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Abstract—The rapid development of generative artificial in-
telligence (AI) technologies, including large language models
(LLMs), has brought transformative changes to various fields.
However, deploying such advanced models on mobile and edge
devices remains challenging due to their high computational,
memory, communication, and energy requirements. To address
these challenges, we propose a model-centric framework for
democratizing generative AI deployment on mobile and edge
networks. First, we comprehensively review key compact model
strategies, such as quantization, model pruning, and knowledge
distillation, and present key performance metrics to optimize
generative AI for mobile deployment. Next, we provide a focused
review of mobile and edge networks, emphasizing the specific
challenges and requirements of these environments. We further
conduct a case study demonstrating the effectiveness of these
strategies by deploying LLMs on real mobile edge devices.
Experimental results highlight the practicality of democratized
LLMs, with significant improvements in generalization accuracy,
hallucination rate, accessibility, and resource consumption. Fi-
nally, we discuss potential research directions to further advance
the deployment of generative AI in resource-constrained envi-
ronments.

Index Terms—Democratized AI, generative AI, LLM, compact
model, mobile edge networks.
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I. INTRODUCTION

The rapid growth of generative artificial intelligence (AI)
technologies, including large language models (LLMs) and
other generative models, has led to significant breakthroughs
across various domains, enabling impactful applications such
as conversational systems (e.g., ChatGPT) and image gener-
ation tools (e.g., DALL-E) [1]. These models have demon-
strated remarkable capabilities in tasks such as text generation,
image creation, and multimodal understanding, accelerating
digital transformation in various fields such as healthcare,
education, and content creation.

Despite these impressive developments, deploying large
generative models remains highly challenging, particularly
on mobile and edge devices. Specifically, training advanced
foundation models such as GPT-4 typically requires massive
computational resources, involving thousands of graphic pro-
cessing units (GPUs) running for weeks, which far exceeds
the capacity of conventional hardware. For example, training
GPT-3, with over 175 billion parameters, requires consuming
hundreds of petaflops of computational power over several
weeks on advanced supercomputers1. During deployment,
transferring the foundation models to mobile edge devices
results in significant bandwidth consumption. During infer-
ence, running the foundation models also demands substantial
computational and memory resources, surpassing the limits of
most mobile central processing units (CPUs) and GPUs. For
instance, deploying GPT-3 on a standard smartphone would
be impractical due to its memory requirement of around 350
GB, whereas most mobile devices have only a few gigabytes
of available memory2.

Furthermore, mobile devices are subject to strict energy
constraints, as executing complex AI models can rapidly drain
battery life, making them unsuitable for practical use [2]. For
instance, running intensive AI inference tasks on a typical
smartphone can deplete its battery within a few hours, which
makes continuous or prolonged use unfeasible. These chal-
lenges are compounded by limited bandwidth, which makes
frequent communications with cloud servers or model updates
impractical in low-bandwidth environments such as rural areas.
Thus, novel approaches are required to make these advanced
capabilities feasible in resource-limited environments.

To address these challenges, the concept of democratized
generative AI has emerged [3]. Democratized generative AI

1https://www.trgdatacenters.com/resource/ai-chatbots-energy-usage-of-20
23s-most-popular-chatbots-so-far/

2https://www.osinto.com/post/scale-is-all-you-need

https://www.trgdatacenters.com/resource/ai-chatbots-energy-usage-of-2023s-most-popular-chatbots-so-far/
https://www.trgdatacenters.com/resource/ai-chatbots-energy-usage-of-2023s-most-popular-chatbots-so-far/
https://www.osinto.com/post/scale-is-all-you-need
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aims to make generative AI technologies broadly accessible by
overcoming barriers such as high computational costs, energy
consumption, memory limitations, and reliance on centralized
infrastructure. This concept encompasses approaches such
as tiny machine learning (TinyML) and Small ML, which
optimize models to operate efficiently on resource-constrained
devices such as mobile phones and edge nodes. TinyML,
for instance, emphasizes running machine learning models
on small, power-efficient microcontrollers. From social and
economic perspectives, democratized AI fosters inclusivity by
reducing entry barriers, allowing a diverse group of users,
from individual consumers to small organizations, to benefit
from advanced AI capabilities without requiring extensive
infrastructure3.

In the context of next-generation mobile and networking
systems, democratized generative AI is becoming increasingly
crucial. AI technologies are integral to optimizing network
performance, managing bandwidth, and automating network
configurations to achieve efficient communication [4]. How-
ever, deploying these resource-intensive models on mobile
and edge devices, where computational power, energy, and
bandwidth are often limited, presents significant challenges.
Therefore, there is a need for innovative compact model
strategies that make AI accessible without significantly com-
promising performance.

Based on these considerations, this article aims to provide a
forward-looking exploration of model-centric compact model
strategies for deploying generative AI on mobile and edge de-
vices with LLMs as an example. To the best of our knowledge,
this is the first article to explore a comprehensive framework
for democratizing LLM deployment in mobile networks. The
main contributions of this work can be summarized as follows:

• We propose a comprehensive democratized generative AI
framework that incorporates compact model strategies,
including quantization, model pruning, and knowledge
distillation, to facilitate the deployment of generative AI
on resource-constrained mobile and edge devices.

• We conduct a systematic analysis and comparison of vari-
ous compact model strategies, focusing on their ability to
reduce computational demands, memory usage, and en-
ergy consumption while preserving model performance.
Moreover, we define key performance metrics to assess
their practical impact on generative AI applications in
constrained environments.

• We present experimental evaluations demonstrating the
effectiveness of these compact model strategies in im-
proving generalization accuracy, hallucination rate, acces-
sibility, and resource consumption on actual mobile edge
devices. The results validate the practicality of deploying
democratized LLMs on real mobile devices.

II. OVERVIEW OF DEMOCRATIZED GENERATIVE AI

A. Definition

Democratized generative AI aims to make advanced gen-
erative AI technologies, such as LLMs, widely accessible by

3https://www.splunk.com/en_us/blog/learn/democratized-generative-ai

addressing challenges such as high computational demands,
energy inefficiency, and technical complexity [3]. For mobile
networking, the approach focuses on enabling these models
to run efficiently on resource-constrained devices such as
mobile phones and edge nodes. The goal is to ensure that
generative AI technologies can operate without heavy reliance
on centralized cloud infrastructure, allowing local devices to
handle AI tasks independently and remotely. For example,
consider a smartphone with a generative AI model embedded
directly on the device used by a user in a rural area with limited
Internet connectivity, such as a farmer analyzing a photo of
a plant or an insect. The user can query an AI model such
as ChatGPT directly on the device to ask about the plants
health or identify pests for agricultural purposes. This localized
processing allows users to access generative AI or multimodal
LLM features such as image generation or enhancement in
real time, regardless of network conditions4. Generally, the
benefits of democratized generative AI are as follows:

• Increased Accessibility: Democratized generative AI
significantly improves accessibility by making advanced
AI tools available to a broader range of users, including
those in remote or resource-constrained environments.
By enabling local processing on mobile devices, more
users, especially in rural areas, can access generative AI
features without relying on robust cloud infrastructure
or high-bandwidth Internet connections. This approach
democratizes AI, allowing individuals such as farmers,
students, or small business owners to leverage powerful
AI tools in daily tasks without depending on centralized
cloud systems5.

• Enhanced Scalability: Democratized generative AI en-
ables enhanced scalability by allowing models to adapt
to a wide range of devices and network conditions, from
resource-limited mobile phones to high-performance edge
servers. By supporting localized processing and dis-
tributed deployment, generative AI models can efficiently
scale across diverse environments without heavy reliance
on centralized cloud infrastructure. For instance, Tensor-
Flow Lite6 provides tools to deploy lightweight genera-
tive models on mobile devices while enabling seamless
integration with powerful models on edge servers, ensur-
ing accessibility and flexibility across applications.

• Offline Functionality: Democratized generative AI en-
ables users to access AI capabilities even in areas with
poor or no Internet by processing tasks locally. For
instance, Google Translate’s offline mode allows users
to translate text and conversations without an Internet
connection, thanks to on-device AI models7. This ensures
that users can continue using AI tools regardless of
network availability.

For a more intuitive understanding, we present a compre-
hensive overview of democratized generative AI, which is
depicted in Fig. 1.

4https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
5https://ai.google.dev/edge/litert
6https://www.tensorflow.org/lite
7https://support.google.com/translate/answer/6142473?hl=en

https://www.splunk.com/en_us/blog/learn/democratized-generative-ai
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://ai.google.dev/edge/litert
https://www.tensorflow.org/lite
https://support.google.com/translate/answer/6142473?hl=en
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Key strategies

Fine-tuning

Model
Pruning

Knowledge
Distillation

Quantization
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Experts (MoE)

Advantages Disadvantages Model Size 
Reduction

Relationship with Metrics & KPIs

AccessibilityHallucination 
rate

Generalization 
accuracy

Resource 
consumption

10% - 90%

50% - 75%

20% - 40%

• Considerable training cost: still require 
substantial computing & storage resources

• Risk of overfitting to small datasets

• Reduce model size: eliminate redundant 
parameters to reduce memory costs for 
faster inference on resource-limited devices

• Reduce training time: leverage pre-trained 
models to improve training efficiency

• Improve domain adaptability

• Potential accuracy loss: significantly 
degrade model performance if important 
weights are removed by aggressive pruning

• Reduce model size: maintain similar 
performance with a smaller model to reduce 
computational and memory requirements

• Loss of nuance: fail to capture all the 
subtle intricacies of the original large model, 
especially in complex tasks

• Lower resource consumption: lower 
memory costs and speed up calculations, 
enabling deployments on edge devices

• Significant accuracy degradation: result 
in performance drops especially when 
quantized to very low precision levels

• Dynamic specialization: activate relevant 
parts of experts, leading to specialized task 
processing and improved task performance

• Increased complexity: manage the gating 
mechanism and train multiple expert models 
can be technically complex

• Model Pruning Reduce 
the size of generative AI models 
by removing redundant parameters

• Fine-tuning Customize 
generative AI models to specific AI 
tasks using fewer resources

• Knowledge Distillation 
Transfer knowledge from a large model 
(“teacher”) to a smaller one (“student”)

• Mixture of Experts (MoE) 
Activate some subsets of specialized 
generative AI models during inference

• Quantization Reduce the 
precision of generative AI models’ 
weights and activations

Generalization 
Accuracy

Definition: The ability of AI 
models to perform a wide 
range of tasks
Significance: Critical for 
multi-domain AI solutions

Resource 
Consumption

Definition: The diverse 
resource consumption to 
run AI models
Significance: Vital for edge 
and mobile deployment

Hallucination Rate
Definition: The frequency 
at which AI models 
generate incorrect outputs
Significance: Crucial for 
sensitive applications such 
as healthcare and finance

Accessibility
Definition: The extent of AI 
models to be used by a wide 
range of users and devices
Significance: Important for 
democratized AI in resource- 
constrained environments

[6]

[7]

[8]

Fig. 1. Overview of democratized generative AI. (A) Key compact model strategies, including fine-tuning, model pruning, distillation, quantization, mixture
of experts, and caching. (B) 4-dimensional evaluation for democratized generative AI highlighting metrics including energy efficiency, hallucination rate,
generalization accuracy, and accessibility. (C) Table showing the impact of each strategy on the metrics, with arrows indicating whether the effect is incremental,
descending, or basically constant.

B. Compact Strategies for Democratized Generative AI

Several compact model strategies have been developed
to deploy democratized generative AI models in resource-
constrained environments. These strategies aim to reduce AI
models’ computational and memory footprints while maintain-
ing high performance on mobile and edge devices.

1) Fine-Tuning: Fine-tuning adapts pre-trained AI models
like GPT or BERT to specific tasks, minimizing the need for
training from scratch while enhancing efficiency for dynamic
operational settings. It typically retrains the entire model for
target tasks without reducing model size. However, parameter-
efficient fine-tuning (PEFT) techniques, such as Adapters,
Low-Rank Adaptation (LoRA), and Prefix Tuning, can signif-
icantly reduce the number of trainable parameters by focusing
adjustments on specific parts of the model, maintaining overall
performance while lowering resource requirements. For ex-
ample, [5] demonstrated that fine-tuning BERT for specific
tasks, such as language translation, reduced the computational
demand by approximately 50% compared to training from
scratch. Furthermore, using PEFT techniques could reduce
the number of trainable parameters by up to 90%, mak-
ing the model more lightweight and adaptable for resource-
constrained devices.

2) Model Pruning: Pruning removes redundant parameters
from AI models to reduce their size and complexity, with
minimal impact on accuracy. This approach is especially
useful for enabling LLMs to operate on devices with limited

memory and processing power. For example, [6] showed that
pruning neural networks achieved a 90% size reduction while
maintaining near-identical performance. Compared to fine-
tuning, which focuses on task-specific training, pruning targets
structural simplifications, making it more suitable for general
size reductions in real-time mobile applications. However,
pruning may lose some flexibility when models face complex
or dynamic tasks.

3) Distillation: Distillation trains a smaller “student" model
to replicate the performance of a larger “teacher" model, ef-
fectively reducing model size and computational requirements.
This method enables lightweight models to handle tasks such
as natural language understanding or network analysis on edge
devices. For example, [7] demonstrated that distilling BERT
into DistilBERT reduced its size by 40% while retaining
97% of its language understanding capabilities. Compared
to pruning, which reduces parameters directly, distillation
focuses on transferring knowledge, making it better suited
for balancing size and performance. Distillation is particularly
effective when task complexity demands retaining a models
generalization capabilities.

4) Quantization: Quantization reduces the precision of
model weights and activations, converting 32-bit operations to
8-bit integers, resulting in significant savings in memory and
energy consumption. This approach is especially beneficial for
devices with constrained computational resources or without
GPUs. For instance, [8] reported a 75% reduction in memory
usage for quantized models, making them ideal for energy-
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sensitive mobile applications. Unlike pruning or distillation,
quantization achieves efficiency through numerical precision
adjustments rather than parameter elimination or knowledge
transfer, which may slightly impact accuracy in exchange for
improved resource efficiency.

5) Mixture of Experts (MoE): MoE dynamically activates
specific “expert" sub-networks based on input, reducing the
computational load by using only the necessary parts of the
model. This architecture enhances both processing speed and
energy efficiency, especially in scenarios requiring diverse
capabilities. For instance, [9] highlighted that MoE reduced
computational budgets by 90% by selectively activating ex-
perts for each task. Unlike other strategies, such as pruning
or quantization, which make static adjustments to the model,
MoE dynamically adapts resource allocation, making it highly
scalable and effective in environments with varying task re-
quirements.

C. Performance Metrics
Evaluating the performance of democratized generative AI

models in mobile and edge environments requires more than
accuracy. Several other metrics are critical for understanding
their effectiveness in these constrained environments.

1) Generalization Accuracy: Generalization accuracy refers
to the ability of an AI model to perform well across vari-
ous tasks and scenarios. In mobile and edge environments,
maintaining generalization accuracy is particularly important,
as models are often downsized to fit the resource constraints
of a target device. While compact model strategies, including
pruning, distillation, and quantization, can reduce the size and
complexity of models, they must also ensure that the models
retain the ability to generalize across different tasks without a
significant drop in performance. For example, [10] highlighted
that although pruning and distillation reduced model size, it
preserved most of the original models performance. In fact,
a model with only 4B parameters obtained through pruning
and distillation of the Llama-3.1-8B model8 retained 95%
of accuracy performance while reducing the model size by
47.5%, demonstrating that it is possible to achieve a good
balance between size reduction and generalization accuracy.

2) Hallucination Rate: Hallucination rate refers to the fre-
quency at which AI models generate incorrect or nonsensical
outputs. This metric becomes particularly crucial as models are
downsized for deployment on mobile and edge devices. In mo-
bile and edge environments, a reduced model may experience
a higher hallucination rate due to excessive reduction in model
size and complexity. Evaluating this metric is essential to
ensure that compact models still produce reliable and accurate
outputs. For example, SelfCheckGPT [11] provided a frame-
work for evaluating hallucination in generative models. It used
techniques including BERTScore and consistency checking
between stochastically generated outputs to assess whether the
generative models responses were factually correct. In mobile
and edge environments, this approach could be adapted to
assess the hallucination rate of compact models, especially
without access to extensive models on the cloud.

8The Llama-3.1-8B model refers to the 3.1 version of the Llama series with
8 billion parameters.

3) Accessibility: Accessibility refers to the extent to which
AI models can be deployed and used by a wide range of users,
particularly in resource-constrained environments. In mobile
and edge environments, accessibility is enhanced when models
require fewer computational resources and are less dependent
on robust infrastructure. Democratized AI must ensure that
models are accessible to diverse users who lack extensive
cloud or server capabilities. For example, [12] discussed how
combining compact model strategies, such as quantization and
pruning, enabled AI models to run efficiently on resource-
constrained devices. These strategies helped reduce memory
requirements by up to 57% with less than 1% performance
loss, making AI more accessible to a wide range of users,
including small businesses and developers without access to
high-end hardware.

4) Resource Consumption: Resource consumption encom-
passes multiple factors critical for mobile and edge envi-
ronments, including energy efficiency, computational load,
communication overhead, and memory usage. In addition, to
reduce other resources’ consumption, minimizing communica-
tion overhead is crucial in mobile environments, where models
must process data locally to reduce the frequency of large
data transfers to cloud servers. For example, [13] showed
that quantization techniques enabled a phone to process up
to 590 prompts before it ran out of power while also lowering
memory and computational demands, making AI models more
suitable for mobile devices where both power and resource
efficiency are critical.

Additional strategies and metrics are needed to be con-
sidered that cater to specialized, localized applications. For
instance, caching can be leveraged to improve response times
and efficiency, especially in constrained or resource-limited
environments. Additionally, metrics focused on personalized
and context-specific performance such as responsiveness in
highly customized applications are essential. Examples such
as LLMs tailored for agricultural queries or designed as travel
guides within vehicular networks demonstrate the value of
AI models that meet distinct needs in a democratized and
accessible way, ensuring usability and relevance across diverse
user bases.

III. COMPARATIVE ANALYSIS OF KEY COMPACT
GENERATIVE AI STRATEGIES

In this section, we comparatively analyze the key strategies
for democratized generative AI. We first compare the compact
model strategies from multiple perspectives, including training
methods, applicable network types, user demands, and gen-
erative AI applications. We also present practical application
examples based on these strategies, as shown in Table I. Then,
we discuss the representative integrative networking under the
synergy of different compact model strategies.

A. Comparison of Key Compact Model Strategies

1) Fine-tuning: Fine-tuning focuses on task-specific adap-
tations rather than model simplification. In edge networks,
PEFTs, such as LoRA or Prefix Tuning, are particularly useful
for keeping resource consumption low, making it suitable
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TABLE I
COMPARISON OF KEY COMPACT MODEL STRATEGIES.

Strategies Training methods Applicable network types User demands Generative AI applications Application examples

Fine-tuning [5]

Fine-tuning adapts pre-trained models to new 
tasks by training on smaller, domain-specific 
datasets, typically updating only the specific 
parts of the model while preserving core 
parameters.

• Cloud-based systems
• Edge networks with moderately 
available resources

For users who need high task 
accuracy on domain-specific 
downstream tasks

Personalized applications:
• Domain-specific chatbot assistants
• Customized healthcare diagnoses
• Marketing strategy design

• GitHub Copilot
(https://github.com/features/previ
ew/copilot-customization/)
• BERT fine-tuning
(https://github.com/google-
research/bert)

Model
pruning [6]

Model pruning involves training a dense 
model, then removing unimportant weights 
or neurons based on specific criteria. After 
pruning, fine-tuning is often applied to recover 
the model accuracy loss.

• Resource-constrained environments
• B5G and 6G mobile networks

For mobile users requiring faster 
responses and lower computation 
consumption

Complex task execution on mobile devices:
• Local text and image generation
• Offline video caption generation
• Health status analysis on wearables

• LLM-Pruner
(https://github.com/horseee/LLM
-Pruner)
• SparseGPT
(https://github.com/IST-
DASLab/sparsegpt)

Knowledge 
distillation [7]

Knowledge distillation is achieved by training
a "student" model to mimic the output of a
“teacher” model, typically using a loss function
designed to minimize the difference between
the student’s and teacher’s predictions.

• Resource-constrained environments 
• Distributed networks
• GPU-free networks

For mobile users demanding 
comparatively accurate generative 
outputs on lightweight devices

Small scope with near-teacher performance:
• Voice and audio synthesis
• Document summarization for specific fields

• MobileBERT
(https://github.com/google-
research/google-
research/tree/master/mobilebert)
• MiniLLM
(https://github.com/microsoft/LM
Ops/tree/main/minillm)

Quantization [8]

Quantization occurs after the model is trained,
where model weights and activations are
reduced from floating-point precision to
lower precision. The quantization-aware
training is feasible to minimize accuracy loss
during precision reduction.

• Ultra-low-latency environments 
• Resource-constrained environments 

For mobile users prioritizing speed
and power efficiency over the 
highest-quality results

Real-time applications on mobile devices:
• Real-time question answering
• Corporation among smart home devices

• AWQ
(https://github.com/mit-han-
lab/llm-awq)
• SmoothQuant
(https://github.com/mit-han-
lab/smoothquant)

MoE [9]

MoE jointly trains both the gating network and 
multiple experts initially. After deployment, 
only the gating network needs retraining 
when scaling the system, while the expert 
networks remain largely unchanged.

• Collaborative systems
• Dynamic cloud-edge hybrid networks

For users with diverse needs that 
require a combination of various 
generative AI capabilities

Heterogeneous and domain-specific tasks:
• Multi-agent systems
• Multimodal large language models

• Uni-MoE
(https://github.com/HITsz-
TMG/UMOE-Scaling-Unified-
Multimodal-LLMs)
• MoE-LLaVA
(https://github.com/PKU-
YuanGroup/MoE-LLaVA)

for personalized applications such as healthcare diagnostics
or AI-driven virtual assistants. Compared with pruning and
quantization, fine-tuning does not achieve model lightweight
directly but rather democratizes generative AI by enabling
models to address specific domain tasks. For example, GitHub
Copilot9 is now available for users to fine-tune the model and
make it a domain-specific personal AI assistant.

2) Pruning: Pruning focuses on simplifying the structure
of the model without changing the model weights [14]. In
edge networks, pruning removes redundant neurons from the
model, allowing it to perform tasks on resource-constrained
devices efficiently. Pruning differs from quantization in that it
reduces the number of active components rather than lowering
the precision of computations. For example, LLM-Pruner10

realizes LLaMA/Llama-2 structural pruning with 20% param-
eters pruned, making LLMs more available on edge devices.

3) Knowledge Distillation: Distillation focuses on trans-
ferring knowledge from large models to smaller ones. It is
commonly used after quantization and pruning to reduce the
performance loss caused by these lightweight methods [15].
Compared with pruning and quantization, knowledge distil-
lation achieves a better balance between performance and
efficiency. For example, the mobileBERT11 model distills
knowledge from a teacher model, i.e., BERTLARGE model,
making it suitable for efficient deployment and inference on
lightweight devices.

4) Quantization: Quantization focuses on reducing mem-
ory footprint and improving computational efficiency. Quan-
tization is beneficial at the physical layer, particularly for
real-time applications where ultra-low latency and energy effi-
ciency are prioritized, such as real-time Question-and-Answer

9https://github.com/features/preview/copilot-customization
10https://github.com/horseee/LLM-Pruner
11https://github.com/google-research/google-research/tree/master/mobileb

ert

(Q&A) or AR/VR applications. Unlike pruning, quantization
treats all parameters equally without considering the impor-
tance of each parameter, thus drastically reducing memory
and computational requirements. This makes it essential for
mobile and IoT devices operating under stringent power con-
straints. For instance, AWQ12 compresses multiple LLMs for
fast inference, enabling generative AI applications on mobile
devices in real time.

5) MoE: MoE focuses on task distribution across the
system rather than reducing the internal model complexity.
MoE is particularly suitable for applications in collaborative
environments where diverse tasks are distributed across mul-
tiple devices. MoE differs from other methods in its great
flexibility and scalability. For example, Uni-MoE13 adopts
an MoE architecture to process multimodal tasks, with each
expert specializing in a specific modality, making it well-suited
for deployment in collaborative networks.

To study the research trends of the above five key com-
pact model strategies in democratized generative AI, we also
present a tree diagram that reviews some representative re-
search works in the recent two years (i.e., 2022 to 2024),
as shown in Fig. 2. Note that a comprehensive survey and
exhaustive list of works can be future work.

B. Extended Network Applications under Compact Model
Strategy Coordination

An efficient combination of different compact model strate-
gies and network architectures can promote the development of
next-generation networking. Therefore, we discuss three major
network applications to illustrate their synergistic effects.

12https://github.com/mit-han-lab/llm-awq
13https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-L

LMs

https://github.com/features/preview/copilot-customization
https://github.com/horseee/LLM-Pruner
https://github.com/google-research/google-research/tree/master/mobilebert
https://github.com/google-research/google-research/tree/master/mobilebert
https://github.com/mit-han-lab/llm-awq
https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs
https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs
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1) Cloud-Edge Collaborative Networks: Compact model
strategies, such as pruning, quantization, and distillation,
are essential for enabling cloud-edge collaborative networks,
which are crucial for running resource-intensive generative AI
models on resource-constrained mobile edge devices. Prun-
ing and quantization effectively reduce model complexity,
allowing mobile edge devices to handle simpler tasks locally,
while distillation enhances model efficiency to support cloud-
edge integration. Together, these strategies optimize resource
allocation, enabling mobile devices to participate actively in
cloud-edge collaboration without excessive dependency on the
cloud. For example, the GKT14 framework employs knowledge
distillation to assign larger teacher models to cloud servers
and deploy smaller student models on mobile edge devices,
allowing them to work collaboratively. This can reduce data
transmission and support efficient cloud-edge collaboration in
LLM deployment.

2) Adaptive Decision-Making for Multi-Agent Systems:
Compact model strategies, particularly knowledge distillation
and Mixture of Experts (MoE), are instrumental in enabling
adaptive decision-making for multi-agent network systems.
These strategies facilitate decentralized decision-making and
effective communication across distributed networks, allowing
agents to leverage distilled knowledge without requiring ex-
tensive data exchange. This contributes to building scalable
and resilient multi-agent environments. For example, in [15],
the authors presented GenAINet, a semantic-native framework
for wireless device queries that uses knowledge distillation
to transfer knowledge among multiple generative AI agents,
enabling collaborative on-device query processing under the
device-to-device communication paradigm.

3) Optimization in Vertical Network Fields: Compact
model strategies, such as fine-tuning and MoE, can enable
LLMs to specialize for specific vertical fields within network-
ing like network design, diagnosis, and configuration [14]. In
this context, fine-tuning allows LLMs to adapt to network-
specific terminology, enabling them to interpret technical

14https://github.com/Zoeyyao27/GKT

instructions accurately, respond to network events, or assist in
troubleshooting. Likewise, MoE structures selectively activate
domain-relevant knowledge bases or sub-models, dynamically
adjusting LLMs’ responses based on context. These strategies
together facilitate applications such as network automation,
adaptive configuration, and tool integration, allowing gener-
ative AI to support real-time decision-making in complex
network environments. For instance, Mobile-LLaMA15 is an
LLM fine-tuned on a network-specific dataset, supporting
functions such as packet analysis and IP routing analysis,
thereby providing practical tools for generating code scripts
tailored to 5G network analysis.

IV. CASE STUDY: DEMOCRATIZED LLMS FOR REAL-TIME
DECISION-MAKING ON MOBILE EDGE NETWOKS

As illustrated in Fig. 3, we present a case study for realizing
democratized generative AI through LLM deployment on the
mobile edge network. Furthermore, we conduct experiments
to evaluate the effectiveness of the edge LLM deployment.

A. Tutorial Workflow

The workflow for deploying LLMs on mobile edge network
involves the following four steps:

Step 1: Model Optimization. The first step is optimizing
the model to run efficiently on resource-constrained devices.
This process includes downsizing the LLMs using compact
strategies such as quantization, model pruning, and knowledge
distillation. In this case study, we apply quantization, distil-
lation, pruning, and fine-tuning separately to Llama models,
resulting in seven distinct candidate models, each with unique
advantages. For instance, the 4-bit quantized Llama-3.1-8B
model compresses its parameter size to a quarter of the
original, greatly reducing the memory needed to store and
transport its parameters. Meanwhile, fine-tuned models en-
hance generalization accuracy and reduce hallucination rates.

Step 2: Model Compilation. After optimizing the model,
we compile it to further optimize its performance for specific

15https://github.com/DNLab2024/Mobile-LLaMA

https://github.com/Zoeyyao27/GKT
https://github.com/DNLab2024/Mobile-LLaMA
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Fig. 3. Workflow for deploying LLMs on mobile edge devices for real-time Q&A tasks. Key steps include (A) Model Optimization using techniques such
as pruning and quantization; (B) Model Compilation to optimize models for hardware compatibility; (C) Deployment and Performance Evaluation with
metrics such as generalization accuracy, hallucination rate, accessibility, and resource consumption; (D) Offloading Strategy, where simple tasks are handled
locally and complex tasks are offloaded to an edge server, balancing efficiency and scalability.

hardware of mobile edge devices. In this case study, we use
compilation methods provided by MLC-LLM16 to generate
binary model libraries, lightweight runtime, and tokenizers.
By utilizing the tensor virtual machine (TVM), the model
is transformed into a more hardware-optimized form, which
reduces latency and energy consumption during inference.
Finally, we use Android Studio to build the .apk file to
make it compatible with the Android platform. The compiled
models are specifically adjusted to fully utilize the processing
capabilities of target hardware, such as mobile CPUs and
GPUs.

Step 3: Deployment and Performance Evaluation. After
compilation, the model is deployed to mobile edge devices
and subjected to a comprehensive evaluation to ensure that it
meets the necessary performance metrics. This step involves
assessing metrics, including generalization accuracy, halluci-
nation rate, resource consumption, and accessibility. In this
case study, we test the hallucination rate and generalization
accuracy of these models using text generation tasks and Q&A
tasks, respectively. The accessibility and resource consumption
is evaluated by the memory footprint of the model parameters
and the energy consumption caused by model inference,
respectively. Models that fail to meet the requirements are
iteratively returned to Step 1 for further adjustments and

16https://llm.mlc.ai/

optimizations. Only after passing these evaluations is the
model deployed in a real-world scenario.

Step 4: Offloading Strategy. To balance performance and
resource consumption, we implement an offloading strategy
where unquantized versions of the LLMs are deployed on
an edge server. This approach allows lightweight models on
mobile devices to handle basic requests locally, ensuring fast
responses and low latency. For more complex tasks that exceed
the capabilities of local models, the requests are offloaded to
the edge server, where full-scale LLMs process them. This hi-
erarchical approach ensures optimal efficiency and scalability,
providing a better user experience while maximizing resource
utilization.

B. Numerical Results

Simulation Settings: We use a Xiaomi 10 Ultra smartphone
with 12GB of RAM, 256GB of storage, and a Qualcomm
Snapdragon 865 processor as a mobile edge device. The
edge server is with Intel Xeon Platinum 8380 CPU and
NVIDIA A100 80GB GPU. To assess the performance of the
democratized generative AI, we evaluate the model’s general-
ization accuracy, hallucination rate, accessibility, and resource
consumption as described in Step 3. Specifically, we perform
Q&A tasks using LLMs to evaluate their generalization ac-
curacy. The WebQuestionsSP dataset, which contains 4,737

https://llm.mlc.ai/
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questions17, is used, and each question is asked independently.
A model is considered to answer correctly if its response
includes the correct answer. To evaluate the hallucination
rate, we use LLMs to generate content similar to that in
the Wiki Bio GPT-3 Hallucination dataset18 and calculate the
hallucination rate by SelfCheckGPT with NLI score [11]. The
hallucination rate is expressed as a value between 0 and 1, with
lower values indicating better performance. The accessibility
of democratized generative AI models in edge networks is
mainly constrained by the available memory of edge de-
vices. Therefore, we assess the memory requirements of the
LLMs, where the lower memory requirements indicate higher
accessibility. Additionally, we calculate the average battery
consumption of the mobile edge devices when LLMs respond
to a single query to evaluate their resource consumption.

For comparison, we conduct experiments on the Llama-3.1-
8B model using four compact generative AI strategies: fine-
tuning19, 4-layers model pruning20, 4-bit quantization21, and
knowledge distillation22. As shown in Fig. 4, the hallucination
rate demonstrates a negative correlation with parameter size
(i.e., accessibility), where the larger models tend to exhibit
lower hallucination rates. Furthermore, the models optimized
using distillation and fine-tuning outperform those using quan-
tization and pruning in terms of generalization accuracy.
This is because distillation and fine-tuning involve a training
process where developers can guide the model through loss
functions to improve correctness. While fine-tuning achieves
high generalization accuracy, it does not reduce the parameter
size, resulting in poorer accessibility and higher energy con-
sumption. On the other hand, quantization offers the highest
accessibility and resource efficiency, though it results in a
higher hallucination rate and lower generalization accuracy
compared to other methods. Pruning, similar to quantization,
achieves better accessibility and energy efficiency by reducing
the parameter size, but it incurs a greater loss in generalization
accuracy than those of the other strategies.

Next, we explore the impact of different parameter set-
tings of compact strategies on the key metrics. As shown
in Fig. 5(a), we take quantization as an example strategy
to examine how different parameter settings within the same
compact model strategy affect model performance. It is ob-
served that while increasing the degree of quantization results
in improved resource consumption and accessibility, it also
leads to a higher hallucination rate and decreased generaliza-
tion accuracy. Specifically, the models with 3-bit quantization
achieve better accessibility and lower resource consumption
than those with 4-bit quantization but at the cost of increased
hallucination rates. Thus, selecting an appropriate optimization
setting that balances accessibility and performance is critical,
especially given the resource constraints of mobile edge de-
vices. Furthermore, we evaluate the performance of LLMs on
an edge server on performance metrics. As shown in Fig. 5(b),

17https://www.microsoft.com/en-us/download/details.aspx?id=52763
18https://huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination
19https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
20https://huggingface.co/Na0s/Llama-3.1-8B-Pruned-4-Layers
21https://huggingface.co/mlc-ai/Llama-3.1-8B-q4f16_1-MLC
22https://huggingface.co/nvidia/Llama-3.1-Minitron-4B-Width-Base
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Fig. 4. Experimental results of key compact model strategies on the metrics.
This test is conducted on a server with Intel Xeon Platinum 8380 CPU
and NVIDIA A100 80GB GPU. Resource consumption is the average power
consumption of the GPU in response to a single query with up to 256 tokens.

the Llama-3.1-8B model performs equally well as Llama-2-
7B-chat in both hallucination rate and generalization accuracy.
However, in Fig. 5(a), the performance of the quantized
Llama3.1-8B model has significantly decreased. In particular,
the 3-bit quantized Llama-3.1-8B model reaches only 12.52%
accuracy on the WebQuestionsSP dataset. This highlights the
importance of comprehensive performance evaluation before
deployment, such a model should be returned to Step 1 for
further optimization to meet the requirements for deployment
in resource-constrained environments.

Finally, following Step 4, we set up an offloading scenario
using 3-bit quantized and original Llama-2-7B-chat models
deployed on mobile edge devices and edge servers, respec-
tively. We use single-hop and multi-hop questions from the
WebQuestionsSP dataset to serve as simple and complex
prompts. In the offloading setup, simple questions are pro-
cessed locally by the mobile edge device, while complex
questions are offloaded to the edge server for handling. We
also compare the hallucination rate, generalization accuracy,
and accessibility of three strategies: processing entirely on the
mobile edge device, processing entirely on the edge server, and
using the offloading strategy (i.e., local device + server). As
shown in Fig. 5(c), the accessibility of the offloading strategy
remains identical to that of running entirely on the mobile
edge device, as both scenarios require the same memory
footprint for loading models on mobile devices. However, the
offloading strategy shows an improved hallucination rate and
generalization accuracy compared to the purely local strategy,
as complex tasks are offloaded to the edge server, where more
powerful models are available.

V. FUTURE DIRECTIONS

Security and Privacy Challenges: Ensuring both the secu-
rity and privacy of data during generative AI models or LLMs
offloading remains a critical challenge in mobile edge environ-
ments. Sensitive data transmitted between mobile devices and
edge servers is at risk of tampering and unauthorized access,
which could lead to compromised model responses or leakage

https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Na0s/Llama-3.1-8B-Pruned-4-Layers
https://huggingface.co/mlc-ai/Llama-3.1-8B-q4f16_1-MLC
https://huggingface.co/nvidia/Llama-3.1-Minitron-4B-Width-Base
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Fig. 5. Numerical results of running the democratized LLMs. The mobile edge device used is a Xiaomi 10 Ultra smartphone with 12GB of RAM, 256GB of
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consumption of a mobile edge device is the average battery consumption to respond to a single query, while the edge server resource consumption is the
average power consumption of the GPU to respond to a single query with up to 256 tokens.

of sensitive user information. Additionally, privacy-preserving
methods, such as differential privacy and federated learning,
should be explored to minimize the risk of eavesdropping and
data leakage, building trust and maintaining user privacy in
mobile-edge AI applications.

Networking Challenges: Ensuring efficient and reliable
network communication is crucial when deploying genera-
tive AI models or LLMs in mobile and edge environments,
where network instability can impact performance. Limited
bandwidth, latency variability, and potential congestion in
mobile networks can lead to delayed responses or reduced
model effectiveness, especially during high-demand scenarios.
Addressing these challenges calls for developing adaptive
networking protocols that optimize data transfer, reduce la-
tency, and support seamless offloading under dynamic network
conditions. Future research should focus on intelligent traffic
management, predictive data caching, and network resource
allocation to maintain smooth AI services across varying
network environments.

Accuracy Enhancement: Accuracy is a key concern when
deploying compact LLMs or generative AI models on mobile
devices, as reducing the model size often results in degraded
performance. Addressing this issue requires the development
of advanced optimization techniques that can enhance the
accuracy of lightweight models while retaining their reduced
footprint. Future research should explore adaptive learning
strategies to maintain high accuracy in resource-constrained
settings.

VI. CONCLUSION

In this article, we have explored the democratization of
generative AI deployment on mobile and edge networks.
We have reviewed compact strategies for democratizing AI,
such as quantization, model pruning, and knowledge distil-
lation, focusing on their effectiveness in optimizing LLMs
for resource-constrained environments. We have conducted
a case study deploying LLMs on real mobile edge devices,

demonstrating the practicality of democratized AI through
significant improvements in generalization accuracy, hallucina-
tion rate, accessibility, and resource consumption. Finally, we
have outlined potential research directions to further advance
the democratization of generative AI for mobile and edge
scenarios.
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