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Abstract— Accurate positioning mechanisms are important in
large scale sensor networks to achieve a number of functionalities
like location aware routing, efficient coordination of resources
and other application specific requirements. This paper proposes
a distributed and scalable GPS free positioning algorithm for
wireless sensor networks. This approach is an effort in the
direction of finding a solution to the positioning problem which
minimizes the number of messages exchanged and the coordinate
setup time. We use a clustering based approach for the coordinate
formation wherein a small subset of the nodes can successfully
establish the coordinate system for the whole network. We
also compare the performance of this system against existing
mechanisms and show that our system scales linearly as the
number of nodes in the network increases in contrast to the
exponential increase in current mechanisms. Additionally, our
mechanism takes considerably lower convergence times. The
proposed mechanism is scalable, distributed and able to support
the ad hoc deployment of large scale sensor networks quickly
and efficiently.

I. INTRODUCTION

Networks of sensors and actuators are characterized by
large size, need for distributed coordination and ubiquitous
connectivity, power constraints and the ability to be ad hoc
deployable. For efficient coordination of the distributed func-
tionality, it is critical to determine the positions of the nodes.
This paper presents a performance study of GPS free and
beaconless positioning mechanisms and introduces a scalable
solution for distributed positioning.

Most of the current literature on location discovery in
wireless and sensor networks assumes the availability of GPS
receivers at some nodes [8] or beacon nodes with known
position [2], [9], [1]. Having a GPS receiver at sensor nodes
may not be feasible due to the limitations of satellite coverage
or obstructions in the path of satellite signals. For ad hoc
deployment of nodes, it unreasonable to assume the presence
of beacon nodes with prior position information as assumed
in [1], [2], [9]. Also, the solutions proposed in [6], [4] either
need centralized systems to solve large optimization problems
or are expensive in terms of the number of messages to be
exchanged before positions are established.

In this paper, we assume that there are no beacon nodes
with known location. A major motivation for our approach
is to reduce penalty incurred in sensor networks due to
communication overhead. The cost of local computation is
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lower than that of communication in a power constrained
scenario [7]. We show that our system performs better than the
one proposed in [4] (which to our knowledge is the only other
GPS free and beaconless solution) in terms of communication
costs as well as the convergence time. Our solution is scalable
as the number of the nodes in the network increases.

The rest of the paper is organized as follows: In the fol-
lowing section we present some background information and
related work. Section III presents our positioning mechanism
while Section IV evaluates our methodology and compares its
performance against existing mechanisms. Finally, Section V
presents the concluding remarks.

II. BACKGROUND AND RELATED WORK

The basic requirement of any positioning system is the
ability to measure the distance between any two nodes. Various
proposals which have been made to determine the distance
between nodes in wireless systems include the Signal Strength
method, the Angle of Arrival (AOA) method, the Time of
Arrival (TOA) and Time Difference of Arrival (TDOA) meth-
ods [3]. The effectiveness of the positioning system depends
greatly on the accuracy of the distance measurements. The
main cause of errors are Non-Line of Sight errors and measur-
ing errors. Methods for detecting and correcting NLOS errors
are presented in [5], [12]. In this paper, we assume that the
TOA method is used to compute the distances between nodes.

Various approaches have been proposed for positioning in
wireless and sensor networks. In [6], a centralized scheme is
proposed which collects the entire topology in a server and
then solves a large system to minimize the positioning errors.
A location system based on an uniform grid of beacon nodes
is proposed in [2] while ultrasound signals are used in [9]
to measure the distances of nodes from well known beacons.
Localization in ad hoc networks based on the known position
of a few nodes in the network are proposed in [10], [11].
In [4] the authors propose a distributed mechanism for GPS
free positioning in mobile ad hoc networks. However, this
procedure is expensive in terms of the number of messages
to be exchanged since each node individually re-orients its
coordinates to the reference node’s coordinates.

III. SCALABLE GPS FREE POSITIONING

In this section we describe our proposed positioning system.
We follow a cluster based approach. The coordinate estab-
lishment phase is split into two phases: the local coordinate



establishment at a subset of the nodes and the convergence of
the individual coordinate systems to form a global coordinate
system.

A. Local Coordinate System

The formation of the local coordinate system is based on
triangulation as proposed in [4]. However, to keep the system
scalable as the number of nodes increases, we require the
formation of local coordinates at only a small subset of the
total nodes (which we call master nodes). In the following
discussion, we assume that a number of nodes are deployed
randomly over a geographical region with a given average
density.

Once the nodes are deployed, each node starts to decrement
a random timer. If the timer of node i expires before it is
contacted by any other node, node i becomes a master node
and broadcasts a message establishing itself as a master. All
nodes in the range of node i who receive this message stop
decrementing their timers and become slave nodes. We refer
to this set of nodes as the domain of master node i. Also,
some nodes in the domain of i hear from other master nodes.
These nodes are called border nodes and are central to the
formation of the global coordinate system.

To establish the coordinate system and obtain the distance
estimates from nodes, the protocol uses various messages for
inter-node communication. Each message consists of: (1) the
sending node’s ID (2) the master node id (3) message type
(4) message body. A node can send any of the four following
types of messages:

M1: [NodeID, MasterID, M1, Body] enables neighbours to
establish distances from the sender.

M2: [NodeID, MasterID, M2, Body] is sent by the slave
nodes to masters with distances to the slave’s neighbours.

M3: [NodeID, MasterID, M3, Body] are sent out by the
master nodes providing the {nodeID, coordinates} tuples to
slave nodes.

M4: [NodeID, MasterID, M4, Body]. contains information
about transformations to be made by the master nodes.

The overall procedure and sequence of events carried out
at each node for obtaining the coordinate system is outlined
in Algorithm 1. Once a node’s timer expires before anyone
else’s in its domain, the node assumes the role of a master
and broadcasts an M1 message. Nodes hearing this message
become part of the master’s domain and they also broadcast
M1 messages announcing their existence. These messages are
also used by the nodes to compute their relative distances
from each other. Once a node obtains distance estimates to
a prespecified number of nodes (say 2 or 3) it sends these
estimates to its master using M2 messages. The master node
collects all the distance estimates and then uses triangulation to
establish a coordinate system. This forms the local coordinate
system at each master node (Details in Appendix 1).

B. Global Coordinate System

Once local coordinate systems have been established at the
master nodes, all but one of the master nodes need to reorient

Algorithm 1 Algorithm for co-ordinate establishment
timer ⇐ init()
decrement(timer)
if timer = 0 AND no M1 received then

status = master
broadcast(M1)
wait(M2s) and form coordinate
broadcast(M3)
while master nodeid �= minimum do
wait(updates from border nodes)
if nodeid < nodeid of update then

recalculate coordinates and broadcast(M3)
end if

end while
else

status = slave
broadcast(M1)
wait(3 distinct M1s are received)
transmit(M2) to master
while master nodeid �= minimum do
wait(coordinates from master)
update coordinates
if Number of coordinates > 1 then

type = border
transmit(M4) to masters with higher nodeid

end if
end while

end if

their systems in order for the network to converge to a single
coordinate system. Let us consider two master nodes i and
k which share a border node j. The decision on whether
node i should change to the coordinate system of k or vice
versa depends on their respective node IDs. In our scheme, the
master node with the higher ID changes to the system of the
master node with the lower ID. Also, if a master node shares
border nodes with more than one master node, it changes
its coordinates to those of the master node with the smallest
ID. In the following discussion, we assume, without loss of
generality, that node k changes over to the system of node i.

While [4] presents a mechanism for determining the trans-
lation parameters for a system of three nodes which are aware
of their mutual distances, this cannot be applied directly here.
This is because, by definition, two master nodes cannot be
within the range of each other and thus do not know the
distance between them. Thus we need another border node
(say l), in addition to j, common to the master nodes i and
k in order to obtain the angles and distances necessary for
computing the translation parameters. The exact procedure for
obtaining these is given in Section III-C.

All master nodes wait for updates from their border nodes
with information to compute the rotational and translational
changes to be applied. From its set of master nodes, the border
node chooses the master node with the lowest ID and forwards
its coordinate information to the remaining master nodes, who
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Fig. 1. Estimation of dik through triangulation.
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Fig. 2. Special cases of the quadrilateral formation.

use this information and the steps outlined in Section III-C
to orient and recompute their positions. Thus at each step,
each master node changes its coordinate system to that of the
master node with the lowest ID amongst its neighbors. The
new coordinates for the domain are then broadcast using M3
messages so that the slaves can update their positions. This
procedure continues till the system converges to the coordinate
system of the master node with the minimum ID. Detailed
results on the cost and convergence times are presented in
Section IV.

C. Coordinate Translation and Position Computing

Nodes i,j,k,l now form a quadrilateral as shown in Figure
1 and now the distance dik between nodes i and k can be
obtained through triangulation, as described below.

Using triangles �(i, j, l) and �(k, j, l), the angles θ1, θ2,
φ1, φ2 can be obtained as

θ1 = cos−1 d2
il + d2

jl − d2
ij

2dildjl
θ2 = cos−1 d2

kl + d2
jl − d2

kj

2dkldjl

φ1 = cos−1 d2
ij + d2

jl − d2
il

2dijdjl
φ2 = cos−1 d2

kj + d2
jl − d2

kl

2dkjdjl

Then, using θ = θ1 +θ2, the distance dik can be calculated as

d2
ik = d2

il + d2
lk − 2dildlk cos θ (1)

Note however that for the special case shown in right hand
side (RHS) of Figure 2 which occurs if θ1 + θ2 < π, θ =
2π − θ1 − θ2. In order to find the orientation of node k with
respect to node i, we now need to calculate the angles α1 and
α2. These are given by

α1 = cos−1 d2
il + d2

ik − d2
kl

2dildik
α2 = cos−1 d2

ij + d2
ik − d2

kj

2dijdik

The final calculations for the rotation and mirroring of the
coordinate system at node k depends on the angle ωik of the
vector

−→
ik at node i (please see Figure 3). ωik can now be

obtained by adding or subtracting α1 from ωil depending on
the orientation of the quadrilateral ijkl. If node l forms the
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Fig. 3. Angles of the nodes j, k and l from node i (ωij , ωik and ωil

respectively) and angles of j and i from node k (ωkj and ωki respectively).

lower two sides of the quadrilateral, the for the quadrilateral
shapes in the RHS of Figure 2 and Figure 1, we add α1 while
for the quadrilateral in the LHS of Figure 2, we subtract α1.
For the general case, the node which forms the lower two sides
is determined by the following conditions

Lower node =






l if ωil < ωij AND ωij − ωil < π
l if ωil > ωij AND ωil − ωij > π
j if ωij < ωil AND ωil − ωij < π
j if ωij > ωil AND ωij − ωil > π

(2)
We also note that the quadrilateral on the RHS of Figure 2 is
characterized by the fact that φ2 > π/2. Then, ωik is given
by

ωik =
{

(ωil + α1)mod(2π) if φ2 < π/2
(ωil − α1)mod(2π) otherwise

(3)

The equation above assumes that node l is the lower node.
However, if j is the lower node, we replace ωil by ωij and φ2
by θ2 in the above equation. Similar calculations can also be
carried out to determine ωki. Now, following the arguments
of [4], for node k to orient itself to node i’s coordinates, the
following translations and mirroring are necessary:

if ωij − ωik < π AND ωkj − ωki < π

or ωij − ωik > π AND ωkj − ωki > π

⇒ mirroring is necessary

⇒ the correction angle = ωki + ωik

if ωij − ωik < π AND ωkj − ωki > π

or ωij − ωik > π AND ωkj − ωki < π

⇒ mirroring is not necessary

⇒ the correction angle = ωki − ωik + π

Since the coordinate systems of master nodes i and k now
have the same direction and the direction and magnitude of
the vector

−→
ik is known, the coordinates of any node m in the

domain of k can simply be calculated as
−→
im = −→

ik + −→
km (4)

IV. RESULTS

We now present the results comparing the performance our
proposed positioning system and the method outlined in [4]. In
the simulations conducted, we consider a rectangular region
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of length L units and breadth B units. We assume that the
nodes are distributed uniformly over this region with density
λ nodes/unit2. Each sensor has a range of r units and the
simulations assume a flat topology without any obstructions.

Our first results revolve around the requirements which
must be met before any GPS free positioning system become
applicable. Since these mechanisms are based on triangulation,
we need at least two neighbors for each node for obtaining
its location. Additionally, for our scheme of orienting the
coordinates of master node to be successful, each border
node effectively needs at least three other neighbors (in
case the third neighbor is not another border node, we need
more nodes). With the nodes being distributed randomly, the
probability that an arbitrary node has n neighbors can be
approximated by the Poisson distribution with parameter λa:

p(n) =
(λa)n exp−λa

λa!
(5)

In Figure 4 we compare this probability with those obtained
from simulations and note the close match. These results were
for an area of 20 × 20 units with r = 2. To find the critical
node density where the overwhelming majority of the nodes
have more than m neighbors, we note that

Prob(n ≥ m) =
∞∑

m

p(m) =
Γ(m) − Γ(m,λa)

Γ(m)
(6)

where Γ() represents the well known Gamma function. In
Figure 5 we show the probability that a node has 2 or more and
3 or more neighbors as a function of the node density. We note
that for node densities for more than 0.5 nodes per unit area,
more than 90% of the node have 3 or more neighbors. This
shows the effectiveness of our proposed positioning policy
to form coordinate systems encompassing the overwhelming
majority of the nodes, even with relatively low node densities.

In Figure 6 we compare the volume of traffic exchanged
by our proposed system with the one from [4]. We see that
while the volume of message exchanged by the system of [4]
increases exponentially with the node density, our positioning
mechanism scales linearly. This can be explained as follows:
All nodes converge individually to the chosen coordinate axis
according to [4] and then provide information required for
convergence to their immediate neighbors. This convergence
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Fig. 6. Communication overhead of convergence for the proposed methodol-
ogy (with clusters) and the one proposed by Capkun et al (without clusters).

information consists of the angle measures to all its neigh-
boring nodes. The size of each message transmitted is then
proportional to the number of nodes that it has. We consider
the case where the node broadcasts the angle information
about all its master node neighbors thereby resulting in lower
overheads. Now, the average number of neighbors for each
node is given by πr2λ. For a given area A, the average
number of nodes is given by Aλ. Thus, the overall volume
of traffic exchanged is proportional to λ2. In contrast, our
proposal scales all communication by the number of domains
rather than the number of nodes. Secondly, each message has
information about only two angles making the overall volume
of traffic much smaller. These results underline the the fact
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that our proposal is better suited for deployment in large scale
networks.

In Figure 7 we plot the number of rounds required by the
two positioning systems for various node densities. We note
that our proposed mechanism requires lesser time to converge
as compared to the method of [4]. Thus the methodology
proposed in this paper is a better candidate to extension to
mobile systems.

V. CONCLUSIONS

In this paper, we have proposed a distributed and scal-
able GPS free positioning mechanism. Our proposal provides
considerable improvement over current efforts by reducing
communication overheads and convergence times. The mech-
anism is cluster based and allows a distributed framework for
establishing a global coordinate system. This allows nodes
to be ad hoc deployable in a region without prior location
information and ensures a fast setup of the coordinate system.
Due to its scalability and fast convergence times, the proposed
mechanism is also an ideal candidate for extension to mobile
systems.
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APPENDIX

Let the domain of a master node i be denoted by Ki ( i
is the origin). Denote the distance between any two nodes, p
and q by dpq. A coordinate system can then be established, if
there exist two nodes p, q ∈ Ki such that dpq is known at node
i. With the master node i being the origin of the coordinate
system, either node p (or node q) can be defined to lie on the
positive x axis. Node q (or node p) is now assumed to have a
positive y component to define the y axis and the coordinates
of the nodes i, p and q are given by

px = dip; qx = diq cos γ
py = 0; qy = diq sin γ

(7)

where γ is the angle � (p, i, q) in the triangle �(p, i, q). For
any other node j, j ∈ Ki, j �= p, q for which dij , djq, djp are
known;

jx = dij cos αj (8)

jy =
{

dij sinαj if βj =| αj − γ |
−dij sinαj else

(9)

The angles αj and βj are obtained through triangulation as

αj = cos−1 d2
ij + d2

ip − d2
jp

2dijdip
(10)

βj = cos−1 d2
ij + d2

iq − d2
jq

2dijdiq
(11)

For nodes k ∈ Ki, k �= p, q which are not neighbors of p and
q, the positions can be calculated using its distances from two
other nodes for whom the positions are established.


