have a smooth output and thus fails to catch-up with
the increment, as shown in Figure 5.

V. CONCLUSION

This paper addressed the problem of energy consumption
forecasting for EVs by adopting a machine learning framework
that leverages data transformation to facilitate the simultaneous
prediction of users from different groups. During the data pre-
processing stage, besides normalization and image encoding,
this paper proposes a 2D-DCT-based transformation system
that can mix four groups of drivers’ records as one input. The
transformation allows the network to study the behavior of
different EV models and provide energy consumption predic-
tion simultaneously. There is a challenge encountered during
the training stage for some networks due to the sparseness
of the output data. A cumulative summation operation is
implemented to reduce the number of 0 values, thereby helping
the network to converge during training. The implementation
proves to be effective in network convergence but does not
perform as well as the normal architecture. It is a method that
can solve a specific problem and it worth further exploration
to enable it to work in more scenarios. The test results show
that the multiple-output architecture can provide better results
while focusing on subgroup behavior at the same time.
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