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Extended Abstract

The physical constraints of battery-powered sensors impose
limitations on their processing capacity and longetivity. As
battery power in the nodes decays, certain parts of the net-
work may become disconnected or the coverage may shrink,
thereby reducing the reliability and the potency of the sen-
sor network. Since sensor networks operate unattended and
without maintainence, it is imperative that network failures
are detected early enough so that corrective measures can
be taken.

Existing research has primarily concentrated on develop-
ing algorithms, be it distributed or centralized, to optimize
network longetivity metrics. For instance, [4, 5] propose
MAC layer optimizations to prolong longetivity, while [7, 6]
look at the problem from a Layer 3 perspective. Works along
the lines of actually building network models for energy con-
sumption are addressed in [2], [3], but these models fail to
capture the interplay between a node’s spatial location and
it’s energy consumption.

In our current work, we develop an unifying framework
to characterize the lifetime of such energy constrained net-
works, and obtain insights into their working. In particular,
we employ a framework similar to population models for bi-
ological systems, to model the network lifetime. We consider
both spatial scenarios, where a node’s power consumption
is governed by it’s position in space as well as non spatial
scenarios, where the node’s location and power consumption
model are independent entities.

MODEL

To model the lifetime of such energy constrained networks,
we propose a generalization of Leslie’s population matrix [1],
which is used to study populations structured by age. The
“age” of a node in our model corresponds to the amount
of the battery power consumed, with one unit of power ex-
pended per packet transmitted, and the “age” of any node
lies in one of the m + 1 possible intervals; 0,1,--- ,m. In
other words, we assume that each sensor has enough en-
ergy to transmit m packets and the nodes in the network
are structured based on this value. Our model makes the
following assumptions

1. Power mainly expended to transmit packets
*This work was supported by NSF under grant 0347623
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2. Network Lifetime can be discretised into “cycles”, wherein

each cycle spans a communication round among the
nodes

3. Probability of receiving ¢ packets, : = 0,1,--- ,m, to
transmit is same in all cycles

Let n;(t) denote the number of nodes in age group % at
time t, i.e. ni(t) denotes the number of nodes which have
used up % units of the total quota of m. Let p;, 0 < i < mde-
note the probability that a node consumes 7 units of energy
in a time unit (we derive expressions for p; below). Then,
the number of nodes at each energy level at an arbitrary
time step is given by

no(t+1) = pono(t)
ni(t+1) = pona(t) + pino(t)
Nmo1(t+1) = ponm-1(t) +P1rm—2(t) + - + Pm—-1n0(t)
Pt +1) = nm)+ Y pinm-1()+ P pinm-2(t)
i=1 i=2

m
ot YD P (t) + pmno(®)
t=m—1
The rationale behind the above formulation can be justified
as follows: a node with full power at time ¢ (class ng) will
retain it’s entire battery reserve only if it receives no packets
to route for the duration of the cycle. The probability of this
event is po, and by mean-field analysis the expected number
of nodes receiving zero packets is pono(t), which in turn is
the count of nodes with full battery power at time ¢ + 1.
Similarly the number of nodes in class n1 at time t + 1 is
the sum of nodes in class n; that route zero packets, and
the nodes in class no that spend one unit of energy at time
t. For enumerating the nodes of class m, note that a sensor
inclass n; ¢ =0,---,m — 1 will power down if it receives
more than m — i routing packets and the probability of this
event is given by ZZ‘:(m_i) pi i =0,---,m. Also, in the
scenario where expended energy is not replenished, a sensor
that had no battery power during the cycle starting at ¢ will
continue to remain powered down at ¢+ 1 and hence the
equation for nm,(t + 1). The above formulation can also be
expressed in a vector-matrix form. To this end, we define



the (m + 1)-dimensional column vector g; and matrix A as
follows

no(t)
na(t)
0t == .

nm(t)
Do 0 0 0 0 0
p1 Po 0 0 0 0
A= P2 mn Po 0 0 0
Pm ﬂ_l Pi Z’m”_z Pi ;n pi 1

The model then can be expressed as the vector difference
equation fi+1 = Apf:. This formulation is equivalent to a
discrete time Markov chain as the number of nodes at a
particular energy level is dependent only on the number at
the previous cycle. The solution of this difference equation
is easily obtained, using a recursive definition, as: pzy1 =
At*15,: where g is the initial distribution of nodes among
the various energy levels. In our simulations we assume
that at time ¢ = 0, all the nodes are fully powered, i.e. n;
0 Vi > 0 and no = N. What now remains is determining
the probabilities for the energy consumption during a cycle.

The potency of the framework developed here lies in it’s
inherent ability to be abstracted to networks with varied
node deployment as well as routing schemes. In the current
work we highlight and investigate the interplay between a
node’s geographical co-ordinates in space and it’s power con-
sumption under the aegis of shortest path routing by con-
sidering two scenarios: (1) a spatial model where the sensor
nodes are located at the vertices of a finite grid and (2) a
non-spatial model where nodes are randomly and homoge-
neously distributed such that traffic conditions at each node
are statistically identical.

0.1 Spatial Network

To consider a node’s spatial location on its energy con-
sumption rates and node lifetime, we consider a deployment
scenario where the sensor nodes are placed at the vertices of
a finite grid, as shown in Fig. (1). The co-ordinates of node
4, ¢ =1,---, N in the grid (x:,y:) is determined as follows:
z; = (i - 1)/v/N and y; = (i — 1)%VN.

We now incorporate the contribution of a node’s geo-
graphic location into the derivation of the power consump-
tion probabilities under the assumption that the network
employs shortest path routing. The following probability is
assumed to be known: p,, the probability that in a given
cycle a sensor node (say i) has a new packet to send to an-
other node (say j) in the grid. The probability that a node
¢ has a packet to transmit during a cycle is the probabil-
ity of the union of two mutually exclusive events: the event
of a node initiating a communication session and the event
where it receives a routing request. The probability of the
latter, pr;, can be obtained by using the conditional proba-
bility of it receiving a packet, given two nodes in the network
communicate. Mathematically, for node i
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Figure 1: An example of a grid topology for sensor
networks.
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Note that, for each pair (j,k), the expression for (k,j) com-
municating through node ¢ has the same numerical value
since the grid is symmetric and hence the summation in
Eqn (1) is multiplied by a factor of two. Now, the probabil-
ity that two particular nodes, say j and k£ communicate is:

Pr{j and k communicate} = ﬂé—:—’fiﬁ. In other words, the

2
pair (j,k) can be selected from (/N —1) nodes (since node 7 is
not a candidate) in (') ways and for nodes j and k to com-
municate, it is sufficient if either initiates a session. The ex-
pression for Pr{session between j and k is through ¢} is de-
rived as follows. Let (2:,¥:), (5, Y;), (Zk, yx) denote the co-

ordinates of nodes 4, j and k respectively. Defining, Az; ; £

A .
|z; — x| and Ayi; = |ys — y;| , we obtain: r5; = Az ; +
Ay; ;. Similarly values for r;r and ri; can be obtained
using the previous definition. Now,

Liki .«
Pr{session between j __ ‘i};&,’f if Tik +Tij =Tk @)
and k is through i} o otherwise

where

Lips= | M9 Tik
ht Az | \ Az

Given the probability of a sensor initiating a session, ps,
each cycle sees an average of Np, sessions. To obtain the
state probabilities, p;, ¢ = 0,--- , m, we again condition on
the node’s geographic location.

N
Pr{a node transmits i packets} = Z Pr{a node transmits
k=1

i packetsjnode id = k} x Pr{node id = k} (3)

Note that, a node k transmits ¢,% > 0 packets during a rout-
ing cycle if it either receives 7 routing packets and does not
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(a) Grid Model: Analysis vs. Simulation

Figure 2: Simulation results

initiate a session or starts a communication session and re-
ceives i — 1 routing requests. In our model, we analyse the
sytem with the number of communication sessions per cycle
at Nps, though theoretically the upper bound is N. The
simulations validate our intuition that the expected number
is a good approximation of the underlying communication
process. Denoting Pr{node id = k} by P, the state prob-
abilities can be expressed as follows:

(1 = pa)(1 = ppie) VP }'Pk

(1 = pa) (VP)phy (1 = ppe) VP
pi =
+pa (VP NPV (1 - p,e k)N”S_‘}Pk 0<i< Nps

0 otherwise

Also, the evaluation of Pr{node id = k} has two possibili-
ties: one where the choice of a node is equally likely among
the N nodes present and the second, where the selection
of the node is governed by it’s location. Assuming shortest
path routing, we approximate the likelihood of the node be-
ing chosen by the number of shortest paths it lies on. That
is
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where 1{ri x+ri; = vk} = Lif ri g +7i; = 75k, 0 otherwise.

In Fig. (2(a)) we compare the results for the number of
cycles till the first node goes down from our analytic model
with simulation results for grid sizes ranging from five to
ten with ps, = 0.34 and m = 1000. We see that the analytic
results match closely with the simulations.

0.2 Non-spatial Homogeneous Networks

In the case of scenarios where the sensor network is homo-
geneous and is either assumed to span an extremely (ideally
infinitely) large space or to be very densely deployed, the
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traffic conditions at each node can be approximated to be
statistically identical. To qualitatively evaluate the node
lifetimes in these scenarios, we consider a model where the
number of packets transmitted by each node during a time
cycle follows a Poisson distribution with mean A, irrespective
of its geographical location. Let N denote the initial num-
ber of nodes deployed and m denote the number of packets
each node can transmit before dying out. The power con-
sumption probabilities p; are given by: p; = e_:,”. Since
the power consumption probabilities wholly characterize the
network evolution, the system is completely determined. Re-
sults and further derivations for this section have been omit-
ted in the extended abstract due to space limitations.

Summary

In this paper we have motivated the need and importance
of analyzing the network lifetime by quantifying the connec-
tivity and coverage characteristics as a function of time and
energy consumption. The impact of packet arrival rate at
the sensor nodes on the energy consumption was studied and
an analytical model for the network lifetime incorporating a
sensor node’s geographic location was presented.
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