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Abstract—Detecting anomalies in smart grids is vital to safe-
guarding systems from attacks and failures. As critical compo-
nents in IEC 61850-based substation communication, Generic
Object-Oriented Substation Event (GOOSE) messages are par-
ticularly vulnerable to replay, insertion, and flooding attacks,
which can compromise availability. However, existing anomaly
detection methods mainly focus on traditional network flows
like TCP/IP, neglecting the semantic information and structured
characteristics of GOOSE messages. This limits the ability to
exploit rich information and detect potential attack indicators.
Moreover, imbalanced datasets and unseen anomaly types pose
additional challenges, highlighting the need for robust few-shot
and zero-shot learning approaches. To address these challenges,
we propose GAMMPT framework for GOOSE anomaly detec-
tion. GAMMPT first leverages pre-trained large language models
to extract semantic features and then tackles data imbalance
by decomposing multi-class detection into binary classification
tasks to improve precise anomaly type recognition. Subsequently,
it employs an attention-based Multi-gate Mixture-of-Experts
(attMMoE) model to enhance few-shot learning through shared
experts and improve anomaly detection accuracy. To enhance
zero-shot learning, GAMMPT clusters GOOSE messages and
incorporates contrastive learning to enhance embedding robust-
ness. Experiment shows that GAMMPT achieves state-of-the-art
performance on real-world datasets.

Index Terms—GOOSE Anomaly Detection, Zero-Shot, Cyber-
Security, Multi-Gate Mixture-of-Experts, Large Language Model

I. INTRODUCTION

Ensuring the optimal operation of power grids requires
robust communication security for critical infrastructures [1].
In substation communication networks, data availability often
takes precedence over confidentiality and integrity [2]. IEC
61850 is widely adopted as a communication standard for
smart grids, which can facilitate seamless communication
among intelligent electronic devices (IEDs) within substations.
GOOSE (Generic Object Oriented Substation Event) messages
serve as an important part of IEC 61850-based substation
communication networks, enabling the efficient and real-time
monitoring of substation operations. This functionality is es-
sential for maintaining the safety, stability, and efficiency of
the substation. However, since the IEC 61850 standard does
not include built-in security features, GOOSE messages are
vulnerable to replay, insertion, and flooding attacks, which
can significantly compromise data availability and disrupt the

substations. Hence, the cyber-security of GOOSE has been
identified as a vital issue for the substations.

Recently, there has been growing interest within the research
community in enhancing GOOSE cyber-security for modern
smart grids. Several studies have explored encryption-based
security measures for GOOSE messages [3], but failed to
meet the time-criticality requirements. Machine learning-based
approaches have also gained traction, for instance, SVM, Ran-
dom Tree, KNN, etc. The study[4], [5] proposed supervised
learning to detect various cyber-attacks using GOOSE and
Sampled Value data. Jay et al. [6] employed unsupervised
learning DBSCAN and autoencoder to detect intrusion in
GOOSE messages. In [7], a network-level system for efficient
detection of GOOSE-based poisoning attacks was proposed
to monitor the substation’s local area network through port
mirroring on switches.

Although the above research has achieved promising re-
sults in detecting anomalies and attacks, most of them
rely on processed GOOSE datasets, which often strip away
the rich semantic and structural information present in
the original parsed data (e.g., JSON format). The parsed
GOOSE message often contains diverse data types (e.g.,
timestamps, strings, numeric values, etc.) as shown in Fig.
1 (data in JSON format). For instance, “Activity” is “in-
form,” indicating normal communication. Similarly, values like
“SIP3 Abgang3MEAS/LLN0$Meas-000” that deviate from
historical ranges may signal attacks or equipment failures.
These GOOSE messages are half-structured and have their
semantics, which are similar to natural language corpus.
However, for such data, traditional machine learning models
may require predefined features or feature engineering by
experts, neglecting the rich semantic information, thus leading
to a significant loss of critical attack indicators. There are
many Large Language Models (LLMs) such as ChatGPT [8],
Llama [9], Mistral [10], BERT, etc., which are effective in
extracting semantic information from text data. Recent studies
have leveraged pre-trained and fine-tuned Language Models
for anomaly detection in various domains, such as analyzing
log data [11] and validating or interpreting financial anomalies
[12]. Inspired by these works, we propose to leverage pre-
trained LLM to extract semantic and structural features from
GOOSE messages, which can capture rich information and



Fig. 1: The illustration of parsed Goose-message.
detect potential attack indicators.

Another issue is data imbalance, where normal samples or
some anomaly class dominate the dataset, while others are
severely underrepresented. This imbalance increases the risk of
overfitting to frequent classes, reducing the model’s ability to
generalize. Therefore, it is essential to address data imbalance
to improve the model’s performance in detecting anomalies.
In this paper, we target this problem of few-shot anomaly
detection. Few-shot learning scenarios, where only a handful
of labeled samples per anomaly class are available, further
complicate precise anomaly type recognition. Paper [13] pro-
posed a Siamese convolutional neural network to mitigate
overfitting and enhance few-shot learning anomaly detection
in industrial CPS. Unlike these studies, GOOSE anomaly
detection involves both textual and numerical features, making
it distinct and more complex.

Moreover, existing anomaly detection techniques are often
evaluated only on known anomaly classes seen during training.
In practice, models are often required to evaluate samples
in an open-world setting: that is, to detect anomalies in
previously unseen and novel classes. Despite its significance,
cross-category generalization has received limited attention in
the literature. Especially in cyber-security area, we may fail to
identify the new unknown attacks because we have no patterns
or signatures of the attacks to feed into a supervised classifier.
Zero-shot learning methods aim to generalize to unseen classes
without direct training, as seen in paper [14], which applied
unsupervised approach for texture image anomalies. In this
work, we target this problem of GOOSE zero-shot anomaly
detection, where the model is trained to detect anomalies in
the “Insertion attack”, “Flooding attack” and ”Suppression”
classes and expected to generalize to detect anomalies in
the previously unseen anomaly classes (e.g, ”Replay attack”)
without further training.

In this paper, we propose a novel framework, GOOSE
Attention-based Multi-gate Mixture-of-Experts with a Pre-
Trained LLM (GAMMPT), to address the identified chal-
lenges. GAMMPT first leverages a pre-trained LLM to extract
semantic and structural information from GOOSE messages.
It then employs an attention-based Multi-gate Mixture-of-
Experts (attMMoE) model to capture anomaly distinctions
and model task relationships to identify connections between
different anomaly patterns to improve the accuracy in few-
shot learning scenarios. For zero-shot, GAMMPT utilizes

contrastive learning with clustering to enhance the embedding
robustness. Our contributions are as follows:

1) We proposed a novel GAMMPT framework, achiev-
ing state-of-the-art performance on real-world GOOSE
datasets.

2) We leverage pre-trained LLMs to extract semantic and
structural features from semi-structured GOOSE data. To
the best of our knowledge, this is the first work applying
LLMs for GOOSE anomaly detection.

3) We introduce an attMMoE model, which formulates
task relationships and mitigates data imbalance through
dynamic expert selection.

4) We develop a contrastive learning strategy with cluster-
ing to enable robust zero-shot anomaly detection.

II. PRELIMINARIES AND PROBLEM FORMULATION

1) Data Preprocessing: In this work, we use PowerDuck
[15], which contains 30,000 logs from IEC 61850 GOOSE
network traffic in a real substation testbed. Unlike many
existing synthetic datasets, PowerDuck offers more realistic
industrial data, making it a valuable complement for sub-
station security research. The dataset includes 14 anomaly
classes and normal traffic. The dataset is imbalanced, with
some anomaly classes being significantly underrepresented.
For example, ‘replay-old-measurements’ has only 82 samples,
while ‘flood-repeat’ contains up to 10,278 samples. To prepare
the data for GAMMPT, we removed null or irrelevant fields
such as ‘response to,’ ‘crc,’ and ‘id.’ Fields with identical
values across all records, such as ‘transcriber-config,’ ‘pro-
tocol,’ and ‘type,’ were also discarded. Source (‘src’) and
destination (‘dest’) addresses are string-mapped to ‘src(dest)’
+‘i’ for consistency. Malicious labels are converted to inte-
gers, {‘Normal’: 0, ‘sup-2’: 1, ‘insert-distort-meas-up-grad’:
2, ‘flood-bloat-repeat’: 3, ‘insert-distort-meas-up-sharp’: 4,
‘insert-distort-meas-down-sharp’: 5, ‘sup-1-1-tbv0’: 6, ‘sup-1-
1-tbv2’: 7, ‘insert-distort-meas-down-grad’: 8, ‘sup-1’: 9, ‘sup-
1-1-tbv1’: 10, ‘flood-repeat’: 11, ‘replay-old-measurements’:
12, ‘insert-fake-open-w-intermediate’: 13, ‘insert-fake-open-
only-end’: 14} (for more information on each anomaly class,
see [15]). While in ‘data’, we replace ‘:’ with ‘is’ and remove
special symbols such as ‘-’, ‘ ’, ‘/’, and ‘$.’ All values
are converted to strings, column names are standardized to
match the GOOSE protocol’s feature name dictionary, for
instance: “src”: “source MAC address”, “dest”: “destination
MAC address”, “length”: “frame length”, “activity”: “activity
type”. The preprocessed data can be seen in Fig. 1.

2) Problem Formulation: GOOSE anomaly detection task
is a multi-class classification problem. The task is formulated
as follows: f : xi → yi, where xi is the i-th GOOSE message,
yi = {0, 1, ..., 14} is the anomaly label of xi.

III. METHODOLOGY

This section describes the GAMMPT framework in de-
tail, including the core components: pre-trained LLMs, the
attMMoE model, and contrastive learning with clustering for
zero-shot learning. The GAMMPT framework is illustrated in



Fig. 2: The GAMMPT framework.

Fig. 2. Each component of the framework is assigned a stage
number in the figures for clarity.

1) Pre-trained LLM (Step 1): The pre-trained LLM (Dis-
tilbert in this work) is used to extract semantic and
structural features from the GOOSE messages. After
encoding, the LLM output of xi is represented as hi.

2) AttMMoE learning(Step 2): To improve the accuracy
of anomaly type recognition, we decompose the multi-
class detection task into multiple binary classification
tasks. The shared GOOSE expert and the attention-based
gate fusion mechanism are used to capture anomaly
distinctions and model task relationships, which can
improve the model’s interpretation and robustness.

3) Label prediction (Step 3): The outputs from attMMoE
are passed to the prediction module (constructed by lin-
ear networks), to generate predicted labels for GOOSE
messages.

A. Pre-trained LLMs

LLMs have shown unprecedented inference ability in many
downstream NLP tasks. Thus, we expect them to be ef-
fective in extracting semantic and structural features from
GOOSE messages. In this work, we leverage DistilBERT
[16] as the backbone for our semantic feature extractor due
to its balance of efficiency and effectiveness. DistilBERT, a
lightweight version of BERT, offers faster training and infer-
ence while retaining much of BERT’s language understanding
capabilities, making it practical for real-world applications.
It should be noted that we only utilize the embedding of
the pre-trained DistilBERT while keeping the LLM model
frozen. The output of the pre-trained DistilBERT is denoted as
h = DistilBERT (x),x = [xi, · · · , xi+b] , where b denotes
the batch size.

B. AttMMoE Learning

While the embedding hi effectively represents general se-
mantic information, they may struggle to distinguish fine-
grained anomaly types due to the complex and overlapping

feature space in GOOSE messages, especially in highly im-
balanced datasets. To address this, we propose the attMMoE
model to enhance anomaly type recognition.

First, we decompose the multi-class detection task into
multiple binary classification tasks. Since the patterns and
features of each anomaly category are usually quite different,
it is easier to capture these features by processing them indi-
vidually. Through multi-task learning, the attMMoE model can
simultaneously capture diverse anomaly characteristics, which
can improve the model’s capacity to handle data imbalance.
In this work, we set up 15 tasks for few-shot learning, each
of which is a binary classification task. For example, the first
task is to distinguish between normal and “sup-2” anomalies,
the second task is to distinguish between normal and “insert-
distort-meas-up-grad” anomalies, and so on. For the zero-shot
learning task, we set up 2 tasks.

The attMMoE model consists of two main components: a
shared GOOSE Experts and an attention-based gate fusion
mechanism.

1) Shared GOOSE Experts: In our study, we use the
Mixture-of-Expert (MoE) model [17] to handle multiple
anomaly detection tasks. We share a group of GOOSE experts,
and the number of experts is set as M , the number of task
is set as T , N represents the total number of samples. Each
expert Ej is a neural network designed to capture task-specific
anomaly features. The core of the MoE model is a task-specific
router that dynamically selects the most relevant experts based
on the input features. Specifically, for each task ι, we use a
learned Noisy Top-k gating network (Gι) as a personalized
router, which assigns a relevance score to each expert based on
the input h. The output (zι) of the ι-th task MoE is calculated
by aggregating the contributions of the top-k selected experts:

zι =

k∑
j=1

Gι(h)E
j(h). (1)

For Gι, to encourage exploration during training, we introduce
tunable noise into the gating process and then keep the top k
values to select the most important k experts. The relevance
score for the expert is computed as follows:

Hι(h) = (h ·Wgι) + SN(Softplus((h ·Wnoiseι))), (2)

where Wgι and Wnoiseι are learnable parameters, and the SN
function adds Gaussian noise for exploration. We then apply
the Top-k selection:

Top− k(v, k) =

{
vi, if vi is among the top-k values in v,

0, otherwise.
(3)

The output is activated by a Softmax function and references
the weights assigned to each expert. Each expert will then
contribute to the final output based on the weights:

Gι(h) = Softmax(Top− k(Hι(h), k)). (4)

Remark 1: We only select the top-k relevant experts to
improve inference speed and reduce computational costs. The



gating network in a standard MoE setup tends to activate the
same few experts, leading to inefficient training. To encourage
balanced expert utilization and avoid the collapse of expert
selection in standard MoE, we adopt a Noisy Top-k gating
strategy. Gaussian noise promotes exploration across experts,
while Softplus ensures smooth and positive gating scores. This
combination improves training efficiency and expert diversity
without compromising task relevance.

2) Attention-based Gate Fusion Mechanism: While tradi-
tional MoE utilizes exclusive experts to learn different feature
classes, single-task learning models often fail to capture the
full complexity of GOOSE-embedded features. To address this
limitation, we introduce the attMMoE model, which combines
a multi-gate mixture of experts (MMoE) [18] and an attention-
based gate fusion mechanism to enable feature sharing across
tasks. Specifically, the attention-based gate fusion mechanism
aggregates outputs from decoupled anomaly detection tasks,
thus enabling our model to share relevant information across
tasks. The attention mechanism dynamically fuses these de-
coupled features, which can help the model determine the
correct anomaly type based on task-specific relevance. The
attention calculation of the attMMoE is as follows:

Qi = Wqzi + bq, (5)

Kj = Wkzj + bk, (6)

Vj = Wvzj + bv, (7)

where Qi, Kj , Vj are the query, key, and value vectors of the
i-th and j-th tasks, respectively. Wq , Wk, Wv are projection
matrix for queries Q, keys K and values V , and bq , bk, bv
are the bias terms. The attention score between task i and j is
calculated as: αij =

QiK
T
j√

dk
, where dk is the dimension of the

key vectors. The attention score is then normalized using the
Softmax function, αij = Softmax(αij). The output of the
attMMoE is calculated as: z =

∑T
j=1 αijVj . Then, the output

z is input into the prediction module to predict the anomaly
label. ŷ = Wlz+bl, where Wl and bl are the learnable weight
and bias of the linear layer, respectively. The cross-entropy loss
of target label y and predicted label ŷ is calculated as:

Lcross−entropy = − 1

N

N∑
i=1

yi log(ŷi). (8)

C. Contrastive learning with clustering

To enhance the model’s practicality, we address a zero-shot
learning scenario where GAMMPT learns prior knowledge
about both normal and abnormal behaviors to detect unseen
anomalies. To achieve this, we propose integrating contrastive
learning and clustering to improve embedding robustness (as
seen in the ‘zero-shot’ part of Fig. 2). During the learning
stage, DBSCAN clusters GOOSE embeddings generated by
attMMoE, and the clustering results are used to assign pseudo-
labels in an unsupervised manner. The number of clusters is
C. Embeddings from the same cluster are denoted as positive
pairs (z

′

i, z
′

j), while embeddings from different clusters are

negative pairs (z
′

i, z̃
′

j). These pseudo-labels are then used for
contrastive learning, which maximizes the agreement between
embeddings from the same cluster while separating dissimilar
ones. This approach strengthens representation learning by
aligning embeddings of related anomalies while distinguishing
unrelated ones. As a result, the model achieves better gen-
eralization ability for detecting unseen anomaly classes. The
contrastive loss is calculated as:

Lcont = − 1

N

N∑
i=1

log
exp(sim(z

′

i, z
′

j)/τ)∑N
j=1 exp(sim(z

′
i, z̃

′
j)/τ)

. (9)

The contrastive loss is computed to optimize this embedding
space by pushing positive pairs closer and negative pairs
farther apart, enhancing the model’s robustness in zero-shot
anomaly detection.

IV. EXPERIMENTAL RESULTS

In this section, case studies are conducted on the PowerDuck
dataset [15]. Our GAMMPT is first compared against several
baselines in few-shot learning and zero-shot learning. Then,
an ablation study analysis is conducted, accompanied by
visualization analyses.

A. Baseline

We compare the proposed GAMMPT with several baselines,
including Design tree, SVM, KNN, MLP, LSTM, and fine-
tune DistilBERT in a few-shot learning scenario. For a zero-
shot learning scenario, we also compare the GAMMPT with
Llama and Mistral, which are state-of-the-art models for
zero-shot learning. All baselines are trained with the same
GOOSE embeddings as GAMMPT, which is the output from
DistilBERT.

B. Experimental Setups

In the experiments, the batch size for all models is set
to 16. The learning rate for other baselines is set to 1e-4,
GAMMPT uses 1e-5 as the learning rate, while the fine-tuning
DistilBERT, LLaMA, and Mistral use a learning rate of 5e-5.
The dropout rate is fixed at 0.3 for all models. In the attMMoE
model, the number of experts M is set to 16, with the top-k
selection set to 4. For the contrastive learning with clustering
module, the number of clusters C in DBSCAN is set to 5. The
temperature parameter τ in the contrastive loss is set to 0.1. We
evaluate few-shot learning using a 10-shot setting. For zero-
shot learning, the model is trained on 5 anomaly classes (e.g.,
labels 0-5) and tested on 10 unseen anomaly classes (labels
6-14). The experiments ran for 200 communication rounds,
selecting the model with the minimum global validation loss
as the final model. Hyperparameter settings, including learning
rates {1e-5, 5e-5, 1e-4}, batch sizes {16, 32, 64}, and dropout
rates {0, 0.3, 0.5, 0.7}, are optimized using GridSearch.

All comparative experiments are implemented using Python
3.10 on an Nvidia A100 GPU. The evaluation metrics used are
weighted precision, weighted recall, and weighted F1-score,
which accounts for class imbalance by using the sample size
of each category as a weight.



TABLE I: Few-shot learning anomaly detection performance
comparison.

Model Precision Recall F1-score
DistilBERT(frozen)+Design tree 0.7475 0.5931 0.5155

DistilBERT(frozen)+KNN 0.9768 0.9768 0.9704
DistilBERT(frozen)+SVM 0.9866 0.9814 0.9817
DistilBERT(frozen)+MLP 0.9652 0.9455 0.9383

DistilBERT(frozen)+LSTM 0.7357 0.0586 0.1046
DistilBERT (fine tune) 0.9461 0.9366 0.9355

GAMMPT 0.9852 0.9819 0.9824

C. Few-shot Learning Anomaly Detection Performance Com-
parison

In the training dataset, normal data is split into training
(70%), validation (15%), and testing (15%) sets. Each anomaly
class has 10 samples reserved for training, with the remainder
evenly split between validation and test sets. The few-shot
learning results are summarized in Table I. Decision Tree
performs poorly due to its limited capacity to handle complex
feature representations from frozen embeddings. KNN and
SVM outperform fine-tuned DistilBERT, which shows that
combining pre-trained embeddings with appropriate classifiers
can enhance anomaly detection while fine-tuning alone is
insufficient. Among neural network-based models, MLP sur-
passes LSTM. LSTM likely overfits due to limited training
samples. This indicates that overly complex models may
struggle in few-shot scenarios. GAMMPT achieves the best
performance, with a weighted precision of 98.52%, recall
of 98.19%, and F1-score of 98.24%, outperforming most
of the other baselines. Its superior results demonstrate the
effectiveness of the MMoE framework for shared learning
across tasks and attention-based gate fusion (attMMoE) for
aggregating task-specific features. These mechanisms enable
GAMMPT to capture feature relationships and improve task-
specific representations, making it highly effective for anomaly
detection in few-shot learning scenarios.

D. Zero-shot Learning Anomaly Detection Performance Com-
parison

In the zero-shot learning setting, data labeled 0-5 is desig-
nated as known, while data labeled 6-14 represents unknown
anomalies. The known data is divided into a testing set (70%),
with the remainder evenly split into training and validation
sets. The final testing set includes unseen known samples (0-5)
and all unknown anomaly samples (6-14). The results, sum-
marized in Table II, show that most baselines perform poorly
in recall and F1-score due to the presence of unseen anomaly
classes. However, Llama and Mistral, state-of-the-art LLMs,
achieve relatively high precision, recall, and F1 scores. This
indicates that LLMs possess inherent inference capabilities
gained from pre-training on large-scale datasets, which enable
them to generalize better and recognize feature patterns even in
unfamiliar anomaly classes. GAMMPT achieves the best per-
formance with weighted precision (95.58%), recall (92.27%),
and F1-score (93.18%), outperforming all the baseline models.
Compared to the worst result, GAMMT improves in precision,
recall, and F1-score 30%, 59%, and 86%, respectively. The

TABLE II: Zero-shot learning anomaly detection performance
comparison.

Model Precision Recall F1-score
DistilBERT(frozen)+Design tree 0.7356 0.5811 0.5005

DistilBERT(frozen)+KNN 0.7692 0.5828 0.5034
DistilBERT(frozen)+SVM 0.8681 0.8424 0.8149
DistilBERT(frozen)+MLP 0.8317 0.7803 0.7375

DistilBERT(frozen)+OneClassSVM 0.9363 0.1063 0.1703
DistilBERT (fine tune) 0.917 0.4893 0.5732
Llama (Llama-3-8B) 0.9038 0.8304 0.8561
Mistral (Mistral-7B) 0.861 0.9018 0.8586

GAMMPT 0.9558 0.9227 0.9318

TABLE III: Ablation study of the attMMoE model.

Model Precision Recall F1-score
MoE(FS) 0.9776 0.9728 0.9725

MMoE(FS) 0.9817 0.9784 0.9793
GAMMPT(FS) 0.9852 0.9819 0.9824

MoE(ZS) 0.922 0.646 0.7168
MMoE(ZS) 0.9286 0.7511 0.8008

GAMMPT(ZS) 0.9558 0.9227 0.9318

superior performance of GAMMPT can be attributed to its use
of contrastive learning combined with clustering. By leverag-
ing feature similarities between known and unknown anomaly
classes, the model effectively clusters similar representations.
This can strengthen the robustness of the learned embeddings,
and enhance the model’s generalization ability in detecting
previously unseen anomaly classes.

E. Ablation Study

1) AttMMoE model ablation experiments: To evaluate the
effectiveness of the attMMoE model, we conduct ablation
studies by comparing GAMMPT with the MoE and MMoE
framework in both few-shot learning (FS) and zero-shot (ZS)
learning. The results are summarized in Table III. Results
show that GAMMPT with MMoE outperforms MoE in both
few-shot and zero-shot scenarios, demonstrating that modeling
task relationships can enhance the ability to capture anomaly
distinctions. The attMMoE model further improves perfor-
mance by aggregating task-specific features and improving
task-specific representations. Compared with the worst result
in zero-shot learning, GAMMPT achieves improvements of
3.7%, 42.8%, and 30%, respectively. The results reveal that the
attMMoE model is effective in enhancing anomaly detection
in few-shot and zero-shot learning scenarios.

2) Contrastive learning with clustering ablation experi-
ments: To evaluate the effectiveness of contrastive learning
with clustering, we conduct an ablation study by comparing
GAMMPT with and without contrastive learning in zero-shot
learning. As shown in Table III, GAMMPT with contrastive
learning outperforms GAMMPT without contrastive learning
in precision, recall, and F1-score, improved by 3%, 22.7%,
and 16.4%, respectively. This suggests that contrastive learning
with clustering can enhance embedding robustness and im-
prove the model’s generalization ability in zero-shot anomaly
detection.

F. Visualization Analysis

We examined embedding learning from attMMoE by using
t-SNE visualization (Fig. 3). Before training, the embeddings



TABLE IV: Ablation study of contrastive learning with clus-
tering.

Model Precision Recall F1-score
GAMMPT(ZS) 0.9283 0.7522 0.8016

GAMMPT(ZS)+Contrastive 0.9558 0.9227 0.9318

(a) Before Training (b) After Training

(c) Before Training (Zero-shot) (d) After Training (Zero-shot)

Fig. 3: Visualization of embedding space using t-SNE.

show partial clustering, but there remain significant blank
indicating incomplete representation learning. Anomalies of
the same type, such as those in purple, are dispersed across the
embedding space rather than being concentrated in a distinct
region, reflecting limited latent space regularization. After
training, the embedding space becomes more organized and
evenly distributed, with distinct boundaries between different
anomaly types. This improvement highlights attMMoE’s abil-
ity to enforce latent space regularization, creating a smooth
and continuous embedding space.

Similarly, in the zero-shot learning setting, before training,
the embedding space has some overlap between different
anomaly classes. attMMoE with contrastive learning further
improves the embedding space’s structure. Similar embeddings
are grouped while dissimilar embeddings are pushed apart,
demonstrating improved generalization through contrastive
learning. Overall, the combination of attMMoE and contrastive
learning leads to efficient feature extraction, enabling the
model to learn meaningful, task-specific embeddings while
maintaining generalization capabilities.

V. CONCLUSION

This paper presents GAMMPT, a novel framework for de-
tecting anomalies in GOOSE-based substation communication,
designed to enhance the security and resilience of power sys-
tem operations. By integrating a Pre-Trained Large Language
Model with attMMoE, contrastive learning and clustering,
GAMMPT effectively identifies diverse cyber anomalies, even
under limited labeled data conditions. The approach improves

the robustness and generalization capability of anomaly de-
tection models, making it well-suited for deployment in real-
world substations. In future work, we aim to develop an LLM-
driven knowledge base of communication anomaly patterns to
support proactive grid monitoring and situational awareness.
Additionally, we plan to further investigate the theoretical
foundations of the attMMoE architecture to enhance model
interpretability.
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