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Abstract—Pedestrian dead reckoning (PDR) is a widely used
approach to estimate locations and trajectories. Accessing
location-based services with trajectory data can bring conve-
nience to people, but may also raise privacy concerns that need to
be addressed. In this paper, a privacy-preserving pedestrian dead
reckoning (P 3DR) framework is proposed to protect a user’s
trajectory privacy based on differential privacy. We introduce
two metrics to quantify trajectory privacy and data utility.
Our proposed privacy-preserving trajectory extraction algorithm
consists of three mechanisms for the initial locations, stride
lengths and directions. In addition, we design an adversary
model based on particle filtering to evaluate the performance
and demonstrate the effectiveness of our proposed framework
with our collected sensor reading dataset.

Index Terms—Pedestrian dead-reckoning, Trajectory privacy,
Differential privacy, Location-based services

I. INTRODUCTION

With the ubiquity of location-based services (LBS), indoor
localization techniques have attracted more attention. Indoor
positioning systems (IPSs) can support many applications to
bring convenience to users. Hence, bountiful IPSs have been
proposed according to different technologies, such as radio
frequency identification (RFID), WiFi [1], Bluetooth, ultra-
wideband (UWB), or their hybridization. PDR is another in-
door positioning technique based on inertial sensors embedded
in mobile terminals.

PDR [2] estimates movements and directions using the read-
ings from an inertial measurement unit (IMU) incorporating an
accelerometer, a magnetometer and a gyroscope. It generates
trajectories for mobile users by adding estimated displacement
to the previous location with three phases: step detection,
stride length estimation, and orientation estimation. It can
realize calibration-free indoor localization without additional
preparations and infrastructures. With the increase of trajectory
distance, PDR will produce cumulative error drifts.

With the rapid development of Internet of Things (IoT),
an individual’s trajectory data can be collected by service
providers with high accuracy. Analysing human movement
traces can help design more services such as navigation, social
recommendations and delivery tracking. Such information and
analysis can also help build a more intelligent city, e.g., ur-
ban planning, transportation management, and epidemiological
analysis, etc. While publishing trajectory data brings great
benefits, it also results in serious privacy threats to individuals

since some sensitive information can be extracted, such as
home address, relationships, religious beliefs and even health
status. Therefore, it is important to protect trajectory privacy
while accessing LBS and releasing trajectory data.

To address such privacy problems, numerous privacy pre-
serving mechanisms have been proposed, such as k-anonymity
[3], dummy trajectories [4], mix-zones [5] and confidence
bounding [6]. Differential privacy [7] has also been applied
to trajectory publishing, which is a mathematical construct to
provide provable privacy protection to any individual whose
data is in a statistical database. Mechanisms following such
theory can provide a provable privacy guarantee.

Although trajectory data is spatio-temporal and discrete, the
location correlations need to be considered. In addition, some
partition-based approaches, like k-anonymity, mix-zones, and
confidence bounding, are not suitable for publishing trajecto-
ries against many types of attacks, such as composition attack
and foreground knowledge attack. To solve these problems,
there has been some previous work on differentially private
trajectory publishing. However, these works may be still
vulnerable since most of them protect the user’s trajectory
privacy by generating synthetic trajectories with the received
raw trajectories. Motivated by the weakness of traditional
anonymization methods and the risk of synthesizing pseudo
trajectories according to the original trajectories, we propose
the P 3DR method to generate suitable and reasonable pseudo
trajectories directly based on differential privacy.

The main contributions of this paper can be summarized as
follows.

1) We propose a LBS system solution to preserve trajectory
privacy and location privacy together based on differen-
tial privacy and find the tradeoff between privacy and
data utility;

2) We introduce two metrics, trajectory correlation score
and service performance score, to quantify privacy and
data utility;

3) We present a privacy-preserving trajectory extraction
algorithm based on PDR to generate pseudo trajectories;

4) We implement and evaluate our proposed framework
with our collected mobile sensor dataset and design an
adversary model to show the robustness of our system.

The rest of the paper is organized as follows. The related
work on PDR and trajectory privacy is introduced in Section II.



Section III presents the theory and procedure of the traditional
PDR. In Section IV, the preliminaries of differential privacy
are introduced. The system model and our proposed Trajectory
Privacy Preserving Mechanism (TPPM) are systematically
presented in Section V. We also propose an adversary model
in Section VI. In addition, the effectiveness evaluation and
analysis are illustrated in Section VII. Section VIII concludes
this paper.

II. RELATED WORK

With the development of Micro-Electro-Mechanical Sys-
tems (MEMS), applications based on mobile sensors are
widely used for localization and navigation. Jeong et al. [2]
proposed a step, stride and heading determination method in
the pedestrian navigation scenario. They derived the relation-
ship between stride and accelerometer readings and proposed
an integration scheme of gyroscope and magnetic compass. In
[8], a map matching enhanced PDR algorithm was proposed
to calibrate the location estimation together with the particle
filter. They used the corridor information to calibrate the
location and direction estimation with an improved particle
filter and map filter. Wang et al. [9] proposed a landmark-
aided PDR indoor positioning system, which combined WiFi
and PDR techniques to define landmarks to correct cumulative
errors. These are some localization methods to generate user
trajectories based on PDR technique and IMU readings. While
releasing trajectories for further services, trajectory privacy
should be taken into consideration seriously.

Trajectory privacy has attracted many researchers and tradi-
tional trajectory privacy preserving mechanisms are based on
anonymization and differential privacy. Nergiz et al. [10] pro-
posed a generalization-based k-anonymity method to achieve
trajectory anonymization. They enhance the privacy preserving
effectiveness by a randomized reconstruction approach to gen-
erate representative trajectories. Soheila et al. [11] proposed a
trajectory generative mechanism (TGM) based on differential
privacy by encoding the given trajectories and generating
synthetic trajectories. In their proposed framework, they used
Laplace mechanism to add noise and Exponential mechanism
to select locations adaptively with a directed budget restoring
algorithm. In [12], a differential privacy trajectory synthesis
system was proposed to synthesize mobility data. They used
hierarchical reference systems with different resolutions to
generate speed-varying trajectories.

Most of the above-mentioned approaches neglected the ad-
versary’s possible activities while designing privacy preserving
mechanisms and published the generated or synthesized trajec-
tory data according to the user’s raw trajectories. However, the
adversary model cannot be disregarded since it is crucial and
necessary to evaluate the robustness of a TPPM. To address
this open problem in this paper, we design an adversary model
based on particle filter and validate the effectiveness and
efficiency of our proposed framework. In addition, we propose
a P 3DR framework to generate pseudo trajectories directly,
rather than obtain raw trajectories first for further processing.

III. TRADITIONAL PDR

PDR is a pedestrian positioning solution that estimates the
pedestrian’s current position by adding the travelled displace-
ment to the previously determined position, defined as:

lt = lt−1 + ∆lt ·
[
sin(ψt)
cos(ψt)

]
(1)

where lt is the position at step t, lt−1 is the position at step
t − 1, ∆lt is the step length and ψt is the walking direction
at step t.

A. Step Detection

Peak detection algorithm can be used for step detection
since accelerometer readings may present periodical variations
[2], while the pedestrian is walking horizontally. Acceleration
jitters may cause false detection of peaks and steps, so two
thresholds need to be determined to constraint the magnitude
and the time interval of peaks, namely the pedestrian’s walking
speed.

B. Stride Length Estimation

The simplest method to estimate stride length is setting a
fixed step length according to the body characteristic of the
pedestrian. According to pedestrian’s walking features, some
dynamic approaches are established, such as the Weinberg
approach, the Kim approach and the Scarlet approach [2]. In
particular, the Weinberg approach estimate the stride length
by

L = K × 4
√
amax − amin (2)

where K is a constant, amax and amin are the maximal and
minimal acceleration in the vertical direction during one step.
This method is based on the principle that the hip vertical
displacement is proportional to the step length with some
degree.

C. Orientation Estimation

The orientation can be obtained from the measurements
of the accelerometer, gyroscope and magnetometer by the
Euler angle algorithm and the quaternion algorithm [13]. In
this paper, we use the quaternion-based algorithm to update
attitude angle since it can avoid the singularity problem. The
attitude quaternion can be defined as

q̇ =
1

2
q ⊗ ω (3)

where q = q0 + q1i + q2j + q3k is the quaternion, qi(i =
0, 1, 2and3) is a real number, ω = 0 +ω1i+ω2j+ω3k is the
quaternion of the attitude angular velocity and ⊗ denotes the
multiplication. The rotation matrix can be calculated as

R =

q20 + q21 − q22 − q23 2(q1q1 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23


(4)



Since the magnetic field is unstable indoors, gravity is
involved to calibrate the orientation estimation [8]. The roll
and pitch can be calculated as

roll = arctan

(
− −gx√

g2y+g
2
z

)
pitch = arctan

(
− −gy√

g2x+g
2
z

) (5)

where gx, gy , and gz are the triaxial gravity in the x, y, and z
directions respectively. The regenerated ωg can be determined
as

ωg(i) = ω(i)∗R(roll(i−1), 1, 0, 0)⊗R(pitch(i−1), 0, 1, 0), i ≥ 2.
(6)

Finally, we can calculate the attitude angle update as

∆θ =
1

6
(ωg

z (i− 3) + 2ωg
z (i− 2) + 2ωg

z (i− 1) + ωg
z (i))×Ts, i ≥ 4

(7)
where Ts is the sampling period.

IV. DIFFERENTIAL PRIVACY

A. Definition

Differential privacy was proposed by Dwork [14] and its
basic principle is to make the probabilities of obtaining the
same result be quite close by searching two adjacent datasets
with only one different record.

Definition 1 (Differential Privacy): A randomized algorithm
M gives ε-differential privacy if for all S ⊆ Range(M) and
for all datasets D1, D2 such that ‖D1 −D2‖1 ≤ 1,

Pr{M(D1) ∈ S} ≤ exp(ε)× Pr{M(D2) ∈ S} (8)

where ‖D1 −D2‖1 is the distance between D1 and D2 to
measure how many records differ in the two datasets.

B. Differential Privacy Mechanisms

There are two types of differential privacy, one is centralized
differential privacy, the other is local differential privacy
(LDP). The main approach to achieve centralized differential
privacy is by adding Laplacian or Gaussian noise and such
mechanisms are implemented in a server.

Definition 2 (Laplace Mechanism): Given any function f :
D → R, the Laplace mechanism ML is defined as

ML(D) = f(D) + Lap

(
∆f

ε

)
. (9)

Laplacian and Gaussian mechanisms are two solutions for
numerical data. Moreover, exponential mechanism is a method
to randomize the results for non-numerical or categorical
data. Randomized response, a research method always used
in questionnaire or survey interview, is a major perturbation
mechanism for LDP. LDP assumes that the data collector is not
trustworthy, therefore, the mechanism should be implemented
before sending original data to the data collector.

C. Composition theorems

In a privacy sensitive systems, it is possible to have more
than one blocks or datasets. So we need to combine several pri-
vacy preserving mechanisms together to solve more sophisti-
cated problems. There are two types of composition theorems:
sequential composition [15] and parallel composition [16].

Theorem 1 (Sequential Composition): Suppose mechanisms
M1, M2, · · · , Mk sequentially access a private dataset
D and each mechanism Mi satisfies εi-differential privacy,
their combination M = {M1,M2, · · · ,Mk} will provide
ε-differential privacy with ε = ε1 + ε2 + · · ·+ εk.

Theorem 2 (Parallel Composition): Suppose mechanisms
M1, M2, · · · , Mk access disjoint datasets D1, D2, · · · , Dk

and each mechanism Mi satisfies εi-differential privacy, their
combination in parallel will provide ε-differential privacy with
ε = max{ε1, ε2, · · · , εk}.

V. P 3DR SYSTEM

A. System Model

In traditional PDR systems, users request their initial lo-
cations from location service providers as the first step and
forward their initial locations and mobile sensor readings to
trajectory generation service providers to obtain their positions
and trajectories. In our proposed P 3DR system, there are
five entities as shown as Figure 1. To preserve the user’s
location privacy and trajectory privacy, the location service
provider generates pseudo initial locations with the built-
in location privacy preserving mechanism (LPPM) and the
trajectory generation service provider estimates trajectories
with the built in TPPM. The whole procedure of the P 3DR
system follows the user’s pre-defined privacy budgets. Since
we have implemented three privacy preserving mechanisms
together following the parallel composition principle and there
are three privacy levels in our framework, namely, the privacy
level ε1 for initial locations, the privacy level ε2 for stride
lengths, and the privacy level ε3 for angles, the total privacy
budget ε can be computed as ε = max{ε1, ε2, ε3}. Finally,
the trajectory generation service provider releases generated
trajectories to the application service provider to access LBS.
In our proposed system, we assume that an adversary may
infer users’ destinations by eavesdropping.

Fig. 1. System Model



B. Metrics

Two metrics, the trajectory correlation score and the service
performance score, are introduced to quantify the trajectory
privacy and trajectory data utility.

Definition 3 (Trajectory Correlation Score): For any user
with a pair of the real trajectory T = {(xi, yi)|i = 1, 2, · · · , n}
and the generated trajectory T ′ = {(x′i, y′i)|i = 1, 2, · · · , n},
the trajectory correlation score S can be defined as

S = S(x)× S(y), (10)

where S(x) = 1 −
∏n
i=1

{
1− exp

(
− |d

i
x|
R

)}
and S(y) =

1 −
∏n
i=1

{
1− exp

(
− |d

i
y|
R

)}
, dix = xi − x′i and diy = yi −

y′i represent the distances of the latitudes and the longitudes
between the positions on the real trajectory and the generated
trajectory at i-th time slot, and R is the correlation range of
the location distance to indicate the social relation.

Definition 4 (Service Performance Score): For a pair of
the real trajectory and the generated trajectory, the service
performance score U can be defined as

U = ω1 ×
1

∆L
+ ω2 ×

1

dis(ln, l′n)
+ ω3 ×

1

ddiameter
, (11)

where ∆L is the total trajectory length difference, dis(ln, l′n)
is the distance between the destination and the generated
trajectory’s ending position, ddiameter = maxi,j dis(l

u
i , l

u
j ) −

maxi,j dis(l
u′

i , l
u′

j ) is the diameter error, and ω1, ω2 and ω3

are the coefficients of these three factors.

C. LPPM

In our proposed P 3DR system, we introduce our previously
proposed LPPM to protect the user’s initial location privacy
[17]. With a given initial location (xi, yi) and a privacy level
ε1, we can compute the Laplacian noise rLap added to the
true location [18] within the location service quality threshold
(rmin, rmax) by

rLap =

∣∣∣∣−1

ε
(W−1(

p− 1

e
) + 1)

∣∣∣∣ , rmin ≤ rLap ≤ rmax (12)

where p = rand(1) is uniformly distributed in the interval
[0, 1] and W−1 is the LambertW function. Since p ∈ [0, 1],
rLap has its own range (0, 1ε ) and (rmin, rmax) should be
within this range. The relationship among these parameters
can be summarized as 0 ≤ rmin ≤ rLap ≤ rmax ≤ 1

ε . Then,
we can generate the pseudo initial location with a random
direction θ = rand(1) · 2π as{

x
′

i = xi + rLap · cos(θ)

y
′

i = yi + rLap · sin(θ).
(13)

D. TPPM

In our proposed P 3DR system, we propose a trajectory
extraction algorithm based on the traditional PDR and preserve
the user’s trajectory privacy by adding constraints and Lapla-
cian noise as shown in Figure 2. With the received pseudo
initial locations and mobile sensor readings, our proposed

Fig. 2. Trajectory Extraction Algorithm

TPPM adds Laplacian noise to the estimated stride lengths and
angles to generate pseudo trajectories according to the user’s
pre-defined privacy budgets (i.e., privacy level ε2 for stride
lengths and privacy level ε3 for angles). At the same time, we
should also ensure the generated trajectories are reasonable.
Therefore, we involve three constraints to limit the step speed,
the stride length and the direction. We assume users cannot
walk more than 5 steps per second and their stride lengths are
always less than 1.5 meter. As for the direction, we use the
turning detection before adding noise to the angle. While the
user is not making a turn, the Laplacian noise will not be added
to the angle and the current step will be assumed to continue
as previously determined. The User’s current pseudo positions
are estimated by adding the perturbed displacement to the
previously determined pseudo positions. The final generated
trajectories are sent to the application service provider for
accessing further services.

VI. ADVERSARY MODEL

In our proposed P 3DR framework, we assume the ad-
versary’s goal is to infer the users’ actual destinations or
the ending positions, because destinations can provide more
valuable information for the adversary to explore the user’s
desired interests in some trajectory-related LBS. We also
assume that the adversary can receive the released trajectories
and has the prior knowledge of the walking area map. In
particular, the walking area means the user can only walk in
this area and cannot pass through obstacles such as rivers,
buildings, etc. Therefore, we introduce two constrains for our

Fig. 3. Adversary Model



proposed adversary model. One constraint is that the user can
only walk in the walking area, and the other is that the user’s
steps in a trajectory must be continuous. Then, we propose a
practical particle filter algorithm for the adversary to infer the
end positions as shown in Algorithm 1. Particle filtering has
been applied in some indoor tracking systems since different
particles with weights can represent the uncertainty of the
location estimation. The weights and particles are updated for
each step according to the distance error between the particles
and the pseudo states. The pseudo states are the observable
positions on the pseudo trajectory. So we use the particle filter
to improve the inference results and involve the constraints
to avoid generating unsuitable particles. The structure of our
proposed adversary model can be illustrated as Figure 3.

Algorithm 1: Practical Particle Filter
Input: The released pseudo trajectory Z and the

waling area region S
Output: The inferred ending position Pe

1 Initialize all the particles P (:, i) as samples randomly
distributed in the region S, for k = 1, i = 1 : N ;

2 for k = 2 : T do
3 Obtain the current observable position Z(:, k) on

the pseudo trajectory;
4 Each particle predicts its next location P (:, i) in

the possible located area S, for i = 1 : N ;
5 Compute the distance error between particles and

the pseudo state
Errdis = norm(P (:, i)− Z(:, k));

6 Compute weights for each particle

ω(i) =
(

1/
√
R/
√

2π
)
× exp

(
−Err

2
dis

2R

)
;

7 Normalize the weights;
8 Re-sampling to update particles;
9 Find the center of all the particles PCenter(:, k);

10 Define the inferred ending position as the final center
of the particles Pe = PCenter(:, T );

11 Return Pe;

VII. RESULTS AND EVALUATION

Figure 4 illustrates the P 3DR generated trajectories with
different privacy levels. The red path shows the real trajectory
of the user, and the yellow path is the generated trajectory
by the traditional PDR with raw sensor readings. The rest
of the paths in Figure 4 are the generated trajectories by
our proposed P 3DR system with different privacy levels. In
particular, the higher the differential privacy level, the lower
the trajectory privacy preservation level the user obtains. Thus,
the black path shows the P 3DR generated trajectory with a
large differential privacy level, which is the closest result to
the real trajectory. On the contrary, the blue path shows the
P 3DR generated trajectory with the small differential privacy
level, which is the most discrepant result to the real trajectory.
According to the results shown in Figure 4, it can be concluded

that our proposed P 3DR system can generate reasonable
and suitable pseudo trajectories based on different differential
privacy levels to protect the user’s trajectory privacy.

To further evaluate our proposed system, we introduce an
adversary model based on the use of particle filter. Figure
5 shows the initial state of our proposed practical particle
filter algorithm. The yellow dots present the initialization of
particles, which cannot be located on the motorways or inside
the buildings. The red crosses are the points of interest (POIs)
in our simulation scenario. The green dot is the user’s initial
position and the blue dot is the center of all the initial particles.
In Figure 6, the red path shows the user’s real trajectory, and
the green path shows the generated pseudo trajectory by our
proposed P 3DR system with the differential privacy level
ε = 2. The blue path shows the adversary inferred trajectory,
which consists of the centers of all the particles. Our proposed
adversary model can infer the user’s possible destination to
some extent since the end position of the blue path is closer
to the user’s destination than the pseudo destination.

To receive more general and convincing results, we simulate
our proposed P 3DR system with different differential privacy
levels from 0 to 10, and the interval of differential privacy
level equals to 0.001. Figure 7 and Figure 8 illustrate the
relationship between the trajectory privacy and the differential
privacy level and the relationship between the trajectory data
utility and the differential privacy level. Both the trajectory
correlation score and the service performance score increase
gradually with an increase in the differential privacy level.
Thus, our proposed P 3DR system can protect the user’s
trajectory privacy and generate reasonable pseudo trajectories
for the user according to her pre-defined privacy levels.

Figure 9 shows the performance of our proposed adversary
model. Since we assume that the adversary’s goal is to infer
the user’s destination, we compute the distances between
the inferred final positions and the real destinations as the
adversary final error to evaluate the adversary’s performance.
The adversary final error as shown as the black curve in Figure
9 is always below the blue curve, which is the pseudo final
error. Therefore, our proposed adversary model can infer the
user’s possible destination to some extent, but not exactly.
In addition, we compute the average distance between each
pair of positions on the adversary’s inferred trajectory and
the real trajectory as the adversary average error, and the
adversary model can also reduce the pseudo average error
slightly. Therefore, our proposed framework is robust and can
still preserve the user’s trajectory privacy against the adversary.

VIII. CONCLUSION

This paper proposed the P 3DR framework for trajectory
privacy preservation based on differential privacy and the
technique of PDR. We introduced two metrics to quantify the
trajectory privacy and the trajectory data utility, and proposed a
trajectory extraction algorithm to generate pseudo trajectories.
We also proposed an adversary model based on particle filter
to evaluate the P 3DR system, and simulate with our collected
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mobile sensor dataset to show the detailed procedure of pro-
tecting the user’s trajectory privacy and the robustness of our
system. In our future work, we will consider the accelerometer
based data privacy since publishing acceleration data alone
is enough to extract some sensitive information including
locations and trajectories. We plan to follow the LDP principle
to design a acceleration privacy preserving mechanism to
enhance the degree of users’ privacy preservation.
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