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Abstract—Machine to machine (M2M) communications are
expected to form one of the fundamental building blocks of
the future Internet of Things (IoT). In view of the scarcity
of spectrum and the service requirements of traditional users,
providing network access to the extremely large number of
devices in IoT and M2M scenarios is one of the fundamental
problems for network designers and operators. As a possible
solution to this issue, this paper explores the possibility of
using the unlicensed industrial, scientific and medical (ISM)
band for supporting M2M communications while co-existing
with traditional users of this band. Since IEEE 802.11 or WiFi
based networks are the most common networking technology
in the ISM band, this paper presents an evaluation of “white
spaces” in WiFi networks (i.e. periods where the WiFi network
is not using the channel) that may be used opportunistically for
M2M communications. Using a MMPP/G/1/K queue to model the
operation of a WiFi access point, we characterize the WiFi white
spaces in terms of their frequency, duration, and their probability
distribution. Our results show that WiFi white spaces provide
considerable transmission opportunities that may be exploited
for M2M communications.

Index Terms—WiFi, white spaces, M2M communications.

I. INTRODUCTION

The Internet of Things will comprise of a large number
of embedded devices that permeate our living and working
environments in order to provide automation, and facilitate
various services that enhance our quality of life [1]. A sig-
nificant fraction of the data generated and exchanged in the
IoT will be between machines. Some studies estimate that
by 2020 there will be around 50 billion devices connected
to internet with large portion of them being M2M commu-
nication based devices [2]. While M2M communication is
becoming a market-driving force for many intelligent real-time
applications, facilitating large scale M2M is filled with many
challenges. Of these, one of the most critical challenges is to
provide efficient channel access to the large number of devices
[3].

The problem of providing channel access for M2M com-
munications has received significant attention in industry and
academia. Many standardization bodies have tried to address
this problem by implementing various degrees of support for
M2M communication and resolving the channel access bottle-
neck in cellular systems like Long Term Evolution (LTE), 3rd
Generation Partnership Project (3GPP) and WiMax [4], [5].
While such solutions require licensed bands that are expensive,
a viable alternative for wireless M2M communication is to use
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the unlicensed ISM band. Currently, the ISM band is used by
many local area networking protocols such as IEEE 802.11
and Bluetooth. Thus access mechanisms for M2M commu-
nications that opportunistically use the ISM band would be
of great interest. For M2M devices to coexist with existing
services in the ISM band, it is important to first ascertain
whether there are enough available channel resources for
M2M communications while satisfying the requirements of
existing networks. Since WiFi networks are ubiquitous and
the most popular users of the ISM band, this paper focuses
on evaluating the “white spaces” or idle periods in a WiFi
network. Such a characterization will allow network designers
to ascertain the extent to which WiFi white spaces can be
used for opportunistic M2M communication. While it has been
noted that many WiFi networks are largely underutilized [6],
an exact characterization and evaluation of the idle periods
is necessary to ensure that M2M communications can co-exist
with WiFi networks. To address the problem for characterizing
and evaluating the suitability of WiFi white spaces for oppor-
tunistic M2M communications, this paper presents an analytic
model to characterize the white spaces in a WiFi network. The
paper considers a WiFi network with a single access point
and an arbitrary number of users. The activity on the network
is then modeled using a MMPP/G/1/K queuing model. The
proposed model characterizes the white spaces in the WiFi
network by evaluating the idle periods of the queue. The model
provides a number of metrics to understand the characteristics
of WiFi white spaces including the fraction of time the channel
is idle, the probability distribution of the length of an idle
period, average duration of idle period, and how frequently
the channel becomes idle. Our results show that WiFi white
spaces provide adequate opportunities for M2M transmissions
under a large range of operating conditions. The proposed
model has been verified using simulations conducted in the
NS3 simulation tool.

The rest of the paper is organized as follows. Section II
presents a survey the related literature. Section III presents
the MMPP/G/1/K queue based model for characterizing the
distribution and average duration of white spaces in WiFi
networks. Section IV presents the simulation results to verify
the proposed model. Finally, Section V concludes the paper.

II. LITERATURE SURVEY

The development of medium access control protocols and
channel access techniques for M2M communications has re-



ceived considerable attention in the recent past. While many
of the proposed protocols present enhancements to existing
technologies such as cellular networks to support M2M com-
munications [7], [8], or require a dedicated channel [9], [10],
cognitive protocols that exploit unused spectrum for M2M
communications have also been proposed [11], [12]. However,
existing cognitive radio protocols for M2M communications
are based on exploiting TV white spaces or in networks with
centralized controllers that can inform users about unused
resources.

Our focus in this paper is on modeling white spaces in WiFi
networks with multiple users. In [13] the authors have tried
to model WiFi white spaces in physical layer for exploitation
by ZigBee applications. The proposed models are based on
analyzing real traffic traces collected under lightly loaded
network conditions. However, increasingly a major source
of network traffic is multimedia streaming applications that
offer considerable load on WiFi access points. Also, the
Pareto distribution used in [13] to model the idle period can
only account for white spaces greater than 1 ms. Another
disadvantage of that model is that it is an empirical model
whose parameters have to be calculated from actual traces of
network traffic. In this paper we present an analytic model
to obtain the distribution of white-spaces in WiFi networks
under realistic traffic conditions. We also consider heavily
loaded network scenarios where the network traffic is based
on multiple video streams that are streamed by the users of
the WiFi network.

We also note that the unlicensed ISM band is available
to all kinds of heterogeneous devices and their coexistence
has been widely studied in existing literature. In [13] the
authors propose a MAC protocol which detects and uses the
idle time slices in WiFi transmission. In [14] the authors
suggest a mechanism by which the WiFi devices can be muted
periodically by a fake-PHY preamble header broadcast from
the ZigBee devices. However, these studies do not present a
thorough study or characterization of the white spaces in a
WiFi network. Our paper addresses this open problem and
provides a framework and insights to facilitate more efficient
use of WiFi white spaces.

III. AN ANALYTIC MODEL FOR WIFI WHITE SPACES

In this section we present an analytic model to characterize
the white spaces in a WiFi network. The proposed approach is
based on using a queueing model to characterize the activity
of the nodes in the network.

We consider a WiFi network with one access point (AP) and
n leaf nodes or devices. This paper focuses on WiFi networks
in home and similar scenarios where the major traffic is in
the downlink direction, i.e., from the AP to the nodes. Thus
we assume that the AP is receiving packets from the Internet
and transmitting them to the n leaf nodes. The packet arrival
process at the AP intended for each node is modeled as a
Markov Modulated Poisson Process (MMPP) with an arbitrary
number of states r. We use a MMPP based arrival model
because they are quite suitable for a large variety of traffic

types such as voice, video as well as long range dependent
traffic [15], [16]. We model the MAC layer queue at the AP
by a MMPP/G/1/K model with MMPP arrivals and a general
service time distribution h(t) with mean Θ. The service time
distribution h(t) is derived subsequently in this section.

A. Arrival Model

The traffic arrival process at the AP for each node is
modeled as a MMPP. In a MMPP the arrivals take place
according to a Poisson process and the rate of arrival λ
depends on the phase of underlying Markov chain Q. Thus
an MMPP can be described by its arrival rate matrix Λ and
transition rate matrix Q. For the traffic corresponding to node
i , 1 ≤ i ≤ n, the matrices Qi and Λi are given by

Qi =


−σ1 σ12 · · · σ1r
σ21 −σ2 · · · σ2r

...
...

. . .
...

σr1 σr2 · · · −σr

 (1)

Λi =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λr

 . (2)

Let q be the steady state probability vector of the Markov
chain. Then q satisfies the equations qQi = 0 and qe = 1
where e is a unit vector. The overall arrival rate λTotal is
given by (Λiq)e. The aggregate arrival process at the AP is
superposition of n MMPPs corresponding to the arrivals for
each of the n nodes. It is well known that superposition of
many MMPPs is also an MMPP [17]. The generator matrix Q
and the arrival matrix Λ for composite MMPP can be obtained
from the individual generator Qi and Λi as

Q = Q1 ⊕Q2 ⊕ · · · ⊕Qn

Λ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λn

where ⊕ denotes the Kronecker-sum defined as

A⊕B = (A⊗ IB) + (IA ⊗B),

and ⊗ represents the Kronecker-product defined

A⊗B =

a11B a12B · · · a1mB
...

...
. . .

...
an1B an2B · · · anmB

 .
B. Service Time Distribution

To evaluate the MMPP/G/1/K queue to model the MAC
layer behavior of the AP, we need the appropriate service time
distribution h(t). To characterize this service time distribution,
we consider the operation of the AP when a new packet arrives
for an arbitrary node i, 1 ≤ i ≤ n. When a packet arrives at
the AP for node i, the queue at the AP may be in one of the
following two states: a) State S0: the queue is empty; and
b) State S1: the queue is non-empty. Next we consider the
service time for the two cases separately.



1) State S0: If the packet arrives at the AP when its
queue is empty, it joins the head-of-the-line (HoL) and is
immediately considered for transmission. The AP listens
to the channel for a time TDIFS corresponding to the
distributed interframe space (DIFS). If the channel is
found to be idle, the AP transmits a request-to-send (RTS)
frame of duration TRTS . After receiving the RTS frame,
the destination node responds with a clear-to-send (CTS)
frame after waiting for time TSIFS (corresponding to a
short interframe space (SIFS)). After receiving the CTS
frame, the AP waits for time TSIFS and then transmits the
data with a data rate based on the channel conditions. Fi-
nally, the receiver node sends an acknowledgment (ACK)
after time TSIFS if it receives the data successfully. If
there is no collision (as will be the case in a network
with only downlink traffic from the AP), the only random
variable here is the data transmission time, TD, which is
dependent on the size of the packet and the data rate
selected by the AP and the leaf node. Let p0 denote the
probability that the queue is empty at an arbitrary instant.
Then the Laplace-Stieltjes Transform (LST) of the service
time in case S0 is given by

HS0(s) = LST [TDIFS + TCA + TD + TSIFS + TACK ]

= LST [TC + TD]

= e−sTC + LST

[
f(x)

R

]
(3)

where TCA is the total time taken for the RTS-CTS
exchange which is equal to TRTS+TCTS+2×TSIFS and
TC is the total constant time in every transmission in case
S0, which is equal to TCA + TDIFS + TSIFS + TACK .
The variable TD can be chosen to have an arbitrary
distribution depending on packet size distribution f(x)
and chosen data rate R. It is reasonable to assume that
within a busy period of the queue at the MAC layer of
the AP, the data rate does not change abruptly.

2) State S1: Next we consider the case where the queue
is non-empty when a packet arrives (we call this the
“tagged” packet). For such a packet, the service time
starts only when the last of the enqueued packets leaves
the queue. Once the tagged packet comes to the head
of the queue, it first has to wait for a DIFS period and a
random back-off chosen from time U [0, CW ]Tslot where
U [a, b] denotes a discrete, uniformly distributed random
variable between a and b, CW is the minimum contention
window size and Tslot is the length of a backoff slot.
The backoff counter is decreased by one for every idle
slot and the AP transmits the packet when the counter
decrements to zero. Recall that this paper only considers
downlink traffic from the AP to the nodes. Thus there
are no other transmissions that can interrupt the backoff
counter at the AP. The time taken by the AP to transmit
the packet is the same as in Eqn. (3). Including the time
spent in backoff, the LST of the service time for case S1

becomes

HS1(s) = LST [U [0− CW ]Tslot + TC + TD]

= Tslot
1− e−sCW

sCW
+ e−TCs + LST

[
f(x)

R

]
(4)

3) Total service time H(s): To obtain the total service time
we combine the service times for the cases S0 and S1,
weighted by their respective probabilities p0 and 1− p0,
respectively. Thus the LST of the total service time is
given by

HS(s) = p0HS0(s) + (1− p0)HS1(s)

= (1− p0)

[
Tslot

1− e−sCW

sCW

]
+[

e−sTC + LST

[
f(x)

R

]] (5)

The average service time, Θ, is given by

Θ = − d

ds
HS(s)|s=0

(6)

C. Distribution of Duration of White Spaces

White spaces in a WiFi network correspond to the time
when the network is idle, i.e., there are no packets to be
transmitted in any of the nodes. Note that the times when a
node is in backoff is not counted as a white space or idle period
since a packet is in “service”. Also, the periods corresponding
to backoffs of the WiFi nodes (of the order of tens of
microseconds) is too small for use by M2M nodes. Thus
characterizing the distribution of white spaces is equivalent
to modeling the distribution of the idle periods of the system
where the queues at the nodes are empty.

The cumulative distribution function, DWS , of the duration
of white spaces is defined as the probability of the event
P (WS ≤ t) for all times t ≥ 0. To obtain this distribution,
we define u∗(t, j|i) as probability that the idle period of the
MMPP/G/1/K queue is less than t and the phase of arrival
process at the start of subsequent busy period is j, given that
arrival phase at the end of preceding busy period was i:

u∗(t, j|i) = P (WS < t, j|i) ∀ i, j ∈ 1, 2, · · · , r. (7)

Thus u∗(t, j|i) can be expressed in a r× r matrix U∗(t). The
transform of this matrix distribution U∗(t) is given by [18]

U∗(s) = [sI + Λ−Q]−1Λ (8)

where I is an r × r identity matrix.
To obtain the distribution of the white spaces, the parameters

of the arrival process, Q and Λ, are first used in Equation
(8) to obtain a transform of the probability matrix U∗(t).
This transform is then numerically inverted (e.g. following
the inversion procedure from [19]) to obtain a matrix with the
conditional probabilities u∗(t, j|i). The CDF of the duration
of white spaces is then given by

P (WS < t) = U∗(t)eq (9)

where e is an unit column vector and q is the steady state
probability vector of the Markov chain Q satisfying qQ = 0



and qe = 1. It is interesting to note that the distribution of the
durations of the white spaces does not depend on the service
time distribution (which in turn depends on the packet lengths).

D. Expected Duration of White Spaces

In this section we derive an expression for the expected
duration of the white spaces, based on the distribution obtained
in the previous section. The transform of the CDF of the
duration of white spaces, U∗(s), is given by Eqn. (8). The
expected value of U∗(t) is then given by

E[U∗(t)] = (−1)
d(U∗(s))

ds

∣∣∣∣
s=0

= (−1)
d(sI + Λ−Q)−1Λ

ds

∣∣∣∣
s=0

.

Let Y = sI + Λ−Q. Then we have,

E[U∗(t)] = (−1)(−1) (Y )−1 d(sI + Λ−Q)

ds
(Y )−1Λ

∣∣∣∣
s=0

= (sI + Λ−Q)−1I(sI + Λ−Q)−1Λ
∣∣
s=0

= ((Λ−Q)−1)2Λ.

E[U∗(t)] is a matrix of conditional expectations. The uncon-
ditional expectation is then given by

E[WS] = E[U∗(t)]eq

= ((Λ−Q)−1)2Λeq. (10)

It is straightforward to note that the average number of white
spaces (NWS) in unit time is given by

NWS =
Fraction of time queue is idle

Average duration of a white space

=
p0

((Λ−Q)−1)2Λeq
(11)

E. Solving the MMPP/G/1/K Queue

Our model for the distribution of the white spaces is
based on modeling the WiFi network as a MMPP/G/1/K
queue whose service time distribution is given by Eqn. (5).
For completeness, this section provides an overview of the
procedure for calculating the steady state probabilities of the
queue length and in particular p0, the probability that the
queue is empty (used in the calculation of the frequency of
white spaces). The mean service time Θ is given by Eqn.
(6) and is a function of p0. To obtain p0 for a MMPP/G/1/K
queue, we use the analysis from [20] and list the equations
below for completeness. Consider the embedded Markov chain
consisting of the service completion instants at the queue.
Let π(k) (respectively, p(k)) be the r-dimensional vector
whose jth element is the limiting probability at the imbedded
epochs (respectively, at an arbitrary time instant) of having
k packets in the queue, k = 0, 1, · · · ,K − 1 (respectively,
k = 0, 1, · · · ,K), and the MMPP being in phase j. Define
the matrix sequence {Ck} as

CK+1 =

[
Ck −UAk −

k∑
v=1

CvAk−v+1

]
A0

−1 (12)
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Fig. 1. Comparison of values of p0 obtained the simulations and the proposed
model.

for k = 1, 2, · · · ,K − 2, with C0 = I,C1 = (I−UA0)A0
−1

and I is a r × r identity matrix. The (k, l)-th element of
the matrix Av denotes the conditional probability of reaching
phase l and having v arrivals at the end of service time, starting
from phase k. The matrices Av can easily calculated using an
iterative procedure [17]. The probability vectors π(k) is then
given by

π(0)

[
K−1∑
v=0

Cv + (I−U)A(I−A + eq)−1

]
= q, (13)

and π(k) = π(0)Ck, k = 1, 2, · · · ,K − 1. The vector p(0)
can then be calculated as

p(0) = ξπ(0)(Λ−Q)−1Θ−1 (14)

where ξ = [1 + π(0)(Λ−Q)−1Θ−1e]−1. To complete the
analysis, we note that the probability that the queue is empty,
p0, is given by p(0)e. However, p0 is used in the expression
for the service time, which in turn is used to evaluate p(0).
To obtain p0, we use an iterative technique: we start with an
arbitrary value of p0 in (0, 1) and use it to compute the service
time and p(0). The new value of p0 given by p(0)e is then
used to recalculate the service time and p(0). This process
continues till the values of p0 and p(0)e converge.

IV. SIMULATION RESULTS

This section presents simulation results to verify the pro-
posed model. The simulations were carried out using the
NS3 simulation software. The simulated network topology
reflects a home or office scenario where a single IEEE 802.11
access point serves as the network gateway for a number of
devices. Our study focuses on heavy traffic scenarios since
they are more likely to cause fewer and smaller white spaces.
Consequently, we assume that each of the users in the network
is downloading a video from the Internet (via the access point).
The video traffic for each node is generated according to an
independent, 2-state (r = 2) MMPP with parameters σ1 = 8,
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Fig. 2. Comparison of average service time for different values of n obtained
from the simulations and the proposed model.

σ2 = 2 and λ1, λ2 are varied to get different values of traffic
intensity ρ. Note that MMPPs have been shown to accurately
characterize video traces in existing literature [15], [16]. The
length of each simulation was 3600 seconds, and each result
is averaged over 5 runs. The channel data rate was fixed at
R = 18 Mbps, TC = 94µs, Tslot = 9µs and the size of each
packet was 1500 bytes. A buffer size of K = 100 was used.

To evaluate the accuracy of the MMPP/G/1/K queueing
model for the wireless network, we first compare the simu-
lation results for the fraction of time the channel is idle with
that from the analysis (given by p0). Figure 1 compares the p0
values obtained from the model and simulations. The accuracy
of the results are reflected by how close the results are to the
x = y line. In the first case, we consider a network with a
single device where the traffic arrival rate is varied to simulate
scenarios with different levels of utilization (0.25, 0.50, 0.75
and 0.90). The increasing values of p0 indicate decreasing
arrival traffic and we note the closeness of the simulation and
analytic results. In the second case we consider the scenario
where the number of devices, n, is varied from 1 to 4 in order
to increase the level of network utilization. Again, we note
the close match between the analytic and simulation results.
We also note that the value of p0 does not decrease linearly
with the increase in number of nodes. This can be explained
by Figure 2 which shows the increase in the average service
time as n is increased, as obtained from Equation (6) and
compares it with the values obtained from simulations. As the
arrival traffic increases, the service time also increases because
a larger fraction of the packets now have to go through a
random back-off before being transmitted.

Next, we consider the accuracy of the proposed model for
the distribution of the duration of white spaces. Figure 3
shows the distribution P (WS ≤ t) for a single node with
increasing traffic arrival rates. The corresponding results for
different numbers of nodes are shown in Figure 4. In all
cases, the likelihood of experiencing longer idle periods (i.e.
white spaces) decreases as the traffic intensity increases. Also,
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we note the close match between the simulation and analytic
results.

The average duration of white spaces as given by the
analytic and simulation results is compared in Figure 5. As
expected, as the number of devices n increases, the average
duration of the white spaces decreases. It is interesting to
note that for the scenarios considered in our simulations, the
average duration of white spaces is in range of 1−3 ms. Even
at high load conditions when n = 4 the average length of white
spaces of 0.982 ms. Such idle periods are long enough to send
M2M packets under general conditions.

Finally, in order for M2M communications to successfully
communicate using white spaces, there should be sufficient
opportunities for them to transmit. Figure 6 shows the average
number of white spaces per second, as obtained from the
simulations and our model, for different values of n. We note
that the number of idle periods per unit time first increases
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Fig. 6. Average number of white spaces per unit time for different values of
n.

as the network utilization increases (roughly utilization levels
of 0.5), before decreasing again. This can be explained as
follows: when the traffic load is low, we have longer idle
periods but the number of idle periods is small. As the
traffic load increases, the average duration of an idle period
decreases but number of idle periods increases. However, as
the traffic load increases beyond a certain point, both the
average duration and number of idle periods start decreasing.
From the perspective of M2M communications, we note that
even at high loads, white spaces occur frequently enough to
allow meaningful communications. For example, at high loads
when n = 4, the average duration of a white space is 0.98
ms and the average number of white spaces per second is 94
(i.e. on average, there are 94 idle periods each with average
duration of 0.98 ms in a time interval of 1 second).

V. CONCLUSION

This paper addressed the problem of characterizing the
white spaces or idle periods in a WiFi network and evaluated
their suitability for enabling opportunistic M2M communi-

cations. To characterize the distribution of white spaces, we
model the underlying WiFi network as a MMPP/G/1/K queue
and use it to obtain the average duration as well as the
frequency of occurrence of the white spaces. Our results show
that WiFi networks have adequate white spaces to allow oppor-
tunistic M2M communications. The accuracy of the proposed
model has been verified through extensive simulations.
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