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Abstract

We consider stochastic systems defined over irregular, multidimensional, integer spaces that have
a product form steady state distribution. Examples of such systems include closed and BCMP type
of queuing networks, polymerization and genetic models. In these models the system state is a
vector of integers, n = [n1,---,np] and the steady state solution has product form of the type
m(n) = Hf\il fi(n;). To obtain useful statistics from such product form solutions, m(n) has to be
summed over some subset of the space over which it is defined. We consider situations when these
subsets are defined by a set of equalities and inequalities with integer coefficients, as is most often
the case and provide integral expressions to obtain these sums. Typically, a brute force technique
to obtain the sum is computationally very expensive. Algorithmic solutions are available for only
specific forms of f;(n;) and shapes of the state space. In this paper we derive general integral
expressions for arbitrary state spaces and arbitrary f;(n;). The expressions that we derive here
become especially useful if the generating functions f;(n;) can be expressed as a ratio of polynomials
in which case, exact closed form expressions can be obtained for the sums. We demonstrate the
wide applicability of the integral expressions that we derive here through three examples in which
we model finite highway cellular systems, copy networks in multicast packet switches and a BCMP

queuing network modeling a multiuser computer system.
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1 Introduction

Consider a stochastic system whose state is defined by a M —dimensional vector n = [ny,ng,---,nal,
where n; are non negative integers for ¢ = 1,2,---, M. In many systems, not all n will be defined and
let S be the set of defined states. In this paper we will assume that S is defined by a set of linear
constraints in n;. In many models of such systems the steady state probability of the system being in

state n, m(n), has a product form expression of the type

(G(S)'TIX, filni)) neS

0 otherwise

(1)

m(n) =

where G(S) is the normalization constant obtained to make 7(n) sum to unity over the state space S.
Performance measures like marginal distributions of n; and their moments are obtained by summing
m(n) over a subset of §. This summation is, typically, computationally expensive if a brute force
enumeration technique is used. For some specific situations like closed queuing networks and stochastic
knapsack models where the f;(n;) have the form p]/n;! or p}'*, efficient recursive algorithms to sum
over the state space are available. Queuing networks with constant population are considered in [1]
stochastic knapsacks in [2]. In this paper we derive a transform technique to sum functions of the form
Hij\il fi(n;) over a state space defined by a set of linear equality and/or inequality constraints with
integer coefficients. With this method, if the generating function of f;(n;) can be written as a ratio of
polynomials in z, the transform variable, then a closed form expression for the sum is obtained. Before

describing the technique, we discuss examples of some models where our technique can be used.

Ezample 1: In [3], Kaufman discusses complete and partial buffer sharing policies in a communication
node. Messages arrive according to a Poisson process to a communication node. M classes of messages
share a total of K buffers. A class i message requires b; buffers. In the partial sharing policy, K; buffers
are dedicated to class 1 messages and K buffers belong to the common pool. A message of class i is
admitted if b; buffers are available from class ¢ and/or common pools. If it is not admitted, the message
is considered lost. Let n; be the number of class 7 messages in the node. Let n = [ny,ng,---,ny| be
the state of the system and S the state space for n under a given sharing policy. In the complete

sharing policy, all the buffers form the common pool and the state space S is given by

M
nes lenlbl <K
=1

The complete sharing policy is like the stochastic knapsack described in [2]. Foschini and Gopinath
[4] also use a similar model for sharing memory in a multiprocessor system. Kaufman shows that the

steady state solution for this model is of the form of Eqn. 1. An example of a parameter of interest



would be the probability of the loss of messages of class 7. To obtain this we will have to sum 7 (n) over
a subset of S all of whose elements are vectors n such that there are no buffers left to accommodate a

new class ¢ message.

Example 2: Consider a cellular system with M cells. Assume Poisson call arrivals, arbitrary holding
time distributions, no hand offs and a maximum packing channel assignment algorithm. Let n; denote
the number of active calls in cell ¢ and the vector n = [nq,no,---,nys| denote the state of the system.
The set of admissible states for n, S, depends on the geographical layout of the cells and the channel

assignment algorithm used. It can be shown that S is defined by
neS if Bn<N

where B is a M x M matrix and N is an M —dimensional vector. In [6], Everitt shows how to choose
the matrix B and the vector N from the geographical layout of the cells, the number of channels in
the system, the distribution of the channels and the channel assignment algorithm. To calculate the
blocking probability Pg,, of a call arriving to cell ¢, we first define the set Sp, C S that contains all n
satisfying the blocking conditions for cell . Then,
M
Pp, = GCE*‘(S‘;B;) where G(Sp) = Y {H fl(nz)}

l’lESBi i=1

Ezample 3: Consider a discrete time copy network like the one described in [7], that we call the Lee
copy network (LCN). The structure of the LCN is shown in Fig. 1. Time is slotted and all the inputs
are synchronized such that packet arrivals occur at the beginning of a slot. An M x N copy network
works as follows. Inputs are numbered from 1 to M at the beginning of a slot by a scheduler. Let
¢; be the number of copies requested by port 7. In the simplest form of scheduling, an acyclic service
discipline can be used in which the input ports are numbered starting from the top of the network. At
the beginning of a slot the running adder obtains the running sum Z§:1 cjfori=1---M,ie., at all
the ports. In this service policy, port i is serviced in a slot (all the copies requested by the input packet
are made) if 22:1 ¢; < N in that slot. This is because the copy network can only make N copies in a
slot. Let fi(c;) be the probability that input ¢ requests ¢; copies. In this simple design if in a slot the
sum of all the copy requests exceeds IV, then only the first & inputs that satisfy the conditions

k k41
Z ¢ <N and Z ¢ >N
i=1 i=1

will be “served” and the requests from the other inputs, £k + 1, K + 2,--- N, will be discarded. It is

of interest to know the probability that a request at input ¢ will be served. It is also of interest to



| BoN [ oN | [ BCN | IR [ MIN MAX

N X -

/.

X
1000

s
%
A X —
U %
RUNNING DUMMY BROADCAST TRUNK
ADDER ADDRESS BANYAN NUMBER
NETWORK ENCODER NETWORK TRANSLATOR

Figure 1: Lee’s Copy Network for a Multicast Packet Switch [7]

know the throughput of the copy network. Lee [7] obtains a. Chernoff bound on the probability of copy

requests from ¢ being served. We provide an exact analysis using techniques developed here.

Ezample 4: Consider a N x N Knockout switch described in [20]. In each slot a number of inputs
will want to transmit on a given output. Let n; be the number of packets from the inputs wanting to
go to output 7. In the Knockout switch, if n; < L, all packets are transferred to the output. If n; > L,
only L are transferred to the output and n; — L are dropped. It is of interest to know the throughput
and hence loss probability of this switch architecture. Let n = [nq,ng,---,cy], represent the system
state in a slot. If we assume saturation input, a packet is present in every input in every slot, then only
those n satisfying Zi]\; n; = N will be a valid state. In [20], an upper bound on the loss probability

from a port is given as 3~ ; ., (n; — L) fi(n;). The exact loss probability can be obtained as

> (ni = L)m(n)

nes;

where S; is the set of n that will result in a loss from input ¢, i.e., the set of n that satisfy n; > L and

In the context of queuing networks transform based techniques to sum the product form solution over
a state space where the total population in the system is a constant are known. In [8], Harrison reports
a closed form expression for a closed queuing network with M single server nodes and N jobs in the
network, i.e., this result only considers f;(n;) = p;"* and a state space defined by Eij\il n; = N. Gordon

[9] derives this result differently and extends it to closed queuing networks with multiple servers, i.e.,



he allows f;(n;) of the form
% for n; <m;
filni) = ¢ i,

mg

for n; > m;

Gerasimov [10] obtains results very similar to that obtained by Gordon and extends it to BCMP
queuing networks with multiple classes of jobs but he restricts himself to closed queuing networks
without infinite server queues. In all these results the case where the state space is specified by more
than one constraint like in the examples given above has not been discussed. In this paper we obtain
analytical expressions for the the sum of 7w(n) over an irregular state space defined by a set of linear
constraints with integer coefficients. Our interest is not to prove the existence of a product form
solution to these systems. Rather, we assume the existence of the product form solution and obtain
analytic expressions for the normalizing constant in these networks. In Section 2 we discuss the types
of constraints that are applicable to our method and explore the single constraint case. In Section 3 we
extend the algorithm to the multiple constraint case and in Section 4 we discuss numerical evaluation
of the sum using our technique. Examples are discussed in Section 5 in which we apply our technique

in the analysis of three different systems. We conclude with discussions in Section 6.

2 Single Constraint

As described earlier, we assume that the system state is a vector n = [n1, ng, - -, nas|, an M-dimensional
vector of integers and the steady state probability of the system is given by Eqn. 1. We first consider
the summing of m(n) over the state space defined by a single constraint. We first discuss the equality
constraint which can be applied to a closed queuing network as a special case. Next, we consider the

“less than or equal” constraint that which can be used to solve the stochastic knapsack with arbitrary

fi(ng).

2.1 The Equality Constraint

Let us first consider a single equality constraint on the state space given by

M
=1



where N is a positive integer. Denote by S.q(IN, M) the set of all vectors n that satisfy the above
constraint. Define G(Seq(N, M)) as

M
G (Seq(N, M) = > I film)
nESe, (N,M)i=1

In the context of a closed queuing network, G(Seq(N, M)) is the normalizing constant in a network of

M queues with a constant population of V.

Define §(k) as

0 fork#0

which, in turn, can be written in terms of the following contour integral on the complex plane

i(k) = fzkildz

where the integration is on the unit circle and z is a complex variable. (This can also be thought of as

5(k)5{ 1 fork=0

the inverse z-transform of d(k), the discrete impulse function.)

Rewrite the constraint in Eqn. 2, as Y7, n; — N = 0. G (Seq(N, M)) can then be rewritten as

M
G(See(N,M)) = > ] filmi)

neESeq(N,M)i=1

=P

Il
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Here F;(z) is the z—transform of f;(n;). Evaluation of the last integral involves taking the sum of
the residues of the integrand at the poles inside the unit circle of the integrand. This result is similar
to that obtained by Gordon [9] for closed queuing networks except that we generalize the result to

include any f;(n;). We can further generalize Eqn. 2 to include constraints of the form
bint +bong +--- +byny =N (3)

where b;js and N are integers and G (S¢y (N, M)) is

G (8. (N. M) = § | | TT 7t s (@)



Constraints of the type in Eqn. 3 have been used by Kelly [11] to describe product form models for

social interactions.

2.2 Inequality Constraints

We first look at the “less than or equal to (<)” type of inequality constraint like those used in defining
the stochastic knapsack and then comment on the “greater than (>)” type of inequality constraint.

Let Sje(IN, M) be the set of n satisfying the constraint
b1n1+b2n2+---+anM SN

where the b;s and N are integers. Denote by Sj.(IV, M) the set of all n that satisfy this constraint and
let G(S;e(N, M)) be defined as follows.

M
G(Se(N,M) = > ] filnm)

nesy, (NrM) i=1

Before we proceed we first define ® (k) as follows,

(k) = 1 fork< N
N |l 0 fork>N

(k) is a delayed discrete step function reversed in time. The contour integral representation for this

function is

dy(k) = Zé(k — i)

ZINHD) _q 2k
- $1 5 ||

Proceeding as before, we can obtain the following.

LN _

1=,
G(Sie(N, M)) :7{ lm] 1;[171'(2’ ') dz (5)

Note that Eqn. 5 is identical to Eqn. 4 except for the additional term, (V! —1)/(z—1) in the integrand.
We can obtain G(Sj.(N, M)) by adding another dimension to n and converting the inequality constraint
to an equality constraint. This is similar to introducing a slack variable to convert an inequality

constraint into an equality constraint in a linear programming problem.



If the state space is constrained by a “greater than (>)” inequality of the type
biny +bang + -+ byny > N

a technique similar to the one for the “<-constraint” cannot be used because that would result in
evaluating the contour integral over the unit circle of a function that has a pole at z = 1. To handle
this constraint, we proceed as follows. Define the set of n satisfying the above constraint by Sy (N, M).
G(Sgt(N, M)) be the sum of 7(n) over the set Sy (N, M). Define Gp (N, M) as

M
Giot(N, M) Z Z Hfz ni) = HE(I)
1=0

n1=0 nar=0:=0
It can be seen that

G(Sgt(Na M)) = Gtot(Na M) - G(Sle(Na M))

where G(Sj(N, M)) is the sum of 7(n) over the set of n satisfying the constraint Y, b;n; < N. The
integral formula for G(Sy (N, M)) is derived as follows

G(Sgt(N, M)) 7{“1 1Fill)
(N+1) _ 1 M .
- [M] Z.:1_[1‘7:1'(21%) dz (6)

3 Multiple Constraints

We now describe the method for summing 7(n) over a state space defined by multiple constraints by
extending the method developed in Section 2. Let C be the set of constraints and without loss of
generality, let the first p of these be equality constraints and the next (¢ — p) be inequality constraints

of the less than or equal to type. They are defined as follows.

M
Zbij”j:Ni fori=1---p

M

ZbijanNi fori=p+1---q 0
j=1

Let S(C, M) the set of all vectors n satisfying the set of constraints in C. Let G(S(C, M)) be defined

as

M
Gsem)= > [fim) (8)

nes(C,M)i=1



Define for i =1,---,p
Si = 6(bi1n1 + biong + - -+ bjpynar — Nz)

and fori=p+1,---,q
(i)i = (I)Ni(bﬂ?h + bjang +"'+biMnM)

Note that Sl and <i>z can be written as

Si _ ?(z(bi1n1+bi2n2+'"+biMnM)[ 1 ]dz

2

(j:)z' = 7(Zl(biln1+bi2n2+---+biMnM)l 2 1)]dz

G(S(C, M)) can now be derived as

02=1
~f || |

M z;)vp+1

7{ Npp1+l _ g 7{ l zéVqul 1 ]
Npir1+1 Ny+1

pr—)fl (zpr1—1) Tz = 1)
M )
[] Filertizg -2y dz - dz (9)

In the above expression, the first p contour integrals correspond to the first p equality constraints.
The subsequent (¢ — p) integrals correspond to the less than or equal to type of constraints. The F;(2)

are the z-transforms of f;(n;) and the contour integrals are evaluated over the unit circle.

4 Evaluation of the Contour Integrals

We now consider the evaluation of the contour integral. All integrals are evaluated on the unit circle.
From the residue theorem, for any function of the complex variable z and a closed contour C in the
complex plane,

%C F(z) = Zresidues of F(z) at poles inside C



Our contour of integration is the unit circle. Note that if the F;(z) have poles inside the unit circle,
they can be suitably scaled to move them out of it. In Eqn. 9 the only poles of the integrand inside
the unit circle corresponding to the i'® integration is at z; = 0. The order of this pole is (N; + 1).
Therefore, to evaluate the integrals in the expression for G(C, M) in Eqn. 9 we need to evaluate the
residues of the functions at z; =0 (i = 1---¢). Thus, the evaluation of G(C, M) can be accomplished
by the following algorithm

bii b bgi
Go = Hi]\il Filz{ 2y - 24" );

for k from 1 to p do
G}, =residue (le * [ﬁ} 2k = 0>;
g

for k from p+1 to ¢ do
. 1 PALRRS]
G = re51due<Gk1 * z:'k“} [ kzk—l } 2 = 0);

G(Ca M) = Gq;

The evaluation of these residues involves only differentiation and taking the limit of the derivative
as z; — 0. i.e. at the k™ step in the above algorithm, the residue is given by (see for example [12])

residue(le * {—Niﬂ] T 0) =
z

k

1 dMe
a0 Nyl g,V [Gg—1] fork=1---p (10)
TA%

1 sz+1—1
res1due<Gk_1 * LNHI} [ ka—l } , 2k = 0) =

k

1 dVx Netl _q
i L [, [
k=0 Ni! dz,'* 2z — 1

fork=(p+1)---¢ (11)

The total number of differentiations at the & step in the above algorithm is Ny and the algorithm
needs Y7, Nj differentiations to evaluate G(C, M). Note that left hand side of Eqns. 10 and 11 is the

evaluation of the N/ coefficient of the Taylor series of G_; and Gk,l(z,iv ¥t _1) /(2 — 1) respectively.

If Fi(z) can be represented as a ratio of polynomials, then we can have a partial fraction expansion

of Gy and there are well known techniques to evaluate the residues in this case (see for example [13]).
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Figure 2: Cells in a highway cellular system

The evaluation of the residue in this situation is very efficient and can be shown to be independent of

M and N and Eqn. 9 will have a closed form expression.

5 Application Examples

In this sections we consider three examples for the application of our technique. First, we obtain an
analytical model to obtain the blocking probability in any cell of a finite highway cellular system. Next
we use this technique to obtain an exact analysis of the blocking probability in the copy network of the
Lee Multicast Switch. Finally, we consider application of this technique in solving a BCMP queuing

network

5.1 Analysis of a Highway Cellular System

Consider a one dimensional highway cellular communication system with M cells and K channels. We
assume that each cell, except the first and the last cell, has exactly two neighbors corresponding to the
cells on the left and right as shown in Fig. 2. A channel that is being used in a cell is not available for
use in that cell and its neighbors. If there are K channels available in the system, then an incoming
call is accepted into the system if a channel can be found that is not being used in the cell or in any

of its neighbors.

We consider a system that uses maximum packing strategy for channel assignment and has no
hand off calls. We assume that the call arrival process to a cell is Poisson with rate A and call
duration is arbitrarily distributed with mean 1. Let the state of the system be denoted by the vector
n = [ny ---ny|, where n; is the total the number of active calls in cell 7. The solution for the steady

state probability for the state of the system has a product form and is [14]

g
>‘i

| M
Prob(n) = el H
i=1

11



From [14], the constraints on the state space for this system can be written as

n; +ni41 < K fori=1---M—1 (12)

An incoming call to an internal cell j is blocked if the total number of calls in cell 7 and at least in

one of its neighbors, j —1 or 5 + 1, is K. The set of states, n, in this situation can be represented by

additional boundary conditions

nj+mnj =K (13)
nj+mn; 1=K (14)

Denote by Spi the set of all states, n, that satisfy constraints (12) and (13), by Spo the set of
all states, n, that satisfy constraints (12) and (14) and by Spi2 the set of all states, n, that satisfy
constraints (12), (13) and (14). The set Spio is the intersection of sets Sp; and Sps. The state n is
a blocking state if n is contained in the union of the sets Sp; and Sps as defined above. Thus, the

probability Pp(j), that a call arriving to an internal cell j is blocked is given by

' Gp1+Gpy — G
Pgp(j) = Prob (n € (Sp1 USB2)) = Bl B2 B12

G
where
M yn;
A_l
Gp1 = H l|
neSp i=1 ¢
M n;
)\.7,
Gp2 = H "
neSgy i=1 ""*
M yn;
A_l
Gprz = 11 S
neSpy t=1 ¢

From this, we can obtain the blocking probabilities in any cell for various values of A\, M, and K. We
can use a symbolic computation package like Maple or Mathematica and using the method described in
this paper, we can obtain the symbolic expression for the residues in (M — 1) steps of the algorithm of
section 4. Once the residues are evaluated and the expression for the blocking probability derived, the
blocking probabilities for any call arrival rate, A, can be easily evaluated. The blocking probabilities
in the middle cell for various values of M, K and A\ are obtained using our algorithm and shown in

Table 1. In our calculations we have assumed \; = X for all 7.

The symbolic computation that may be used to derive the formula for the blocking probability also

has a computational cost. To understand the “computational advantage” of our analytical technique,
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1 Channel (K=1)

M| A— | 01K | 0.2K | 0.3K | 0.4K | 0.5K | 0.6K | 0.7K | 0.8K | 0.9K | 1.0K
3 0.237 | 0.390 | 0.497 | 0.576 | 0.636 | 0.684 | 0.721 | 0.752 | 0.778 | 0.800
) 0.224 | 0.359 | 0.448 | 0.513 | 0.561 | 0.598 | 0.629 | 0.654 | 0.674 | 0.692
11 0.225 | 0.359 | 0.447 | 0.509 | 0.555 | 0.590 | 0.618 | 0.640 | 0.659 | 0.673
15 0.225 | 0.359 | 0.447 | 0.509 | 0.555 | 0.590 | 0.618 | 0.640 | 0.659 | 0.673
21 0.225 | 0.359 | 0.447 | 0.509 | 0.555 | 0.590 | 0.618 | 0.640 | 0.658 | 0.674
2 Channels (K=2)
M|, A— | 01K | 0.2K | 0.3K | 0.4K | 0.5K | 0.6K | 0.7K | 0.8K | 0.9K | 1.0K
3 0.087 | 0.227 | 0.353 | 0.454 | 0.535 | 0.599 | 0.650 | 0.692 | 0.727 | 0.756
) 0.082 | 0.205 | 0.308 | 0.389 | 0.452 | 0.502 | 0.543 | 0.577 | 0.604 | 0.629
11 0.082 | 0.204 | 0.305 | 0.383 | 0.441 | 0.485 | 0.520 | 0.547 | 0.569 | 0.587
15 0.082 | 0.204 | 0.305 | 0.383 | 0.441 | 0.485 | 0.520 | 0.547 | 0.569 | 0.587
21 0.082 | 0.204 | 0.305 | 0.383 | 0.441 | 0.485 | 0.520 | 0.547 | 0.569 | 0.587
5 Channels (K=5)
Mf{ A—] 01K | 0.2K | 0.3K | 04K | 0.5K | 0.6K | 0.7TK | 0.8K | 0.9K | 1.0K
3 0.006 | 0.062 | 0.171 | 0.291 | 0.397 | 0.485 | 0.557 | 0.615 | 0.662 | 0.701
5 0.005 | 0.056 | 0.148 | 0.241 | 0.322 | 0.388 | 0.442 | 0.487 | 0.525 | 0.556
11 0.005 | 0.056 | 0.147 | 0.236 | 0.310 | 0.367 | 0.410 | 0.443 | 0.468 | 0.488
15 0.005 | 0.056 | 0.147 | 0.236 | 0.310 | 0.367 | 0.410 | 0.443 | 0.468 | 0.489
21 0.005 | 0.056 | 0.147 | 0.236 | 0.310 | 0.367 | 0.410 | 0.443 | 0.468 | 0.489

Table 1: Blocking Probabilities for the Highway Cellular Communication System
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note that computation is involved in symbolically obtaining the residues in the (M — 1) steps of the
algorithm of section 4. Once the residues are evaluated and the expression for the blocking probability
derived, the blocking probabilities for any call arrival rate, A, can be easily evaluated. We evaluated the
blocking probability using a Maple program implementing our algorithm and a C program implementing
the brute force evaluation technique (no other algorithmic technique is known) on a Sun Ultra 10 with
333 MHz UltraSparc I1i processor and 2MB cache. The execution times represented by the sum of the
user and system times as reported by the Unix time command for the formula (Maple program) and
the brute force technique (C program) are shown in Table 2. For our algorithm, we report separately
the time and number of differentiations, (M — 1)K, required to obtain the formula (which must be
done once for each system) and the time to evaluate Pp for ten values of A (ranging from 0.1K to K
in steps of 0.1K) from the formula. The portion of the code used to symbolically compute G, Gp,
Gp1 and Gpy is given in the appendix. For the brute force enumeration approach, we give the total
size of the (unconstrained) state space ((K 4+ 1)M) and the execution time to obtain Pg for the same
set of A\. In the C program, every possible vector n, (K + 1) combinations, is checked to see if it
belongs to the set of admissible states. If it does, the product form expression corresponding to this
state is computed and added to obtain normalizing constant and also to obtain the numerator of the
blocking probability. Obviously for a small number of states the brute force technique is fast. The
computational disadvantage begins to become significant when the number of states to check is of the

order of a few tens of thousand.

5.2 Analysis of Copy Networks of Multicast Switches

We now apply the techniques discussed in this paper to the analysis of a copy network of the kind
described in Section 1. Recall that in any slot, the sum of the number of copies requested by the active
inputs, inputs with requests, may exceed N and in the model that we analyze here the first ¢ inputs
that satisfy the conditions Z§:1 c; < N and E;ill c;j > N are served and those requests that cannot
be served are lost. In the following we show how to calculate the probability that a request from input
1 is lost. If the requests that cannot be served are queued to be served in a subsequent slot we will also

show how to do a queuing analysis using the techniques described in this paper.

Packet arrivals to port ¢ is a Bernoulli process with rate p; and the copy requests have a probability

mass function ¢;(k). Let X; be the number of copies requested by the input port 7, f;j(z;) its probability

14



M, K | Num of | Time for | Time for Num of Time for
Diffns | Formula for Pp States | Brute Force

11,1 10 0.25s 0.13s 2,048 0.02s
5,5 20 0.32s 0.14s 7,776 0.12s

15,1 14 0.29s 0.14s 32,768 0.25s
11,2 20 0.36s 0.13s 177,147 1.20s
21,1 20 0.36s 0.14s 2,097,152 6.19s
15,2 28 0.63s 0.14s 14,348,907 43.49s
11,5 50 7.07s 0.17s 362,797,056 1068.31s
21,2 40 1.57s 0.16s | 10,460,353,203 9465.29s
15,5 70 42.85s 0.22s | 4.701849E+11 | 523688.86s

21,5 100 | 343.22s 0.31s | 2.193695E+16 too big

Table 2: Comparison of the time taken by our algorithm and the brute force technique to obtain the

blocking probabilities in the highway cellular communication system

mass function and F;(z) the moment generating function of f;(z;). Then,

l_pia z; =0

15
pigi(xi), x;=1,---N (15)

filz;)) =Pr{X; =xz;} = {

The copy request of input 7 is served if X; + Xs + --- + X; < N. The probability of loss at port ¢,
Pyyss(i), is then given by

F’loss(i) =1- Z H fj :E]

Sz<N IF1
The summation on the RHS of the above equation is carried out over all possible combinations of copy
requests from ports 1 to ¢ that sum to less than or equal to N. Therefore, following Section 2.2, we

can obtain the P,4(i)s as follows

N N 7
L= Pioss(i) = 3 - ZH (wx)n (1 + - )

x1=0 ;=0
l N+1 ] i
= Fi(z
N+1 _ ’
(z—1 Pt

Figure 3 compares the exact Pj,ss that we obtain here with Pgy, that Lee obtains in [7].
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Figure 3: Overflow probabilities in a 64 x 64 copy network with deterministic copy requests of size
2,3,4,5 and 6. The broken lines denote the Chernoff bounds while the smooth lines represent the exact

results.

16



Now consider the case when the requests that cannot be served are queued. Although many schedul-
ing policies can be formulated and analyzed, to illustrate the use of our technique, we will consider the
simplest scheduling policy in which the requests satisfying the conditions mentioned earlier are served
queued and the others are queued. Proceeding sequentially from input 1, all the input ports whose
copy requests can fully served in the slot are selected for service. Note that this policy selects a packet
for service only if all the copies requested by it can be generated in the given slot. Since service always
starts from port 1, the service rate varies with the port number and decreases as the port address

increases.

The effective service rate at an input port, the rate at which the copy requests can be actually served,
depends on the arrival processes and effective service rates at the preceding ports. We model each input
port as a discrete time M/M/1 queue except for the first port which always gets to be served in every
slot. At port 4, let the effective service rate and the probability of its input queue being empty be
denoted by (i) and Pp; respectively. The number of ports that can be served in a slot depends on the
copy requests of the packets at the head of the queues. Let fr;(k) be the probability mass function
(pmf) of the number of copies requested by the packet at the head of input queue i. From our definition
above, 1 — Py ; is the probability that the head of queue ¢ is non empty. Hence the probability mass
function of the copies requested by a packet at the head of the queue ¢ will be,

Py z; =0

i(z;) = Prob{X; ==z;} =
) { } { (1= Pog)q(zi) =i >0

with Fp ;(2) as its moment generating function. Since port 1 is always served in each slot irrespective
of the copy requests of the other ports, (1) = 1.0. Now, for ports i = 2,--- M, if port i requests k
copies, its request will be served in the slot only if the sum of the copies requested by ports 1 to ¢ — 1

is less than or equal to N — k. Thus,

p(i+1) = Prob{a pkt at port 7 4+ 1 is served }
N i
= Y q(k) Prob{Y X; <N -k
k=1 j=1

N

= > qlk) > I fa.i(z))

h=1 Y m<(N—k) I
Using the results of Section 2.2, it can be shown that u(7 4+ 1) is given by

N [ L(N—k+1) _q

pi+1) = ZQ(k)?{ zN—T(z—l)] HIFH,J'(Z)C[Z
s

k=1
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Figure 4: Delay characteristics of a 32 x 32 copy network for deterministic copy requests.

Using well known results for discrete time M/M/1 queues, (see, for example [16]), we can calculate the
waiting time moments and other parameters. In Fig. 4 we show the mean delay for active requests at
various inputs of a 32 x 32 copy network when the number of copies requested by an active input is
deterministic. These results are obtained using the method outlined above. Also shown are the results

from a simulation model.

We can also use the method described in this paper to analyze various other scheduling policies for

the copying process in the copy network [15].
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5.3 BCMP Networks

The product form solution has been extended to a very general class of queuing networks by Baskett et
al in [17]. Such queuing networks are called BCMP networks in literature. Four types of service centers
and multiple classes of jobs, each with a different service requirement and routing probabilities, were
permitted. We assume that there are M nodes in the queuing network and that there are R classes of
jobs. We denote by n;, the number of class r jobs in node 7. The state of node ¢ will be denoted by y;
where

Yi = [1i1, ni2 - - - NiR]

We denote the state of the queuing network by the vector Y which is defined to be

Y =[y1,y2 - ym]

In this section, we will describe a technique, similar to the one used for single class networks in
section 3, to derive the normalizing constant. As before, we will assume that the constraints on the
state space for the system are linear equalities and inequalities, except that instead of n;, we will have

nir as the variables.

M R

Zzbj,irnir:Nj fOI“jZl---p
i=1r=1

M R

>N bjirni < Nj forj=p+1---q
i=1r=1

Let C be the above set of constraints and S(C, M, R) the set of Y satisfying these constraints.
Without loss of generality, we will assume that the nodes 1--- M are first come first serve (FCFS),
processor sharing (PS) or last come first serve (LCFS) queues and nodes M +1--- M are infinite server
(IS) queues. From [18], if we define f;(y;) to be

n 12, fir(ngy) fori=1---M

filyi) =
Hﬁ:lfir(nir) fori=M+1---M

the steady state probability of the system will be

1

M
Prob(Y) = Goomn(C. M, ) Z:HIfl(YI)
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Gbcmp(C M, R)

an H fir (nir) ]

H 11 fir(nir)]

i=M+17=1

where n; = Zle nir and Gpemp(C, M, R) is the normalizing constant for the network obtained as

follows

Gbcmp(ca M, R) =

M R
an' H fzr nzr ]

YeS(C,M,R) [zzl r=1

R
[ II Hfir(nir)] (16)

M
i=M+17=1

Notice that this is similar to the normalizing constant of single class networks except that there are

MR terms in the product rather than M and there is an additional n;! term for each non-IS node. To

o0
n! :/ e Hmdt
0

Substituting this for n;! in Eqn. 16, we get

simplify this, consider the Euler integral

Gpemp(C, M, R) =

H/ 7ttzr ln”dtHfzr Nir ]

YeS(C M,R) [z 1

[ ﬁ ﬁfir(nir)]

i=M+17=1

s i

YeS(C,M,R)

e

=1

i=M+17=1

Eqn. 17 is similar to Eqn. 8 and the techniques developed in section 3 can be used. The only
difference is that there is an additional integration for every node that is not a IS queue. Using the

same technique that was used in the derivation of Eqn. 9 we obtain
Gbcmp(ca Ma R) =

20



NP+1+1 -1

1 1 Zp
Flalf el e
1] [z =1
f gl 5=

M

1o f b,; bq,i ]
H/o e’ H Fir(tzy" - 2g"") dtJ
i=1 r=1

M R '|
H H Fir (z(fl’" e zgq’”)J dzy -+ - dz, (18)
Li=n+17=1

where Fj-(z) is the z-transform of f;.(n;.). Here, we have used the property that the z-transform of
af(n) is F(az).

6 Discussion and Conclusion

In this paper we have developed a method to obtain analytical expression for the sum of a product
form expression over an irregular M —dimensional integer space defined by multiple linear constraints
with integer coefficients. We use z—transforms and contour integrals which in turn reduce to evaluating
residues of a function of complex variables. In most cases this can be done manually, but with the
availability of symbolic computation the formulae can be obtained “computationally”. The method
that we develop here can be used in many situations like for example in calculating the normalizing
constant in product form queuing networks or in models that deal with vectors of independent integer
random variables like the one on copy networks described here. Our technique is reasonably general
and does not assume any specific form for f;(n;), the terms in the product form expression or the shape

of the state space like many of the algorithms that are currently available.

The examples demonstrate various aspects of the usefulness of our method. In the highway cellular
system we show that with increasing number of cells and channels, defining the state space is quite
difficult. Employing brute force techniques in the numerical evaluation of system performance measures
can be quite time consuming, possibly impossible, for even small systems of about 21 cells and 5
channels. Our technique can yield the measures fairly quickly and efficiently. In the case of the
copy network we demonstrate the utility of our technique for arbitrary f;(n;) with the state space
constrained by multiple, in this case two, constraints. We also extended our technique to obtaining
analytical expressions for a general BCMP network. Note that the results of [8, 9] can be considered

to be special cases of Eqn. 4 and the result from [10] can be considered to be a special case of Eqn. 18
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with one equality constraint and no infinite server nodes.

Finally, we mention that Nelson [19] discusses many other models, such as genetic and polymerization

models, which have a solution which also need a summing of a product form expression over an irregular

multidimensional integer space. The method reported in this paper can be applied to all such systems.

A Sample Maple Program

We reproduce here the part of the Maple program that was used to calculate the call blocking probability

in the highway cellular communication system.

Note that we have used z[i] for z;.

readlib(coeftayl):

#GO is the product of the z-transforms of the first step of the algorithm
#m is the middle cell for which blocking probability is being calculated.
GO:=exp(lambda*z[1]):

for i from 2 to M-1 do GO:=GO*exp(lambda*z[i-1]*z[i]): od:

GO :=GO*exp (lambdax*z[M-1]):

#Multiplier for the ‘‘less than or equal’’ constraint

le_mul:=proc(z): ((z"(XK+1)-1)/(z-1)): end:

#This set of contour integrations is common to G, GB1, GB2, GB12
G_pre:=GO:

for i from 1 to M-1 do # corresponding to M-1 constraint eqns

if ((i<>(m-1))and (i<>m)) then G_pre:=coeftayl(G_pre*le_mul(z[i]),z[i]=0,K):

od:

#We obtain G in this step with two additional integrations

G_new:=coeftayl(G_pre*le_mul(z[m-1]),z[m-1]1=0,K):

#Previous step is common to GB1l. Preserve G_new to use for GB1

G:=coeftayl(G_newxle_mul(z[m]),z[m]=0,K):

22
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#Additional integration on G_new, saved before gives GB1

GB1:=coeftayl(G_new,z[m]=0,K):

#Because of symmetry GB2=GB1
GB2:=GB1:

#Now we obtain GB12 from G_pre another two integrations
G_new:=coeftayl(G_pre, z[m-1]1=0, K):
GB12:=coeftayl(G_new,z[m]=0,K):

# Blocking probability is evaluated
PB:=((GB1+GB2-GB12)/G) :
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