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ABSTRACT
Internet of Things (IoT) devices in clustered wireless networks can
be compromised by compromising the gateway which they are asso-
ciated with. In such scenarios, an adversary who has compromised
the gateway can affect the network’s performance by deliberately
dropping the packets transmitted by the IoT devices. In this way,
the adversary can actually mimic a bad radio channel. Hence, the
affected IoT device has to retransmit the packet which will drain
its battery at a faster rate. To detect such an attack, we propose a
centralized detection system in this paper. It uses the uplink packet
drop probability of the IoT devices to monitor the behavior of the
gateway with which they are associated. The detection rule pro-
posed is given by the generalized likelihood ratio test, where the
attack probabilities are estimated using maximum likelihood esti-
mation. Results presented show the effectiveness of the proposed
detection mechanism and also demonstrate the impact of the choice
of system parameters on the detection algorithm.
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1 INTRODUCTION
With the continuing growth of the Internet of Things, the demand
for connecting resource-constrained devices to the Internet has
been increasing quickly. It is estimated that more than fifty billion
devices would be connected to the Internet by 2050 [5]. This has
brought in many issues like security, network scalability, etc. [4,
7, 8, 17]. The increasing number of devices in the networks can
lead to radio access network congestion. Hence, the need to resolve
the network scalability issue becomes apparent. Clustering the
devices is one solution to the problem [2]. A set of IoT devices
are clustered and are assigned a gateway (or cluster head) which
would assist in forwarding the traffic to and from the Base Station
(assuming a cellular architecture). The gateways are generally those
devices that have superior transmission and processing capabilities.
The clustering of the IoT devices can be implemented in many
ways, e.g., based on the geographical location, the radio link quality,
etc. In terms of security, such a solution creates an opportunity
for an adversary to compromise a set of IoT devices merely by
compromising their gateway.

Even though message security can be achieved using various
approaches [12], the adversary can still compromise the network
by misusing the properties of the wireless communication channel.
In this paper, the adversary who has compromised the gateway
makes the IoT devices retransmit their packets by mimicking a bad
radio link between IoT device and gateway. This will affect the
network’s performance and at the same time drain the batteries
of the IoT devices at a faster pace. Hence, deploying Intrusion
Detection systems (IDS) to detect such attacks would be necessary
[21]. The major contributions of our paper are listed as follows:

(1) The gateways are monitored using a detection algorithm,
implemented at the access point, based on the Generalized
Likelihood Ratio Test. The statistic required for the same is
shared using a side channel from the IoT device to the access
point.

(2) We present an analytical method to estimate the parameters
of the adversary required by the detection system.

(3) The impact of the observation interval is demonstrated using
extensive simulations and it can be seen that the performance
of the IDS improves with the increase in the interval size.

(4) The numerical results demonstrate the trade-off between the
false alarm andmissed detection probabilities as a function of
the threshold and that the detection of an adversary becomes
easier with increasing attack probability.
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1.1 Related Work
Examples of attacks which cryptography cannot defend against
are Selective Forwarding, Black Hole and Channel degradation. Re-
searchers in the past have proposed to overcome such attacks using
various methods. Machine learning algorithms (such as the ones in
[20]), when designed using sufficient and appropriate training data
samples, can provide the desired performance. However, in reality,
it is problematic to inject packets into the networks to build the
training data. Authors in [15] propose a detection technique called
SVELTE to detect the presence of a selective forwarding attack.
The proposed system detects the adversary when it filters all the
packets or sends only the mapping request packets. In [16], the
authors have presented an approach based on the channel condi-
tions to detect selective forwarding attacks. A similar approach
was proposed in [11] to detect forwarding misbehavior of nodes.
However, a sensor monitoring the data packets of the forwarding
nodes can be expensive in terms of the energy consumed. Detect-
ing selective forwarding attacks using the traffic eavesdropped by
monitor nodes was proposed in [18]. It is however not practical
if the system requires a large number of monitor nodes. In [13],
the authors have proposed to detect selective forwarding attacks
by random selection of a single checkpoint node. To implement it,
however, we need to make major changes to the existing protocols.
A sequential probability ratio based detection systemwas presented
in [6] for detecting selective forwarding attacks. Their decision is
based on the expected transmission count of the nodes. A light-
weight heart-beat protocol is proposed in [19]. In this approach, an
echo is sent to every node in the network. A selective forwarding
attack is detected when there is no reply received from the affected
nodes. However, an intelligent attacker might simply refrain from
dropping the echo packets and stay undetected.

In our previous work [3], we considered an adversarial gateway
which corrupts packets to be forwarded to IoT devices (i.e. the
gateway attacks the downlink channel of the IoT devices). The
probability of attack was assumed to be constant over all the devices.
In contrast to [3], in this paper we consider an adversarial gateway
which attacks the uplink channel of the IoT devices. Further, the
probability of attack can be different for different devices. In this
paper, we also discuss and analyze the impact of the observation
interval and attack probabilities on the proposed IDS’s performance.

1.2 Paper Organization
The rest of the paper is organized as follows. In Section 2, the net-
work and adversary models are described. In Section 3, we propose
the detection system and design the key parameters of the system.
In Section 4, results are presented to show the effectiveness of the
system and also to show the impact of the choice of the key parame-
ters on the detection performance. Lastly, in Section 5, we conclude
our paper and present a few directions for future research.

2 SYSTEM MODEL
2.1 Network Model
In general, a clustered IoT networkwill havemore than one gateway
for assisting the IoT devices. Since the algorithm we present is the
same for every gateway, we chose the following simpler but still
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Figure 1: Network Model Illustration.

appropriate network. We consider an IoT network with one access
point,AP , one gateway,G , andM IoT devices,D j ∀j = {1, 2, · · · ,M },
associated with the gateway. The IoT devices exchange information
with the secured access point AP via the gateway. One possible
way to implement such a model is to follow the IEEE 802.11ah
specification where the gateways in the network operate as “decode
and forward" relays [1].

It is assumed that every IoT device has the ability to directly
communicate with the access point wirelessly, but at a bit rate lower
than it can communicate with its gateway. To extend the coverage
of network in order to enable the IoT devices to communicate with
the AP and vice-versa, techniques like frequency hopping, power
boosting, etc. can be used [14]. Before the IoT device associates
itself with the AP , it will disassociate itself from its gatewayG . The
same side channel will be used by the proposed detection system
which will be elaborated upon in Section 3. The network model
is illustrated in Fig. 1. The dashed lines representing direct links
between IoT devices and the AP are low-rate connections and the
solid line represents the link via G. The wireless channel between
any two devices in the network is assumed to be memoryless.

For any network in normal operation, there is a non-zero prob-
ability of decoding the bits in a packet in error due to various
naturally occurring channel and network non-idealities, and/or
protocol level behavior. In such a case, the packet will be dropped
and a retransmission will be requested by the device. The packet
drop probability (PDP) of a packet received by gateway G from a
device D j is assumed to be known and denoted by α j (i.e. uplink
PDP). One of the possible ways to estimate the natural or normal
PDP is by measurements when the network is operating normally.

2.2 Adversary Model
We now describe the strategy employed by an adversary who has
compromised the gateway G. The adversary tries to disrupt the
communication between the access point and IoT devices connected
to G. This is achieved by deliberately requesting the IoT devices
to retransmit a successfully received packet. The probability that
the gateway requests the device D j to re-transmit a successfully
received packet is δj . When a request for re-transmission (sent by
the gateway) arrives at the device, the device interprets that the



packet previously sent was received in error by the gateway. Hence,
the IoT device re-transmits the packet. By deliberately sending
such retransmission requests, the attacker can adversely impact
the battery lifetime of the IoT devices and at the same time degrade
the performance of the network as measured by other quality of
service parameters such as throughput and delay. In the presence of
such an attack, a packet can be dropped either due to the network
non-idealities or the action of the gateway. Hence, the PDP of a
packet received from a device D j communicating with the AP via
malicious gateway G is given by:

βj = δj + (1 − δj )α j (1)

where δj , j ∈ {1, · · · ,M } are unknown random variables. Such
attacks are difficult to detect since the attacker is mimicking a bad
radio channel.

3 INTRUSION DETECTION SYSTEM
In this section, we present our intrusion detection system (IDS)
which is proposed to be implemented at the AP . In the presence
of an attack, it is evident from Section 2.2 that PDP of the uplink
packets of all IoT devices with δj > 0 increases. Hence, we use this
parameter to identify whether the gateway is malicious or not. The
proposed IDS performs a binary hypothesis test with the following
hypotheses:
• Hypothesis H1: Gateway is compromised and is selectively
dropping the packets.
• Hypothesis H0: Gateway is not compromised and is in nor-
mal operation.

The Intrusion Detection System requires the following abilities to
be enabled in the network:

(1) All the IoT devices track the total number of packets sent
to the gateway, which includes the number of packets re-
transmitted due to a NACK received from the gateway either
explicitly or implicitly.

(2) The AP keeps track of the number of uplink packets (Rj ) of
D j successfully received from G.

(3) At regular intervals, say with a time periodT , each IoT device
D j updates the AP about the number of packets sent (Pj )
using the side channel mentioned in Section 2.1. In this paper,
for simplicity, we assume Pj varies linearly with T , i.e., Pj =
λjT . Without loss of generality, we assume the unit of T is
ms and the unit of λj is packets/ms.

3.1 Probability Distributions of the Hypotheses
We denote the number of uplink packets of device D j dropped by
the gateway by Nj . Then,

Nj = Pj − Rj . (2)

We assume that the packet drops of different devices are indepen-
dent. When there is no attack, packets are dropped with proba-
bility α j , and hence the probability distribution of the variables
Nj , j ∈ {1, · · · ,M } under the hypothesis H0 is given as follows:

P (Nj = k |H0) =

(
Pj
k

)
(α j )

k (1 − α j )Pj−k (3)

for k ∈ {1, · · · , Pj }. Similarly, when the gateway is compromised
the PDP increases to βj , and the probability distribution of the

variables Nj , i ∈ {1, · · · ,M } under the hypothesis H1 is given as:

P (Nj = k |H1) =

(
Pj
k

)
(βj )

k (1 − βj )Pj−k (4)

for k ∈ {1, · · · , Pj }. We can assume that the wireless channels used
by the IoT devices in the network are independent since they will
likely be placed more than a few wavelengths apart from each other.
Using this assumption, variables Nj , j ∈ {1, · · · ,M } are indepen-
dent. The joint probability distribution under hypothesis H0 is now
defined below, where N = [N1, · · · ,NM ] and n = [n1, · · · ,nM ].

P (N = n |H0) =
M∏
j=1

P (Nj = nj |H0). (5)

Similarly, the joint probability distribution under hypothesis H1 is

P (N = n |H1) =
M∏
j=1

P (Nj = nj |H1). (6)

3.2 Detection Algorithm
The likelihood ratio test (LRT) [10], which is known to maximize
the probability of detection for any given probability of false alarm,
is the optimum detection rule. The LRT decides in favor of H1 if
and only if the following holds:

P (N = n |H1)

P (N = n |H0)
> γ . (7)

Since the equation in (7) involves parameters δj , j ∈ {1, · · · ,M }
which are assumed unknown at the detector, we use the Generalized
LRT (GLRT) [10] where the unknown parameters are replaced with
their maximum likelihood estimates (MLE) [9]. This will be further
elaborated on in Section 3.3. Assuming that δ̂j , j ∈ {1, · · · ,M } are
the MLEs of δj , j ∈ {1, · · · ,M }, we now proceed to derive the
detection algorithm as follows where βj is replaced by β̂j , δ̂j +

(1 − δ̂j )α j . The detection algorithm decides in favor of hypothesis
H1 when

M∏
j=1

(β̂j )
nj (1 − β̂j )Pj−nj

(α j )nj (1 − α j )Pj−nj
> γ (8)

⇒

M∏
j=1

a
nj
j (1 − δ̂j )Pj > γ (9)

⇒ S =
M∑
j=1

Sj > log(γ ) = Γ (10)

where Sj = nj log(aj ) + Pj log(1 − δ̂j ) and aj =
β̂j

α j (1−δ̂j )
.

3.3 Probability Estimation
In this section, we derive the MLEs of the probabilities δj , j ∈
{1, · · · ,M }. This is obtained bymaximizing (6) overδj , j = {1, . . . ,M }.
It can be observed that the values of the probabilities which max-
imize (6) are the same values which maximize their individual
probability distributions. Hence, the MLE of δj is obtained by set-
ting the derivative of P (Nj = nj |H1) with respect to δj to zero,



under the constraint that δj ≥ 0, i.e.,

δ̂j = max *.
,
0,

nj
Pj − α j

1 − α j
+/
-
. (11)

We now provide an upper bound on the variance of the estimate δ̂j .
Since estimating the mean (µ̂ j ) and the variance (σ̂ 2

j ) of the estimate
of δj (, 0) is difficult, we calculate bounds on both the mean and

variance. Say, δ̂ ′j =
nj
Pj
−α j

1−α j which implies that δ̂j = max(0, δ̂ ′j ).

It can be seen that δ̂ ′j ≤ δ̂j which implies that E[δ̂ ′j ] ≤ E[δ̂j ].

Also, δ̂ ′j
2
≥ δ̂j

2 which implies that E[δ̂ ′j
2
] ≥ E[δ̂j

2]. Using these
observations, the following can be inferred:

E[δ̂j
2] − (E[δ̂j ])2 ≤ E[δ̂ ′j

2
] − (E[δ̂ ′j ])

2. (12)

Hence, the bounds on the mean and the variance of δ̂j are as follows:

µ̂ j ≥ µ ′j and σ̂
2
j ≤ σ ′2j (13)

where µ ′j , δj is the mean of δ̂ ′j and σ
′2
j ,

βj (1−δj )
Pj (1−α j ) is variance of

δ̂ ′j . Using (13) and the fact that Pj = λjT , we get

σ̂ 2
j ≤

βj (1 − δj )
λjT (1 − α j )

. (14)

It can be seen from (14) that the variance decreases as we increase
T . Hence, for a higher T , a more accurate estimate can be expected
with higher probability.

3.4 Performance Characteristics
To evaluate the performance of the algorithm in (10), we use the
false alarm and missed detection probabilities. The probability that
the detection system decides on H1 in the absence of an attack is
defined as the false alarm probability (PFA). The probability that
the detection system decides on H0 in the presence of an attack is
defined as the the missed detection probability (PMD ). We have

PFA = P (S > Γ |H0) (15)

PMD = P (S ≤ Γ |H1). (16)
Using the expressions obtained for the estimated attack probabilities
in (11), the expression for Sj , for Nj = nj , can be written as follows:

Sj =



nj log
(

nj (1−α j )
α j (λjT−nj )

)
+ Pj log

(
λjT−nj

λjT (1−α j )

)
, if nj

Pj > α j

0, if nj
Pj ≤ α j

We know that the probability distribution of Nj is binomial but find-
ing the distribution of Sj is not trivial. Hence, it is difficult to find
analytical expressions for PFA and PMD . We therefore use numeri-
cal techniques to obtain the threshold Γ for which the false alarm
probability is equal to a desired value ϵ . Note that the attack proba-
bilities are zero under hypothesis H0, and so PFA is independent of
the attack probabilities chosen by the adversary. However, for the
threshold chosen to meet the desired PFA value, the corresponding
PMD is a function of the attack probabilities. The proposed IDS’s
performance in terms of PMD will still be acceptable as long as
attack probabilities are not too small, which we can assume to be
true since otherwise, the attack would not be effective.
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Figure 2: Sample Variance and Upper Bound of the Variance
of attack probability δ1 (vs) T

4 RESULTS
In this section we present simulation results to show the effective-
ness of the system and variation of the performance characteristics
with T . Secondly, we demonstrate the impact of the threshold Γ on
the performance of the IDS. Lastly, the impact of T on the variance
of the estimated attack probabilities is demonstrated. For this, we
use a network setup with one access point, one gateway and eight
IoT devices associated with the gateway.

4.1 Variance of the MLE Estimates
We now demonstrate the impact of T on δ̂j , the estimates of the
attack probabilities. We chose the device D1 whose parameters are
available in Table 1 and ran the following steps:

(1) For a given value of T , we determine the number of packets
dropped for the IoT Device D1.

(2) We then calculate δ̂1 using (11).

The sample variance of δ̂1, for a given T , is calculated using the
estimates obtained from 105 Monte Carlo simulations. The results
obtained are plotted in Fig. 2. It can be seen from the figure that the
variance decreases as the value of T increases. By increasing T , the
number of packets observed will increase. With such an increase,
more information is available which implies better accuracy. It can
also be seen that the upper bound calculated is very close to the
real estimated value.

4.2 Performance Characteristics
The parameters used for demonstrating the performance of the
detection algorithm in (10) are tabulated in Table 1. We choose two
different time periods (T ) whose values are 400ms and 800ms. For
calculating PFA, the following steps were followed for a given T :

(1) We setup the network using the Hypothesis H0, i.e., all the
values of δj , j ∈ {1, · · · ,M } are equal to zero.



IoT Device α j δj (under H1) λj
D1 0.0789 0.2 0.125
D2 0.2028 0 0.125
D3 0.0891 0 0.125
D4 0.2343 0.2 0.125
D5 0.2136 0 0.125
D6 0.0612 0 0.125
D7 0.0478 0 0.125
D8 0.0605 0.2 0.125
Table 1: Parameters of the Devices
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Figure 3: (a) Simulated PFA forT = 400ms. (b) Simulated PMD
for T = 400ms

(2) In every iteration, using simulations, we determine the num-
ber of packets dropped for every IoT Device.

(3) The values of δj , j ∈ {1, · · · ,M } are calculated using (11).
(4) We then plug in the values in (10) and compare with a pre-

defined threshold (Γ) to decide which hypothesis is true.

PFA is obtained by averaging over 106 such Monte Carlo simu-
lations. The same is repeated for calculating PMD with the only
difference being that the network is setup using Hypothesis H1.
The attack probabilities used in this case are mentioned in Table
1. The variation of PFA and PMD as a function of the normalized
threshold (Γ′ , Γ

T ) for the setup is shown in Fig. 3. It can be seen
that as Γ′ increases, the value of PFA decreases and the value of
PMD increases. The performance of the detection algorithm with
increasingT is shown in Fig. 4, using plots of PFA and PMD against
T . As can be seen from Fig. 4, both PFA and PMD decrease with
increasing T for the same Γ′. The same can be inferred from Fig.
5 where we are able to achieve a better performance for a higher
value of T .
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Figure 4: Varying PFA and PMD withT (in ms) for Γ′ = 0.0145
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Figure 5: Simulated PMD (vs) PFA

4.3 Impact of Attack Probabilities
To demonstrate the effect of the attack probability on PMD , we
varied δ1 from 0.1 to 0.5. The results obtained, shown in Fig. 6,
depict that PMD decreases with increasing attack probability. To
demonstrate the effect of increasing devices under attack, we used
the following scenarios:
• Scenario 1: The parameters mentioned in Table 1 are used
except for the values of δ4 and δ8 which are zero in this case.
• Scenario 2: The parameters mentioned in Table 1 are used
except for the value δ4 which is zero in this case.
• Scenario 3: The parameters mentioned in Table 1 are used.

The results obtained, shown in Fig. 7, depict that as the number of
devices effected increase, the value of PMD decreases. Hence, there
is a trade-off between the adversary’s choice of attack probabilities
and the probability of the attack being discovered.
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Figure 6: Simulated PMD (vs) δ1 for T = 400ms
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Figure 7: Simulated PMD (vs) PFA for different scenarios

5 CONCLUSION AND FUTUREWORK
A novel approach for detecting an adversary who is corrupting
the communication between an IoT device and the access point by
compromising the gateway is presented. The condition for detec-
tion is derived using GRLT and is based on the number of packets
transmitted by the IoT devices and dropped at the gateway. The
estimates for the probabilities δj , j ∈ {1, · · · ,M } are obtained using
MLE. Results presented demonstrate the impact of the choice of
T on performance characteristics, the effectiveness of the detector
with varying Γ and the tightness of the upper bound to the real
value. The impact of the choice of Γ on detector performance was
demonstrated using numerical results.

In our future work, we would be working on obtaining analytical
results for PFA and PMD . Another interesting future work is the de-
sign of an optimum attack where the attacker affects the network’s
performance while staying undetected.
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