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Abstract

We consider stochastic systems de�ned over irregular� multidimensional� integer spaces that have

a product form steady state distribution� Examples of such systems include closed and BCMP type

of queuing networks� polymerization and genetic models� In these models the system state is a

vector of integers� n � �n�� � � � � nM � and the steady state solution has product form of the type

��n	 �
Q
M

i��
fi�ni	� To obtain useful statistics from such product form solutions� ��n	 has to be

summed over some subset of the space over which it is de�ned� We consider situations when these

subsets are de�ned by a set of equalities and inequalities with integer coe
cients� as is most often

the case and provide integral expressions to obtain these sums� Typically� a brute force technique

to obtain the sum is computationally very expensive� Algorithmic solutions are available for only

speci�c forms of fi�ni	 and shapes of the state space� In this paper we derive general integral

expressions for arbitrary state spaces and arbitrary fi�ni	� The expressions that we derive here

become especially useful if the generating functions fi�ni	 can be expressed as a ratio of polynomials

in which case� exact closed form expressions can be obtained for the sums� We demonstrate the

wide applicability of the integral expressions that we derive here through three examples in which

we model �nite highway cellular systems� copy networks in multicast packet switches and a BCMP

queuing network modeling a multiuser computer system�
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� Introduction

Consider a stochastic system whose state is de�ned by a M�dimensional vector n � �n�� n�� � � � � nM ��

where ni are non negative integers for i � �� �� � � � �M � In many systems� not all n will be de�ned and

let S be the set of de�ned states� In this paper we will assume that S is de�ned by a set of linear

constraints in ni� In many models of such systems the steady state probability of the system being in

state n� �	n
� has a product form expression of the type

�	n
 �

��
� 	G	S

��

QM
i�� fi	ni
 n � S

� otherwise
	�


where G	S
 is the normalization constant obtained to make �	n
 sum to unity over the state space S�

Performance measures like marginal distributions of ni and their moments are obtained by summing

�	n
 over a subset of S� This summation is� typically� computationally expensive if a brute force

enumeration technique is used� For some speci�c situations like closed queuing networks and stochastic

knapsack models where the fi	ni
 have the form �nii �ni� or �
ni
i � e
cient recursive algorithms to sum

over the state space are available� Queuing networks with constant population are considered in ���

stochastic knapsacks in ���� In this paper we derive a transform technique to sum functions of the formQM
i�� fi	ni
 over a state space de�ned by a set of linear equality and�or inequality constraints with

integer coe
cients� With this method� if the generating function of fi	ni
 can be written as a ratio of

polynomials in z� the transform variable� then a closed form expression for the sum is obtained� Before

describing the technique� we discuss examples of some models where our technique can be used�

Example �� In ���� Kaufman discusses complete and partial bu�er sharing policies in a communication

node� Messages arrive according to a Poisson process to a communication node� M classes of messages

share a total of K bu�ers� A class i message requires bi bu�ers� In the partial sharing policy� Ki bu�ers

are dedicated to class i messages and K� bu�ers belong to the common pool� A message of class i is

admitted if bi bu�ers are available from class i and�or common pools� If it is not admitted� the message

is considered lost� Let ni be the number of class i messages in the node� Let n � �n�� n�� � � � � nM � be

the state of the system and S the state space for n under a given sharing policy� In the complete

sharing policy� all the bu�ers form the common pool and the state space S is given by

n � S if
MX
i��

nibi � K

The complete sharing policy is like the stochastic knapsack described in ���� Foschini and Gopinath

��� also use a similar model for sharing memory in a multiprocessor system� Kaufman shows that the

steady state solution for this model is of the form of Eqn� �� An example of a parameter of interest
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would be the probability of the loss of messages of class i� To obtain this we will have to sum �	n
 over

a subset of S all of whose elements are vectors n such that there are no bu�ers left to accommodate a

new class i message�

Example �� Consider a cellular system with M cells� Assume Poisson call arrivals� arbitrary holding

time distributions� no hand o�s and a maximum packing channel assignment algorithm� Let ni denote

the number of active calls in cell i and the vector n � �n�� n�� � � � � nM � denote the state of the system�

The set of admissible states for n� S� depends on the geographical layout of the cells and the channel

assignment algorithm used� It can be shown that S is de�ned by

n � S if Bn � N

where B is a M � M matrix and N is an M�dimensional vector� In ���� Everitt shows how to choose

the matrix B and the vector N from the geographical layout of the cells� the number of channels in

the system� the distribution of the channels and the channel assignment algorithm� To calculate the

blocking probability PBi � of a call arriving to cell i� we �rst de�ne the set SBi � S that contains all n

satisfying the blocking conditions for cell i� Then�

PBi �
G	SBi


G	S

where G	SBi
 �

X
n � SBi

�
MY
i��

fi	ni


�

Example �� Consider a discrete time copy network like the one described in ���� that we call the Lee

copy network 	LCN
� The structure of the LCN is shown in Fig� �� Time is slotted and all the inputs

are synchronized such that packet arrivals occur at the beginning of a slot� An M �N copy network

works as follows� Inputs are numbered from � to M at the beginning of a slot by a scheduler� Let

ci be the number of copies requested by port i� In the simplest form of scheduling� an acyclic service

discipline can be used in which the input ports are numbered starting from the top of the network� At

the beginning of a slot the running adder obtains the running sum
Pi

j�� cj for i � � � � �M � i�e�� at all

the ports� In this service policy� port i is serviced in a slot 	all the copies requested by the input packet

are made
 if
Pi

j�� cj � N in that slot� This is because the copy network can only make N copies in a

slot� Let fi	ci
 be the probability that input i requests ci copies� In this simple design if in a slot the

sum of all the copy requests exceeds N � then only the �rst k inputs that satisfy the conditions

kX
i��

ci � N and

k��X
i��

ci � N

will be �served� and the requests from the other inputs� k � ��K � �� � � �N � will be discarded� It is

of interest to know the probability that a request at input i will be served� It is also of interest to
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Figure �� Lee�s Copy Network for a Multicast Packet Switch ���

know the throughput of the copy network� Lee ��� obtains a Cherno� bound on the probability of copy

requests from i being served� We provide an exact analysis using techniques developed here�

Example �� Consider a N � N Knockout switch described in ����� In each slot a number of inputs

will want to transmit on a given output� Let ni be the number of packets from the inputs wanting to

go to output i� In the Knockout switch� if ni � L� all packets are transferred to the output� If ni � L�

only L are transferred to the output and ni � L are dropped� It is of interest to know the throughput

and hence loss probability of this switch architecture� Let n � �n�� n�� � � � � cN �� represent the system

state in a slot� If we assume saturation input� a packet is present in every input in every slot� then only

those n satisfying
PN

i�� ni � N will be a valid state� In ����� an upper bound on the loss probability

from a port is given as
PN

i�L��	ni � L
fi	ni
� The exact loss probability can be obtained as

X
n�Sl

	ni � L
�	n


where Sl is the set of n that will result in a loss from input i� i�e�� the set of n that satisfy ni � L andPN
i�� ni � N �

In the context of queuing networks transform based techniques to sum the product form solution over

a state space where the total population in the system is a constant are known� In ���� Harrison reports

a closed form expression for a closed queuing network with M single server nodes and N jobs in the

network� i�e�� this result only considers fi	ni
 � �nii and a state space de�ned by
PM

i�� ni � N � Gordon

��� derives this result di�erently and extends it to closed queuing networks with multiple servers� i�e��
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he allows fi	ni
 of the form

fi	ni
 �

��
�

�ni

ni
for ni � mi

�mi

mi
for ni � mi

Gerasimov ���� obtains results very similar to that obtained by Gordon and extends it to BCMP

queuing networks with multiple classes of jobs but he restricts himself to closed queuing networks

without in�nite server queues� In all these results the case where the state space is speci�ed by more

than one constraint like in the examples given above has not been discussed� In this paper we obtain

analytical expressions for the the sum of �	n
 over an irregular state space de�ned by a set of linear

constraints with integer coe
cients� Our interest is not to prove the existence of a product form

solution to these systems� Rather� we assume the existence of the product form solution and obtain

analytic expressions for the normalizing constant in these networks� In Section � we discuss the types

of constraints that are applicable to our method and explore the single constraint case� In Section � we

extend the algorithm to the multiple constraint case and in Section � we discuss numerical evaluation

of the sum using our technique� Examples are discussed in Section � in which we apply our technique

in the analysis of three di�erent systems� We conclude with discussions in Section ��

� Single Constraint

As described earlier� we assume that the system state is a vector n � �n�� n�� � � � � nM �� anM �dimensional

vector of integers and the steady state probability of the system is given by Eqn� �� We �rst consider

the summing of �	n
 over the state space de�ned by a single constraint� We �rst discuss the equality

constraint which can be applied to a closed queuing network as a special case� Next� we consider the

�less than or equal� constraint that which can be used to solve the stochastic knapsack with arbitrary

fi	ni
�

��� The Equality Constraint

Let us �rst consider a single equality constraint on the state space given by

MX
i��

ni � N 	�


�



where N is a positive integer� Denote by Seq	N�M
 the set of all vectors n that satisfy the above

constraint� De�ne G	Seq	N�M

 as

G 	Seq	N�M

 �
X

n�Seq�N�M�

MY
i��

fi	ni


In the context of a closed queuing network� G	Seq	N�M

 is the normalizing constant in a network of

M queues with a constant population of N �

De�ne �	k
 as

�	k
 �

��
� � for k � �

� for k �� �

which� in turn� can be written in terms of the following contour integral on the complex plane

�	k
 �

I
zk��dz

where the integration is on the unit circle and z is a complex variable� 	This can also be thought of as

the inverse z�transform of �	k
� the discrete impulse function�


Rewrite the constraint in Eqn� �� as
PM

i�� ni �N � �� G 	Seq	N�M

 can then be rewritten as

G 	Seq	N�M

 �
X

n�Seq�N�M�

MY
i��

fi	ni


�
�X

n���

� � �
�X

nM��

�
MY
i��

fi	ni


�
�	n� � � � �� nM �N


�
�X

n���

� � �
�X

nM��

�
MY
i��

fi	ni


� I
z�n������nM�N��� dz

�

I 	
�

z�N���


 MY
i��

Fi	z
 dz

Here Fi	z
 is the z�transform of fi	ni
� Evaluation of the last integral involves taking the sum of

the residues of the integrand at the poles inside the unit circle of the integrand� This result is similar

to that obtained by Gordon ��� for closed queuing networks except that we generalize the result to

include any fi	ni
� We can further generalize Eqn� � to include constraints of the form

b�n� � b�n� � � � �� bMnM � N 	�


where bis and N are integers and G 	Seq	N�M

 is

G 	Seq	N�M

 �

I 	
�

z�N���


 MY
i��

Fi	z
bi
 dz 	�


�



Constraints of the type in Eqn� � have been used by Kelly ���� to describe product form models for

social interactions�

��� Inequality Constraints

We �rst look at the �less than or equal to 	�
� type of inequality constraint like those used in de�ning

the stochastic knapsack and then comment on the �greater than 	�
� type of inequality constraint�

Let Sle	N�M
 be the set of n satisfying the constraint

b�n� � b�n� � � � �� bMnM � N

where the bis and N are integers� Denote by Sle	N�M
 the set of all n that satisfy this constraint and

let G	Sle	N�M

 be de�ned as follows�

G 	Sle	N�M

 �
X

n�Sle�N�M�

MY
i��

fi	ni


Before we proceed we �rst de�ne �N 	k
 as follows�

�N 	k
 �

��
� � for k � N

� for k � N

�N 	k
 is a delayed discrete step function reversed in time� The contour integral representation for this

function is

�N 	k
 �
NX
i��

�	k � i


�

I �
z�N��� � �

z � �

� �
zk

z�N���

�
dz

Proceeding as before� we can obtain the following�

G	Sle	N�M

 �

I �
z�N��� � �

z�N���	z � �


�
MY
i��

Fi	z
bi
 dz 	�


Note that Eqn� � is identical to Eqn� � except for the additional term� 	zN����
�	z��
 in the integrand�

We can obtain G	Sle	N�M

 by adding another dimension to n and converting the inequality constraint

to an equality constraint� This is similar to introducing a slack variable to convert an inequality

constraint into an equality constraint in a linear programming problem�

�



If the state space is constrained by a �greater than 	�
� inequality of the type

b�n� � b�n� � � � �� bMnM � N

a technique similar to the one for the ���constraint� cannot be used because that would result in

evaluating the contour integral over the unit circle of a function that has a pole at z � �� To handle

this constraint� we proceed as follows� De�ne the set of n satisfying the above constraint by Sgt	N�M
�

G	Sgt	N�M

 be the sum of �	n
 over the set Sgt	N�M
� De�ne Gtot	N�M
 as

Gtot	N�M
 �
�X

n���

� � �
�X

nM��

MY
i��

fi	ni
 �
MY
i��

Fi	�


It can be seen that

G	Sgt	N�M

 � Gtot	N�M
 �G	Sle	N�M



where G	Sle	N�M

 is the sum of �	n
 over the set of n satisfying the constraint
PM

i�� bini � N � The

integral formula for G	Sgt	N�M

 is derived as follows

G	Sgt	N�M

 �

I QM
i�� Fi	�


z
�

�

�
z�N��� � �

zN��	z � �


�
MY
i��

Fi	z
bi
 dz 	�


� Multiple Constraints

We now describe the method for summing �	n
 over a state space de�ned by multiple constraints by

extending the method developed in Section �� Let C be the set of constraints and without loss of

generality� let the �rst p of these be equality constraints and the next 	q� p
 be inequality constraints

of the less than or equal to type� They are de�ned as follows�

MX
j��

bijnj � Ni for i � � � � � p

MX
j��

bijnj � Ni for i � p� � � � � q 	�


Let S	C�M
 the set of all vectors n satisfying the set of constraints in C� Let G	S	C�M

 be de�ned

as

G	S	C�M

 �
X

n�S�C�M�

MY
i��

fi	ni
 	�


�



De�ne for i � �� � � � � p

��i � �	bi�n� � bi�n� � � � �� biMnM �Ni


and for i � p� �� � � � � q

��i � �Ni
	bi�n� � bi�n� � � � �� biMnM 


Note that ��i and ��i can be written as

��i �

I
z
�bi�n��bi�n������biMnM �
i

�
�

zNi��
i

�
dz

��i �

I
z
�bi�n��bi�n������biMnM �
i

�
zNi��
i � �

zNi��
i 	zi � �


�
dz

G	S	C�M

 can now be derived as

G	C�M
 �
X

n�S�C�M�

MY
i��

fi	ni


�
�X

n���

� � �
�X

nM��

MY
i��

fi	ni
��� � � � ��p ��p�� � � � ��q

�

I �
�

zN����

�
� � �

I �
�

z
Np��
p

�

I �� z
Np����
p � �

z
Np����
p�� 	zp�� � �




� � � � I

�
z
Nq��
q � �

z
Nq��
q 	zq � �


�

MY
i��

Fi	z
b�i
� zb�i� � � � z

bqi
q 
dz� � � � dzq 	�


In the above expression� the �rst p contour integrals correspond to the �rst p equality constraints�

The subsequent 	q� p
 integrals correspond to the less than or equal to type of constraints� The Fi	z


are the z�transforms of fi	ni
 and the contour integrals are evaluated over the unit circle�

� Evaluation of the Contour Integrals

We now consider the evaluation of the contour integral� All integrals are evaluated on the unit circle�

From the residue theorem� for any function of the complex variable z and a closed contour C in the

complex plane� I
C
F	z
 �

X
residues of F	z
 at poles inside C

�



Our contour of integration is the unit circle� Note that if the Fi	z
 have poles inside the unit circle�

they can be suitably scaled to move them out of it� In Eqn� � the only poles of the integrand inside

the unit circle corresponding to the ith integration is at zi � �� The order of this pole is 	Ni � �
�

Therefore� to evaluate the integrals in the expression for G	C�M
 in Eqn� � we need to evaluate the

residues of the functions at zi � � 	i � � � � � q
� Thus� the evaluation of G	C�M
 can be accomplished

by the following algorithm

G� �
QM

i��Fi	z
b�i
� zb�i� � � � z

bqi
q 
�

for k from � to p do

Gk �residue

�
Gk�� 	

	
�

z
Nk��

k



� zk � �

�
�

for k from p� � to q do

Gk � residue

�
Gk�� 	

	
�

z
Nk��

k


 	
z
Nk��

k
��

zk��



� zk � �

�
�

G	C�M
 � Gq�

The evaluation of these residues involves only di�erentiation and taking the limit of the derivative

as zi 
 �� i�e� at the kth step in the above algorithm� the residue is given by 	see for example ����


residue

�
Gk�� 	

	
�

z
Nk��

k



� zk � �

�
�

lim
zk��

�

Nk�

dNk

dzNk

k

�Gk��� for k � � � � � p 	��


residue

�
Gk�� 	

	
�

z
Nk��

k


 	
z
Nk��

k
��

zk��



� zk � �

�
�

lim
zk��

�

Nk�

dNk

dzNk

k

�
Gk�� 	

�
zNk��
k � �

zk � �

��

for k � 	p� �
 � � � q 	��


The total number of di�erentiations at the kth step in the above algorithm is Nk and the algorithm

needs
Pq

k��Nk di�erentiations to evaluate G	C�M
� Note that left hand side of Eqns� �� and �� is the

evaluation of the N th
k coe
cient of the Taylor series of Gk�� and Gk��	z

Nk��
k ��
�	zk��
 respectively�

If Fi	z
 can be represented as a ratio of polynomials� then we can have a partial fraction expansion

of G� and there are well known techniques to evaluate the residues in this case 	see for example ����
�

��



1 2 M

Figure �� Cells in a highway cellular system

The evaluation of the residue in this situation is very e
cient and can be shown to be independent of

M and Nk and Eqn� � will have a closed form expression�

� Application Examples

In this sections we consider three examples for the application of our technique� First� we obtain an

analytical model to obtain the blocking probability in any cell of a �nite highway cellular system� Next

we use this technique to obtain an exact analysis of the blocking probability in the copy network of the

Lee Multicast Switch� Finally� we consider application of this technique in solving a BCMP queuing

network

��� Analysis of a Highway Cellular System

Consider a one dimensional highway cellular communication system with M cells and K channels� We

assume that each cell� except the �rst and the last cell� has exactly two neighbors corresponding to the

cells on the left and right as shown in Fig� �� A channel that is being used in a cell is not available for

use in that cell and its neighbors� If there are K channels available in the system� then an incoming

call is accepted into the system if a channel can be found that is not being used in the cell or in any

of its neighbors�

We consider a system that uses maximum packing strategy for channel assignment and has no

hand o� calls� We assume that the call arrival process to a cell is Poisson with rate � and call

duration is arbitrarily distributed with mean �� Let the state of the system be denoted by the vector

n � �n� � � �nM �� where ni is the total the number of active calls in cell i� The solution for the steady

state probability for the state of the system has a product form and is ����

Prob	n
 �
�

G

MY
i��

�nii
ni�

��



From ����� the constraints on the state space for this system can be written as

ni � ni�� � K for i � � � � �M � � 	��


An incoming call to an internal cell j is blocked if the total number of calls in cell j and at least in

one of its neighbors� j � � or j � �� is K� The set of states� n� in this situation can be represented by

additional boundary conditions

nj � nj�� � K 	��


nj � nj�� � K 	��


Denote by SB� the set of all states� n� that satisfy constraints 	��
 and 	��
� by SB� the set of

all states� n� that satisfy constraints 	��
 and 	��
 and by SB�� the set of all states� n� that satisfy

constraints 	��
� 	��
 and 	��
� The set SB�� is the intersection of sets SB� and SB�� The state n is

a blocking state if n is contained in the union of the sets SB� and SB� as de�ned above� Thus� the

probability PB	j
� that a call arriving to an internal cell j is blocked is given by

PB	j
 � Prob 	n � 	SB� � SB�

 �
GB� �GB� �GB��

G

where

GB� �
X
n�SB�

MY
i��

�nii
ni�

GB� �
X
n�SB�

MY
i��

�nii
ni�

GB�� �
X

n�SB��

MY
i��

�nii
ni�

From this� we can obtain the blocking probabilities in any cell for various values of �� M � and K� We

can use a symbolic computation package like Maple or Mathematica and using the method described in

this paper� we can obtain the symbolic expression for the residues in 	M � �
 steps of the algorithm of

section �� Once the residues are evaluated and the expression for the blocking probability derived� the

blocking probabilities for any call arrival rate� �� can be easily evaluated� The blocking probabilities

in the middle cell for various values of M � K and � are obtained using our algorithm and shown in

Table �� In our calculations we have assumed �i � � for all i�

The symbolic computation that may be used to derive the formula for the blocking probability also

has a computational cost� To understand the �computational advantage� of our analytical technique�

��



� Channel 	K��


M� �
 ���K ���K ���K ���K ���K ���K ���K ���K ���K ���K

� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
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� Channels 	K��
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� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
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�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

� Channels 	K��


M� �
 ���K ���K ���K ���K ���K ���K ���K ���K ���K ���K

� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

�� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

Table �� Blocking Probabilities for the Highway Cellular Communication System

��



note that computation is involved in symbolically obtaining the residues in the 	M � �
 steps of the

algorithm of section �� Once the residues are evaluated and the expression for the blocking probability

derived� the blocking probabilities for any call arrival rate� �� can be easily evaluated� We evaluated the

blocking probability using a Maple program implementing our algorithm and a C program implementing

the brute force evaluation technique 	no other algorithmic technique is known
 on a Sun Ultra �� with

��� MHz UltraSparc IIi processor and �MB cache� The execution times represented by the sum of the

user and system times as reported by the Unix time command for the formula 	Maple program
 and

the brute force technique 	C program
 are shown in Table �� For our algorithm� we report separately

the time and number of di�erentiations� 	M � �
K� required to obtain the formula 	which must be

done once for each system
 and the time to evaluate PB for ten values of � 	ranging from �	�K to K

in steps of �	�K
 from the formula� The portion of the code used to symbolically compute G� GB�

GB� and GB� is given in the appendix� For the brute force enumeration approach� we give the total

size of the 	unconstrained
 state space 		K � �
M 
 and the execution time to obtain PB for the same

set of �� In the C program� every possible vector n� 	K � �
M combinations� is checked to see if it

belongs to the set of admissible states� If it does� the product form expression corresponding to this

state is computed and added to obtain normalizing constant and also to obtain the numerator of the

blocking probability� Obviously for a small number of states the brute force technique is fast� The

computational disadvantage begins to become signi�cant when the number of states to check is of the

order of a few tens of thousand�

��� Analysis of Copy Networks of Multicast Switches

We now apply the techniques discussed in this paper to the analysis of a copy network of the kind

described in Section �� Recall that in any slot� the sum of the number of copies requested by the active

inputs� inputs with requests� may exceed N and in the model that we analyze here the �rst i inputs

that satisfy the conditions
Pi

j�� cj � N and
Pi��

j�� cj � N are served and those requests that cannot

be served are lost� In the following we show how to calculate the probability that a request from input

i is lost� If the requests that cannot be served are queued to be served in a subsequent slot we will also

show how to do a queuing analysis using the techniques described in this paper�

Packet arrivals to port i is a Bernoulli process with rate �i and the copy requests have a probability

mass function qi	k
� Let Xi be the number of copies requested by the input port i� fi	xi
 its probability

��



M�K Num of Time for Time for Num of Time for

Di�ns Formula for PB States Brute Force

���� �� ����s ����s ����� ����s

��� �� ����s ����s ����� ����s

���� �� ����s ����s ������ ����s

���� �� ����s ����s ������� ����s

���� �� ����s ����s ��������� ����s

���� �� ����s ����s ���������� �����s

���� �� ����s ����s ����������� �������s

���� �� ����s ����s �������������� �������s

���� �� �����s ����s ��������E��� ���������s

���� ��� ������s ����s ��������E��� too big

Table �� Comparison of the time taken by our algorithm and the brute force technique to obtain the

blocking probabilities in the highway cellular communication system

mass function and Fi	z
 the moment generating function of fi	xi
� Then�

fi	xi
 � Pr fXi � xig �

��
� �� �i� xi � �

�iqi	xi
� xi � �� � � �N
	��


The copy request of input i is served if X� � X� � � � � � Xi � N � The probability of loss at port i�

Ploss	i
� is then given by

Ploss	i
 � ��
X

Pi

j��
xj�N

iY
j��

fj	xj


The summation on the RHS of the above equation is carried out over all possible combinations of copy

requests from ports � to i that sum to less than or equal to N � Therefore� following Section ���� we

can obtain the Ploss	i
s as follows

�� Ploss	i
 �
NX

x���

� � �
NX

xi��

iY
k��

fk	xk
�N 	x� � � � � xi


�

I �
z�N��� � �

z�N���	z � �


�
iY

k��

Fi	z
dz

Figure � compares the exact Ploss that we obtain here with PCh that Lee obtains in ����

��
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Figure �� Over�ow probabilities in a �� � �� copy network with deterministic copy requests of size

������� and �� The broken lines denote the Cherno� bounds while the smooth lines represent the exact

results�

��



Now consider the case when the requests that cannot be served are queued� Although many schedul�

ing policies can be formulated and analyzed� to illustrate the use of our technique� we will consider the

simplest scheduling policy in which the requests satisfying the conditions mentioned earlier are served

queued and the others are queued� Proceeding sequentially from input �� all the input ports whose

copy requests can fully served in the slot are selected for service� Note that this policy selects a packet

for service only if all the copies requested by it can be generated in the given slot� Since service always

starts from port �� the service rate varies with the port number and decreases as the port address

increases�

The e�ective service rate at an input port� the rate at which the copy requests can be actually served�

depends on the arrival processes and e�ective service rates at the preceding ports� We model each input

port as a discrete time M�M�� queue except for the �rst port which always gets to be served in every

slot� At port i� let the e�ective service rate and the probability of its input queue being empty be

denoted by 
	i
 and P��i respectively� The number of ports that can be served in a slot depends on the

copy requests of the packets at the head of the queues� Let fH�i	k
 be the probability mass function

	pmf
 of the number of copies requested by the packet at the head of input queue i� From our de�nition

above� � � P��i is the probability that the head of queue i is non empty� Hence the probability mass

function of the copies requested by a packet at the head of the queue i will be�

fH�i	xi
 � Prob fXi � xig �

��
� P��i xi � �

	�� P��i
 q	xi
 xi � �

with FH�i	z
 as its moment generating function� Since port � is always served in each slot irrespective

of the copy requests of the other ports� 
	�
 � �	�� Now� for ports i � �� � � �M � if port i requests k

copies� its request will be served in the slot only if the sum of the copies requested by ports � to i� �

is less than or equal to N � k� Thus�


	i� �
 � Prob fa pkt at port i� � is served g

�
NX
k��

q	k
 Prob

��
�

iX
j��

Xj � N � k

��
�

�
NX
k��

q	k


�
��� X
Pi

j��
xj��N�k�

iY
j��

fH�j	xj




���

Using the results of Section ���� it can be shown that 
	i� �
 is given by


	i� �
 �
NX
k��

q	k


I �
z�N�k��� � �

zN�k��	z � �


�
iY

j��

FH�j	z
dz
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Figure �� Delay characteristics of a ��� �� copy network for deterministic copy requests�

Using well known results for discrete time M�M�� queues� 	see� for example ����
� we can calculate the

waiting time moments and other parameters� In Fig� � we show the mean delay for active requests at

various inputs of a �� � �� copy network when the number of copies requested by an active input is

deterministic� These results are obtained using the method outlined above� Also shown are the results

from a simulation model�

We can also use the method described in this paper to analyze various other scheduling policies for

the copying process in the copy network �����

��



��� BCMP Networks

The product form solution has been extended to a very general class of queuing networks by Baskett et

al in ����� Such queuing networks are called BCMP networks in literature� Four types of service centers

and multiple classes of jobs� each with a di�erent service requirement and routing probabilities� were

permitted� We assume that there are M nodes in the queuing network and that there are R classes of

jobs� We denote by nir the number of class r jobs in node i� The state of node i will be denoted by yi

where

yi � �ni�� ni� � � �niR�

We denote the state of the queuing network by the vector Y which is de�ned to be

Y � �y��y� � � � yM�

In this section� we will describe a technique� similar to the one used for single class networks in

section �� to derive the normalizing constant� As before� we will assume that the constraints on the

state space for the system are linear equalities and inequalities� except that instead of ni� we will have

nir as the variables�

MX
i��

RX
r��

bj�irnir � Nj for j � � � � � p

MX
i��

RX
r��

bj�irnir � Nj for j � p� � � � � q

Let C be the above set of constraints and S	C�M�R
 the set of Y satisfying these constraints�

Without loss of generality� we will assume that the nodes � � � � �M are �rst come �rst serve 	FCFS
�

processor sharing 	PS
 or last come �rst serve 	LCFS
 queues and nodes �M�� � � �M are in�nite server

	IS
 queues� From ����� if we de�ne �fi	yi
 to be

�fi	yi
 �

�����
����

ni�
QR

r�� fir	nir
 for i � � � � � �M

QR
r�� fir	nir
 for i � �M � � � � �M

the steady state probability of the system will be

Prob	Y
 �
�

Gbcmp	C�M�R


MY
i��

�fi	yi


��



�
�

Gbcmp	C�M�R


�
� �MY
i��

ni�
RY
r��

fir	nir




�

�
� MY
i� �M��

RY
r��

fir	nir




�

where ni �
PR

r�� nir and Gbcmp	C�M�R
 is the normalizing constant for the network obtained as

follows

Gbcmp	C�M�R
 �
X

Y�S�C�M�R�

�
� �MY
i��

ni�
RY
r��

fir	nir




�

�
� MY
i� �M��

RY
r��

fir	nir




� 	��


Notice that this is similar to the normalizing constant of single class networks except that there are

MR terms in the product rather than M and there is an additional ni� term for each non�IS node� To

simplify this� consider the Euler integral

n� �

Z �

�
e�ttndt

Substituting this for ni� in Eqn� ��� we get

Gbcmp	C�M�R
 �

X
Y�S�C�M�R�

�
� �MY
i��

Z �

�
e�t t

PR

r��
nirdt

RY
r��

fir	nir




�

�
� MY
i� �M��

RY
r��

fir	nir




�

�
X

Y�S�C�M�R�

�
� �MY
i��

Z �

�
e�t

RY
r��

tnir fir	nir
 dt



�

�
� MY
i� �M��

RY
r��

fir	nir




� 	��


Eqn� �� is similar to Eqn� � and the techniques developed in section � can be used� The only

di�erence is that there is an additional integration for every node that is not a IS queue� Using the

same technique that was used in the derivation of Eqn� � we obtain

Gbcmp	C�M�R
 �

��



I �
�

zN����

�
� � �

I �
�

z
Np��
p

� I �� z
Np����
p � �

z
Np����
p�� 	zp�� � �




�

� � �

I �
�

z
Nq��
q

� �
z
Nq��
q � �

zq � �

�
�
� �MY
i��

Z �

�
e�t

RY
r��

Fir	tz
b��ir
� � � � z

bq�ir
q 
 dt



�

�
� MY
i� �M��

RY
r��

Fir	z
b��ir
� � � � z

bq�ir
q 




� dz� � � � dzq 	��


where Fir	z
 is the z�transform of fir	nir
� Here� we have used the property that the z�transform of

anf	n
 is F	az
�

� Discussion and Conclusion

In this paper we have developed a method to obtain analytical expression for the sum of a product

form expression over an irregular M�dimensional integer space de�ned by multiple linear constraints

with integer coe
cients� We use z�transforms and contour integrals which in turn reduce to evaluating

residues of a function of complex variables� In most cases this can be done manually� but with the

availability of symbolic computation the formulae can be obtained �computationally�� The method

that we develop here can be used in many situations like for example in calculating the normalizing

constant in product form queuing networks or in models that deal with vectors of independent integer

random variables like the one on copy networks described here� Our technique is reasonably general

and does not assume any speci�c form for fi	ni
� the terms in the product form expression or the shape

of the state space like many of the algorithms that are currently available�

The examples demonstrate various aspects of the usefulness of our method� In the highway cellular

system we show that with increasing number of cells and channels� de�ning the state space is quite

di
cult� Employing brute force techniques in the numerical evaluation of system performance measures

can be quite time consuming� possibly impossible� for even small systems of about �� cells and �

channels� Our technique can yield the measures fairly quickly and e
ciently� In the case of the

copy network we demonstrate the utility of our technique for arbitrary fi	ni
 with the state space

constrained by multiple� in this case two� constraints� We also extended our technique to obtaining

analytical expressions for a general BCMP network� Note that the results of ��� �� can be considered

to be special cases of Eqn� � and the result from ���� can be considered to be a special case of Eqn� ��

��



with one equality constraint and no in�nite server nodes�

Finally� we mention that Nelson ���� discusses many other models� such as genetic and polymerization

models� which have a solution which also need a summing of a product form expression over an irregular

multidimensional integer space� The method reported in this paper can be applied to all such systems�

A Sample Maple Program

We reproduce here the part of the Maple program that was used to calculate the call blocking probability

in the highway cellular communication system�

Note that we have used z�i� for zi�

readlib�coeftayl��

�G� is the product of the z�transforms of the first step of the algorithm

�m is the middle cell for which blocking probability is being calculated�

G��	exp�lambda
z��
��

for i from � to M�� do G��	G�
exp�lambda
z�i��

z�i
�� od�

G��	G�
exp�lambda
z�M��
��

�Multiplier for the ��less than or equal�� constraint

le�mul�	proc�z�� ��z��K��������z����� end�

�This set of contour integrations is common to G� GB�� GB�� GB��

G�pre�	G��

for i from � to M�� do � corresponding to M�� constraint eqns

if ��i���m����and �i��m�� then G�pre�	coeftayl�G�pre
le�mul�z�i
��z�i
	��K�� fi�

od�

�We obtain G in this step with two additional integrations

G�new�	coeftayl�G�pre
le�mul�z�m��
��z�m��
	��K��

�Previous step is common to GB�� Preserve G�new to use for GB�

G�	coeftayl�G�new
le�mul�z�m
��z�m
	��K��

��



�Additional integration on G�new� saved before gives GB�

GB��	coeftayl�G�new�z�m
	��K��

�Because of symmetry GB�	GB�

GB��	GB��

�Now we obtain GB�� from G�pre another two integrations

G�new�	coeftayl�G�pre� z�m��
	�� K��

GB���	coeftayl�G�new�z�m
	��K��

� Blocking probability is evaluated

PB�	��GB��GB��GB����G��
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