Modeling and Analysis of Seed Scheduling
Strategies in a BitTorrent Network

Pietro Michiardi
Institut Eurecom, France
Email: michiardi@eurecom.fr

Abstract— In the current work, we propose an analytical
model to characterize various scheduling options from a seed’s
perspective so as to efficiently disseminate the file parts thereby
ensuring that download times for the network is optimized.

I. INTRODUCTION

Peer-to-peer (P2P) networks provide a paradigm shift from
the traditional client server model of most networking applica-
tions by allowing all users to act as both clients and servers.
The primary use of such networks so far has been to swap
media files within a local network or over the Internet as
a whole. Among current solutions deployed in the Internet,
BitTorrent has received a lot of attention from the research
community because of its scalability properties and its ability
to handle the so called flash crowd scenario, a transient phase
characterized by a sudden burst of concurrent requests for a
popular content. However, recent results [2]-[4], [10], [12]
have revealed some inefficiencies of BitTorrent that translate
into a transient phase, indicating the source of the content
(called the seed) as the main cause of a disproportionate
distribution of the content among the downloaders. In this
paper, we motivate the need to incorporate intelligence into
scheduling file pieces at the seed and develop an analytic
framework wherein the impact of the chosen strategies can
be studied for a BitTorrent type P2P network. \We propose
a novel scheduling policy called Proportional Fair Scheduling
(PFS) that improves the content distribution process based both
on past scheduling decisions and on the actual distribution
of content requests as seen by the seed. Using the proposed
analytical framework we compare our scheduling policy with
the one used in the mainline BT implementation and with the
best known scheduling improvement called “smartseed” [4].
Through numerical evaluation we show that PFS outperforms
previous policies in the short term. For the long term analysis
we built a custom BitTorrent simulator and show that our
scheduling algorithm achieves a fair content distribution, and
reduces the time needed for the seed to inject the content in the
system. To summarize, our contributions in the current work
can be stated as follows:

« Present an analytic framework wherein different schedul-
ing policies can be modeled and their behavior analyzed.
o Propose a new algorithm, called Proportional Fair
Scheduling (PFS) for piece distribution that performs
better than the current proposed scheduling modification

Krishna Ramachandran and Biplab Sikdar
Department of Electrical, Computer and Systems Engineering
Rensselaer Polytechnic Institute, Troy NY 12180

Email: ramak,sikdab@rpi.edu

for the seed.

A. BitTorrent overview

Before proceeding further, we provide a brief overview
of the BitTorrent system. BitTorrent is a P2P application
that attempts to replicate content faster by leveraging the
upload bandwidth of the peers involved in the download
process. Each unique content in the system is associated with
a .torrent file, and is independent of the remaining torrents
in the system. What this implies is that a peer’s view of the
BT system is confined to a subset, termed the peer set, of
all the hosts associated with a specific torrent. Peers wishing
to download a particular content obtain the corresponding
.torrent file from a web server and use a centralized entity
called the tracker to collect a random subset of hosts currently
active in the torrent. Peers involved in a torrent cooperate
to replicate the file among each other using swarming
techniques. BitTorrent achieves scalable and efficient content
replication by employing the choke and rarest first algorithms.
The former is used for peer selection, i.e. which peer to
upload to, while the latter for selecting the file part scheduled
to be transfered. Finally, a peer in BitTorrent exists in two
states: seed state wherein it has the entire content or leecher
wherein it is in the process of downloading the file. The
motivation for the current work arises due to the manner in
which a seed and a leecher perceive the torrent. Note that we
have limited our description to details relevant to the current
work and have glossed over several technicalities of the BT
protocol, which may be found in [8].

The rest of the paper is organized as follows: in Section 1l
we survey related literature, while in Section Il we discuss
on the rationale and motivations of our work. In Section IV
we present our analytical model that emulates the various
content scheduling strategies for a seed, Section IV-A provides
an analytical dissection and addresses issues such as stability
and convergence of the scheduling strategies. We present our
results in Section IV and draw relevant inferences from them
and finally summarize the work in Section VI.

Il. RELATED WORK

In recent times BitTorrent has received substantial interest
from the research community, with several modeling as well as

simulation studies aiming at improving its performance. Math-
ematical models for BT are presented in [4]-[6]. In [5] a fluid
model is used to characterize the performance of BitTorrent
like networks in terms of the average number of downloads
and download times. The authors in [6] propose to improve
upon the aforementioned modeling work using a stochastic
differential equation approach, by incorporating more realistic
BT network behavior in their study. A Markovian model of a
BT network was studied in [4], wherein the authors propose
a novel peer selection strategy to improve download times.
Along similar lines is another modeling work, [11], wherein
a branching process based Markovian model was formulated
to study BitTorrent like networks.

Simulation based studies are the focus of the works pre-
sented in [2], [3], [7], [9], [10]. In [2], the authors investigate
the efficacy of the rarest first and the choke algorithms while
[3] documents the impact of various system parameters on
the networks performance. Along similar lines, [9] presents
the dissection of the performance of the mechanisms and
algorithms used by BT over a five month period. In [7],
the authors make the case for a network coding scheme to
improve content replication, while in [10], the authors study
the performance of BT by employing metrics such as file
download time, link utilization and fairness.

A common feature shared by the literature surveyed thus far
is the attempt at modeling the BT system in its entirety. As a
result, not all facets pertaining to efficient content distribution
are explored. For instance, the first step in this direction is to
ensure that the initial seed is able to inject the entire content
among the leechers at the earliest and this calls for special-
ized scheduling algorithms. Unfortunately, with a wholistic
approach, this is difficult to accomplish. In this current work
we restrict our attention to a particular type of peers, namely
seeds, and study the impact of scheduling decisions at their
end on the effectiveness of content distribution in the system.
This is elaborated further in the following section.

I1l. RATIONALE AND MOTIVATION

Typically when content first appears in a BT network, it is
stored at a single host, i.e. there is a single seed. From here
on, the lifetime of a torrent can be broadly classified into three
stages:

1) flash crowd scenario: the seed experiences a huge vol-

ume of concurrent requests for the content.

2) steady state : the arrival of requests is more spaced and
can be considered regular.

3) dying out : this stage marks the point where a substan-
tial portion of the leechers complete downloading the
content and leave the system. In other words the torrent
starts “dying”.

The motivation for the current work stems from the findings
of various simulation studies [3], [10], [12] revealing an
inefficiency in the performance of the protocol during the
flash crowd phase of a torrent arising from a disproportionate
distribution of content among the leechers. It was found that
in the flash crowd scenario, often the distribution from the

seed becomes a bottleneck in the replication process. In such
a scenario, a lack of intelligence during the upload process at
the seed could result in some of the pieces not being replicated
at all. This phenomenon is termed starvation and can adversely
impact the torrent’s performance in the following manner:
consider the scenario where after a certain time (say t), the
seed decides to go offline. At such time, if there are certain
parts of the file that have not yet been replicated among any
of the leechers, then the torrent would eventually die out
since none of the leechers would be able to complete the
download. Even otherwise, a disproportionate distribution of
the parts would result in a prolonged flash crowd scenario
since the leechers have nowhere else to request the parts from.
In other words the seed and the leechers hosting the rarer parts
would be swamped with a huge volume of upload requests.
This problem if further magnified if the seed is bandwidth
constrained. Thus, an improved distribution of content at the
seed’s end would serve to improve the performance of the
torrent by

« decreasing the load off the seeds since the leechers
now have ample sources among themselves. This in turn
provides a better incentive for the seed to stay online a
longer time since it’s bandwidth is no longer choked

« decreasing the download time of the leechers, since there
is a bigger pool of leechers with the same piece.

« increase the “longevity” of the torrent since there is
higher level of redundancy in the system. Here, we define
longevity of the torrent as the first time instant when the
the content in its entirety is not present among the peers
in the BT system. Such a situation can arise when all the
seeds and a fraction of the leechers disconnect from the
system, resulting in missing piece(s).

A relevant doubt at this stage would be to question the
rationale behind distinguishing between scheduling decisions
at a seed and those at a leecher. In other words, why would
not a common scheduling algorithm work for both ? The
answer to this lies in the difference between the view of the
torrent as seen by a leecher and a seed. While the leecher has
complete information on the part distribution among the peers
in it’s peer set, this knowledge is hidden from the seeds. This
is primarily due to a mechanism used to reduce the control
message overhead named the HAVE suppression technique.
HAVE messages are used to disseminate information on the
piece distribution among leechers: each time a leecher finishes
to download a piece, she will inform all peers in her peer
set about the new piece availability. The HAVE suppression
technique inhibits the transmission of HAVE messages to those
peers that currently have a replica of the announced piece.
The consequence is that seeds will have no information on
the piece distribution in her peer set. In fact, in the current
mainline implementation of the BT protocol, a seed simply
replies to piece request originated at the leechers without any
scheduling decision (hence the name random scheduling (RS)
used hereafter). Thus, lack of a global snapshot constrains a
seed to base scheduling decisions on it’s own past history and

hence the motivation behind the current work. The endeavor in
the current work is arrive at a mathematical framework generic
in nature so as to facilitate the performance quantification of
various scheduling strategies that could be implemented at the
seed. In this paper we try and address the following problem:
How best can a seed incorporate the limited view of the BT
system into it’s scheduling decisions so as to ensure better
content distribution among the downloaders?

To this end, as a part of their simulation study of BT, the au-
thors in [10] propose the local rarest first (LRF) policy, termed
“smart seed” scheduling policy, as an improvement over the
current scheduling scheme. However, the optimality of such a
strategy is not guaranteed and there could be other schemes
that might yield better performance. Carrying out simulations
for each scenario could be quite tedious and moreover pro-
vide no intuition into the long term behavior/distribution of
file parts among the leechers. In this paper, we provide a
theoretical grounding for the problem through a framework
based on stochastic approximation algorithms. In particular,
we compare the performance of our scheduling strategy, the
proportional fairness scheme (PFS), with the current proposed
modification, local rarest first (LRF), and the existing policy,
random scheduling (RS).

IV. ANALYTICAL FRAMEWORK

In this section, we present our analytic framework to study
the performance of content distribution schemes implemented
at the seed. While the framework is generic in nature and ap-
plicable to a large class of scheduling policies, for illustrative
purposes, we confine the example scenarios in this paper to
three cases, viz. local rarest first (LRF), proportional fairness
scheme (PFS) and the random scheduling (RS) policy. The
essence of each can be summarized as follows

o LRF: In this policy users are served on a first come first
serve basis. Leechers request the seed for a set of blocks
and the seed uploads the rarest amongst them.

« Proportional Fairness Scheme (PFS): In this scheme, the
seed takes into account the requests coming in for each
part and the corresponding past throughput and uploads
that piece with the maximum ratio of the two.

« Random Scheduling (RS): There is no intelligence on
the seed’s part in this policy. It blindly serves the first
leecher’s requested piece. Note that this is the current
scheduling policy implemented in the seed state by BT.

Before proceeding with the description of the model, we
outline our assumptions: The content to be replicated (denoted
by F) is divided into p equal parts and is stored at a single
seed, S. The seed is modeled by a single server queue with no
buffer space. Time is slotted in intervals with the granularity
of each round chosen to accommodate the transfer of a single
file part. The seed serves only one part in a round, with
the decision on the piece to be uploaded in the next round
made based on the requests that arrive during the current time
slot. The peer satisfying the scheduling criteria is served in
the next slot while the rest of the requests are dropped. The
above assumptions are a reasonable mapping to a bandwidth

constrained seed where it makes sense to dedicate the entire
bandwidth to serve a particular request instead of increasing
the latency by dividing it.

Let the request vector at the end of slot n (start of slot n+1)
be represented as R(n + 1) = [F1n+1,72,n+15" " s Tpntils
where r; ,,11 denotes the number of times part ¢ was requested
for in round n. In other words, each entry in R(n + 1)
represents the number of leechers requesting for that particular
part during the previous round, i.e. round n. Let the throughput
vector be denoted as 7 (n) = [t1,n,ton, - ,tpn), Where t; ,
represents the number of times part 7 was served in n rounds.
Similarly, let 6(n) = [01,1,02.n, - ,0,.,] denote the vector of
sum of requests for the different parts, each time it was served,
averaged over the past n rounds. The average throughput and
request rate for part 7 after n rounds are defined as follows:

n
2k TikZik

n
2 k=1 Li
k=1+1ik
Tin==""=—= 0
n n

n

where Z; j is an indicator variable with

~ [1 if part ¢ is scheduled in round &
ik = { 0 otherwise @)

Thus, at the end of each round, each entry in vectors 6 and
7T can be updated as follows:

91’,,n + €n [Ii,n-l—lri,n-l—l - ai,n] (2)
Z,n + 6n[Ii,n-‘rl - Zn] (3)

with Z; ,, .1 as in Equation (1) and €, = —. Given the
above system parameters, the seed scheduling algorithm we
propose (PFS) can be summarized as follows:
« Among the non-zero request entries that arrive in a round,
select that part maximizing the following ratio:

Tin+1
—— 4

971,n+1 =
7;771-5—1 -

arg max {

1

If there are multiple parts satisfying the above criterion,
break ties arbitrarily. Here, d; is arbitrarily close to zero
and is chosen to avoid the divide by zero error in the
initial stages of the torrent when the throughputs for
nearly all the parts are close to or equal to zero.
« Upload the chosen part from the previous step to the
requesting peer. Again, break ties arbitrarily
It is quite natural to question the soundness, be it theoretical
or practical, of a formulation as in Equation (4). The proposed
format can be justified if the content replication process were
to be viewed, from a seed’s perspective, as a variant of the
utility maximization problem. Note that in a BT system, the
onus is primarily on the seed to ensure the spread of content
among the peers in the system. Thus, a seed seeks to maximise
the replicas of each piece among the leechers and therefore it is
reasonable to assume that the utility function chosen is concave
in nature (since a concave function is of the maximisation
type) and is representative of the problem. In this context

consider the utility function to be the sum of the logarithm
of average number of requests of the individual pieces, i.e.

U9 = zp: log(6; + d))

Then it can be shown [14] that for this particular choice
of utility maximization, the policy outlined in Equation (4)
yields optimal results. We further note that the seed is not con-
strained to choose the policy of Equation (4). Any reasonable
representative concave function can be chosen as the utility
function and the scheduling policy appropriately tailored to
obtain optimal results.

A. Convergence Analysis

The formulation of Equations (2) and (3) is in the frame-
work of stochastic approximation algorithms [13]. Notably,
under certain assumptions, which can be shown to be valid
in a BitTorrent scenario, it can be shown that the stochastic
approximation algorithm in Equation (3) can be described
by a deterministic mean field ordinary differential equation
(ODE) system. This enables us to characterise the behavior
of the proposed algorithm and is also a useful tool to study
the asymptotic properties such as the long term throughput
of the respective file pieces. An important consequence of
the convergence proof is that concerning the stability of
the system. For example, a scheduling policy that converges
asymptotically also characterises a stable system. We now
outline the assumptions required for the ODE convergence:

« Stationarity of the request distribution: {R(l),! < oo}.
Note that in a BitTorrent type system, the requests
generated by leechers for the missing file pieces depend
only on the current distribution of the parts among each
other. For instance, if a system shapshot at time ¢ were to
be translated to a different instant, say ¢, the pattern of
requests generated would be similar. Define the stationary
expectation for part 7 as

h; (9) = E[I{ﬁzﬁ}’vﬁgi} (6)

o Lipschitz continuity of fzi(.), 1 <i < p. We demonstrate
this with the help of a simple case where the file consists
of two parts and the joint probability density is given
by p(r1,72). Then, for part 1, Equation (6) can then be
simplified as

iLl(G) = /I{%Zw}p(rl,rg)drldrg)

where w = (61 + d)/(02 + d). Note that in the above
equation we have used a continuous density function
for the request generation process, which is in fact
discrete. This is because, it has been shown in [15],
that the requests for the parts can be approximated by a
Gaussian distribution which is continuous. In the current
work, we employ the same approximation and hence the
formulation of Equation (7). Now, Eqn. (7) is Lipschitz

continuous with respect to w, since the area of the region
where the indicator function is not zero is a differentiable
function of w [14]. Similar is the case for h;(0). Further,
the deivatives of /1 (6) and hy(#) will be continuous if
p(r1,72) is bounded and continuous.

» Bounded density of R(n). This is trivially satisfied since
the number of users in a BT system is finite thus ensuring
that the requests generated during each round of time
remain bounded.

Under the above assumptions, the stochastic approximation
algorithm of Equation (3) can be approximated by the ODE
given by:

/j;_PFS _ E[I

T4 T4 . .
{ﬁz%f%_j}v‘?#l]

o r];PFS (8)

B. Modeling other policies

The analytic framework provides a generic setting wherein
a wide class of scheduling policies can be modeled and
quantified. We illustrate the robustness of the framework by
modeling the LRF scheme in [10] as follows:

« For each piece 7 in the request block (RB) set r; 11 =1

« Choose piece such that: arg maX,cpp { goa; | -

break ties arbitrarily

o Upload the piece from the previous step
The corresponding throughput formulation for part 4, 7,17,
is then given by:

LRF __ 4 LRF LRF
Tintr =Tin" tenlli >t yvie — Tin 1 ()
and the equivalent ODE by:
TR = B syl =T (10)

V. RESULTS

In this section we present results comparing the efficiency
of the PFS scheme against LRF. To prove the robustness of
the proposed framework, we quantify the performance gains
obtained in the short term as well as in the long run. For
the short term analysis we perform a numerical evaluation
of the PFS scheduling using the stochastic approximation
algorithm as described in Section V. On the other hand, we
perform the long term evaluation using a custom simulator
of the entire BitTorrent system. The rationale behind this
choice lies in the lack of a realistic characterization of the
piece request rate R(n) = [r1,n,T2n, * ,7pn] 10 be used
in the analytical evaluation presented in Section IV-A. Our
implementation, which is detailed in Section 2, also provides
a global perspective of the system, as opposed to the seed’s
perspective offered by the analytical model.

A. Short term behavior

Since the primary objective in the initial stages of a torrent
is to minimize starvation of pieces, a natural benchmark for
comparing the policies would be to measure the number of
starved pieces at a certain point of time under each policy.

Here, we choose to make the comparison after p rounds, where
p denotes the number of pieces the content is divided into.
The rationale behind this is as follows: since we assume that
the seed schedules one piece per round, in the ideal case it
would require p rounds to ensure that the file in it’s entirety is
present among the leechers. Figure 1 graphs the performance
of the various policies in the flash crowd stage. In Figure 1(a),
the number of starved parts of a 30 part file are plotted for
each policy over 100 runs of our algorithm while Figure 1(b)
quantifies the impact of the file size on the number of starved
parts. Each point on the graph of Fig. 1(b) is an average of
100 runs. As seen from the plots, the proportional fair scheme
offers significant gains over the other two policies. Even with
increasing file sizes, the performance degradation is not very
substantial. In fact, for a file consisting of 100 parts, the ratio
of starved pieces in the “flash crowd” phase is about 1:3 for
PFS and LRF, while it is around 1:18 when comparing PFS
and the RS schemes. We believe the better performance of the
algorithm could be attributed to the following factors:

« The seed makes a scheduling decision taking into account
all the requests that are made in a particular round, unlike
LRF and RS where users are served in a first come first
served manner. For instance, if a large number of leechers
request for a particular piece there is a higher probability
of it being a rare piece as compared the rarity of a piece
requested by a single user.

« In an open BT system the local rarest piece need not
reflect reality, from the seed’s perspective, due to leechers
entering and leaving the system. Thus, even when a seed
bases her scheduling decisions only on her past history
like in the LRF case, due to peers’ dynamics a seed may
have a stale vision of what is rare and what is not in the
system. The PFS scheme accounts for this by using the
number of requests for a piece as the system’s indicator
of rarity and makes the scheduling decision accordingly.

B. Long term behavior

As a final validation of our theoretical formulation presented
in Eqgn (4), we present a simulation comparison of the pro-
posed PFS algorithm against the LRF scheme, especially the
behavior over long time periods. Since we only modify the
seed scheduling algorithm, it only makes sense to quantify the
impact within the seed’s peer set and not globally. The main
objective in the long term is to prevent a high variance in the
number of replicas of each part, i.e. prevent a disproportionate
piece replication in the peer set since it is the root cause of
all problems. In other words the scheduling process should be
“fair” to the individual pieces. The intuition behind this is that
ensuring a balanced replication of the pieces can help improve
download times since there is a higher level of redundancy
and also distribute the load more evenly among the leechers
thereby providing As a measure of the degree of fairness, we
employ the Max-Min Fairness Index [] given by n”:fl’;\:/i((‘;)
where x; denotes the number of replicas of part ¢ at the end of
a round in the seed’s peer set. The two important benchmarks
under this metric are a) the distance of the ratio from 1 and

Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes
15

\

‘f‘\

TH “‘

Number of missing parts

Ea— 6 56
Simulation Run

@

Schedulmg Efficiency of PFS, LRF and Random Scheduling Schemes

—o—LRF
—&—PFs)
—*—RS A

w w
S]
T T

\

N
o
T

=

@
¥

\

Number of missing parts

@
T

M

B N - S A—A—
"

Q.

L L L
30 40 50 60 70 80 920 100

Number of parts (file size)
(b)

Fig. 1. Performance evaluation in the flash crowd phase

b) the rate of convergence to 1. The closer the ratio is to 1,
and the faster it converges to 1, greater is the fairness.

Before discussing the long term results we provide a brief
description of the custom simulator we designed.

1) BitTorrent Simulator: We developed a synchronous sim-
ulator working in rounds wherein we implemented both seed
and leecher algorithms following the BitTorrent specification
(see [] for details). Namely, we implemented the rarest-first
and the choke/unchoke algorithms executed at the leechers.
We then implemented two scheduling policies at the seed
side, the PFS and the LRF. The only limitation we imposed
on the simulator follows the one of the analytical model:
only one peer is unchoked in each simulation round. Our
implementation accounts for a tracker component in charge
of setting up the initial peer connections. The peer set size for
a peer is set to the default value of the mainline BitTorrent
implementation, that is 80 peers. To quantify the impact of
the scheduling decisions, we assume that leechers that finish
downloading leave the torrent, i.e. there is a single seed in the
system at all times.

It is worthwhile noticing that, as compared to the LRF

scheduling policy which requires modifying both the seed and
the leecher side of BitTorrent as well part of the protocol
specification, PFS scheduling can be seamlessly integrated in
BitTorrent with a simple modification at the seed side only
(more details are available in our Technical Report []).

2) Simulation results: We compare the LRF and the PFS
scheduling algorithms assuming the content to be split in p =
150 pieces. We simulate the presence of one seed only in the
system and study two representative scenarios and realistic
scenarios: the first where the torrent experiences a heavy flash
crowd and the second indicative of a torrent with a high churn
rate..

To simulate the flash crowd setting, 160 peers are injected
into the system in the first and then there are no further addi-
tions. Further, compliant with our assumptions stated above,
leechers depart the torrent once they have the entire content.
The objective here is to study the algorithm’s sensitivity
towards acheiving a balanced replication in the wake of huge
volume of requests. Note that the max-min fairness plots
can also be used to infer and compare the download times
experienced by the leechers. Since we assume that leechers
with the entire content depart, the time 7' when the graph
reaches one also denotes the instant when all the leechers in
the system have finished downloading. Therefore, the quicker
the graph peaks to one, the better it is in terms of fairness
as well as download times. In Figure 2(a) we plot the Max-
min fairness index versus time (in simulation rounds) for the
flash crowd scenario described above. content. When using
PFS scheduling, T = 159 while for the LRF case T" = 202.
A similar trend was observed over multiple repetitions of
the experiment, showing an improvement of the total time to
download the content in favor of PFS of roughly and this was
more pronounced in the case of smaller files [?, PKBO06]

In the second simulation study, we study the responsiveness
of scheduling decisions at the seed when substantial variations
in the population of peers downloading the content arise, i.e.
a system with high churn. In particular, we consider 80 peers
joining the system at round 1, then 30 randomly chosen peers
leaving the system at round 150, and finally 80 new peers
joining the system at round 250. Although both PFS and LRF
scheduling reach the highest fairness index, Figure 2(b) clearly
shows that PFS reacts consistently faster to peer dynamics as
compared to LRF. Similar results (not reported due to lack
of space) have been obtained for different runs of the same
scenario.

V1. CONCLUSION AND FUTURE WORK

In this work, we motivated the need for improved scheduling
algorithms at the seed in a BT system and quantified the
performance gains obtained thus. A generic analytical frame-
work to model such algorithms was presented and a novel
seed scheduling strategy to acheive better content replication
was proposed. Through numerical simulations of the model as
well as simulations the improved performance of the proposed
PFS algorithm over existing strategies in the literature (LRF

Max—Min Fairness Index

——PFS
—+—LRF

L 1 1 L 1 1
170 180 19 20 210 20
Time (simulation round)

@

=
T

=

Max—Min Fairness Index
o
=

02

L L L L L
0 50 00 150 200 250 30 30 40 450 50
Time (simulation round)

(b)

Fig. 2. Simulation results for the long term analysis.

and the existing mainline random scheduling schemes) was
demonstrated.

As a natural extension to this paper, which we are consid-
ering as part of our future work, we aim to assess the impact
of PFS on a real deployment of a BitTorrent network through
measurements using modified clients deployed on Planet Lab.

REFERENCES

[1] Characterization of Internet traffic loads, segregated by
application, http://ww. cai da. or g/ anal ysi s/ wor kl oad/
byappl i cation/.

[2] A. Legout, G. Urvoy-Keller and P. Michiardi, Rarest First and Choke
Algorithms Are Enough, Technical Report (inria-00001111, version 1 -
13 February 2006), INRIA, Sophia Antipolis, July 2005.

[3] G. Urvoy-Keller and P. Michiardi, Impact of Inner Parameters and
Overlay Structure on the Performance of BitTorrent 9th IEEE Global
Internet Symposium 2006, In Conjunction with IEEE INFOCOM 2006
Barcelona, Spain, 28 - 29 April 2006.

[4] Y. Tian, D. Wu and K. W. Ng, Modeling, Analysis and Improvement for
BitTorrent-Like File Sharing Networks, Proceedings of IEEE INFOCOM,
Barcelona, Spain, August 2006.

[5] D. Qiuand R. Srikant, Modeling and performance analysis of BitTorrent-
like peer-to-peer networks, Proceedings of ACM SIGCOMM, Portland,
OR, August 2004.

[6] B. Fan, D-M. Chiu and J. C. Sl Lui, Sochastic Differential Equation
Approach to Model BitTorrent-like P2P Systems, 1CC 2006, Turkey.

[7] C. Gkantsidis and P. Rodriguez, Network Coding for Large Scale Content
Distribution, Proceedings of |EEE INFOCOM, Miami, 2005.

[8] B. Cohen, Incentives Build Robustness in BitTorrent, Proceedings of First
Workshop on Economics of Peer-to-Peer Systems, Berkeley, 2003.

[9] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamraand L.
Garces-Erise, Dissecting BitTorrent: Five Months in a Torrent’s Lifetime,
Proceedings of PAM’04, Antibes, 2004.

[10] A. Bharambe, C. Herley and V. N. Padmanabhan, Analyzing and
Improving a BitTorrent Network’s Performance Mechanisms, Proceedings
of |IEEE INFOCOM, Barcelona, 2006.

[11] X. Yang and G. de Veciana, Service capacity in peer-to-peer networks,
Proceedings of IEEE INFOCOM, pp. 1-11, Hong Kong, China, March
2004.

[12] F. Mathieu and J. Reynier, Missing Piece Issue and Upload Strategies
in Flashcrowds and P2P-assisted Filesharing, | dont know where, 2006

[13] H. J Kushner and G. Yin, Sochastic Approximation Algorithms and
Applications, 2nd ed. Berlin, Germany: Springer-Verlag, 2003.

[14] H. J Kushner and P. A Whiting, Convergence of Proportional-Fair
Sharing Algorithms Under General Conditions, |EEE Transactions on
Wireless Communications, Vol. 3, No. 4, July 2004

[15] BitTorrent has continuous request dynamics.

[16] Technical Report.

