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Abstract—The residual power levels of the nodes in a wireless independent of the underlying network is proposed in [7}e Th
sensor network determine its important performance metrics like node density and the lifetime upper bound which ensures that
the network lifetime, coverage, and connectivity. In this paper, a certain portion of network area is covered is studied in [8]

we present a general framework to model the availability of The effect of i ina th b f nod th twork
power at sensor nodes as a function of time, based on models for € efiect of increasing the number of nodes on the networ

population dynamics in biological studies. Models are developed lifetime is examined in [9]. However, the existing literegu
for sensors with and without battery recharging and expressions fails to provide a unified framework for modeling the energy

are derived for the network lifetime as well as the distribution consumption and residual battery levels of sensor networks
and moments of random variables describing the number of that simultaneously is capable of accounting for networdt an

sensors with different levels of residual energy as a function of - . .
time. The model is also extended to the case where new sensorgev'ce related factors such as battery recharging, théctraf

are periodically added to the network to substitute older sensors Patterns, and the geographical location of the nodes. Epep
that have expended their energy. Finally, the effect of the packe tries to address these issues.
arrival rates and a sensor's geographical location are modeled. A number of deterministic as well as stochastic factorscaffe
Simulation results to verify the accuracy of the proposed models ha battery power consumption at a sensor. These include
are presented. L . .
the sensor application and the resulting traffic model, aepl
Index Terms—Network lifetime, sensor networks, modeling  ment scenario, the choice of communication and networking
protocols etc. In our current work, we develop an unifying
|. INTRODUCTION framework to characterize the lifetime and residual energy

A major constraint in the design and deployment of S(ar]‘c‘&strlbutlon of such energy constrained networks, andiobta

networks is their limited battery capacity. The finite batte 'F‘S'ths Into the‘F working. In pa_mculiar, we use techrequ
limits the lifetime of the network, and may also cause th%Irnllar to population models for biological systems.to depe
network to become disconnected or lose coverage over ti ar framework. Our model allows the computation of the

To be able to provide guarantees on the performance o |§tribution of the network lifetime and its moments, as lwel
Fkthe distribution of the available power at the nodes in

sensor network and develop schemes to maximize the netwq] .
the network. The proposed framework is general enough to

lifetime, it is important to be able to characterize the lade dat ; th and without batt harai
battery power at the sensors. In this paper, we present aajengccommo ate scenarios with and without battery recharging

methodology for modeling the lifetime and available bzgzttelJn ado?'i'or;hto sctenaﬂosbwhere aneWI nOdﬁS arethpgrloidlcglly
power of sensor nodes. The model is motivated by the meth?fsde 0 the network. ur model a:so allows the Inciusion
a

used to study population dynamics by researchers in the 88\/ network related parameters in the energy calculations.
of biology e consider bothspatial scenarios where a node’s power

Existing research has primarily concentrated on deveg)piﬁonsumpt't.og} IS govgrnedh by |tths pozm,onl n ts pace ;s well
algorithms, be it either distributed or centralized, toimite as non—spzil sce;a}rlos w dere g n(t) e?t_oca lon and power
network longevity metrics. Works along the lines of acwa"consump 'on mode’ are independent entiies.

building network models for energy consumption such sThe rest Of. the paper is organized as follows. Our_ mode|
[4] fail to capture the interplay between a node's spat%ﬁr the scenarios where the sensors are incapable of réebarg

their batteries is presented in Section Il while Sectioneit

location and it's energy consumption. In [5] an optimizatio nds to model for sensors with recharaeable batteriesiod
model to evaluate the maximum network lifetime is proposeﬁ/ s lo modetor sensors echargeable balleriesichec

taking into account the network topology and data aggregati models scenario where new nodes are periodically added

scheme. A Markov chain model for calculating the ener the ntetwork ?Ed Se(g'?n \équtf_:lntlf\l/els the |mtpact (il;]ngtvlvor!(
dissipation in sensors networks is presented in [6] whi arameters on the models. Section Vi presents methodsiogie

accounting for the transitions between active and sleepesiod or using the pTOPOS‘?d models for SVS‘e”? design. Section Vi
.spresents our simulation results and Section VIl presems t

concluding remarks.
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residual power in sensor networks. At any time, we categorithe timet is discretized and is measured in units of cycles.
each sensor in terms of its residual battery level. The olaridnlike biological population models where in each time step
in the state or residual battery level of a sensor dependssontihe age of each individual increases by 1, our model allows fo
instantaneous power consumption which in turn is dependembitrary power consumption or increase in age in each time
on several factors, such as the spatial location, routimg pistep. The number of nodes at each energy level at an arbitrary
tocols deployed, communication pattern etc.. Categdomat time step is given by
of sensors by their power levels thus facilitates the ganesi
of a model that depends on the characterization of the powernO(H_l) = pono(t)
consumption probabilities. ni(t+1) = poni(t) + pino(t)

To model the lifetime of energy constrained networks, we
propose a generalization of Leslie’s population matrix, [1] '
which is used to study populations structured by age. THe1(t+1) = ponmfl(’?;r P1nm—2(t) +7'7"'+Pm71no(t)
“age” of a node in our model corresponds to the amount of -
the battery power consumed, with one unit of power expended@m(ﬂ—l) = nm(t) + ;pmm_l(t) + ;pmm‘Q(t)

per packet transmitted, and the “age” of any node lies in one m
of the m + 1 possible intervalsf), 1, --- ,m. In other words, NI Z ping (t) + pmno(t) (1)
we assume that each sensor has enough energy to transmit Pt

packets and the nodes in the network are structured based.l.ﬂ

. . : 8 rationale behind the above formulation can be justified
this value. Our model makes the following assumptions:

as follows. A node with full power at time (classng) will

1) The power is mainly expended to transmit packets. retain it's entire battery reserve only if it receives no lgets

2) The network lifetime can be discretized into “cycles™o transmit for the duration of the cycle. The probability of
wherein each cycle spans a communication round amothgs event ispy, and since each node has the same probability
the nodes. This also implies that the nodes are synchdistribution p;, the expected number of nodes who receive
nized. zero packets igono(t), which in turn is the count of nodes

3) The probability that a node receivepackets (its own as with full battery power at time: + 1. Similarly the number
well as those it forwards), = 0,1,--- ,m, to transmit of nodes in class:; at timet¢ + 1 is the sum of nodes in
is same in all cycles and we denote this probability bylassn; who transmit zero packets, and the nodes in class
Di- ng that spend one unit of energy at timeFor evaluating the

Note that the sleep-wake cycles used by many sensor ri{mber of nodes in class:, note that a sensor in class,
works to conserve energy is incorporated in our model By= 0.+, — 1 will expend all its energy if it transmits
choosingp, (the probability that no energy is consumed if"0r® tham_n ! packetnsl Ina cyclg and the probablllt_y of
a slot) appropriately. Thus in these scenaripg,includes this event IS given bﬁk:(mﬂ'} Pis &= 0,000 ,m. AISO', n

the fraction of cycles where the node is in the sleep stdfé Scenarios where the batteries are not capable of résbarg
in addition to the fraction of cycles in which the node 9 réplenishing expended energy, a sensor that had noyoatter
awake but does not have any packets to transmit. FurtHgpWer during the cycle starting atwill continue to remain
power is also consumed by sensor nodes in order to senseRfi@ered down at + 1 and hence the equation far,,(t +
environment for any phenomenon that the application ruynitJI)' Note that the power spent on idle listening and receiving
on the network is interested in. The first assumption impli@4€ almost the same (p. 75 of [3]). Thus whether a packet is
that the energy expended in sensing the environment is fBE€ived or not, aimost the same energy is spent, if the senso
incorporated into the model. This energy being independdft"Ot transmitting. Thus the receiving power is not inckide
of the node’s geographic location, impacts all nodes in tﬁ@the model. The r_eg:ewmg/ple I.|sten|ng power can _bel9a3|
network uniformly, and hence is omitted. Additionally, thdncorporated by shifting the indexof the p;’'s appropriately.
power consumption on communications dominates that for N @bove formulation can also be expressed in a vector-
running the onboard circuitry [2]. Thus modeling the netvorMatrix form. To this end, we first define ttie:+ 1) x (m +1)-
lifetime based on the power spent on communications senfigiensional “projection” matrixi as

as a good approximation. Cases where the energy consumption Do 0 0 0o ... 0 0
of the circuitry and sensing devices is non-negligible can 1 Po 0 0 ... 0 0
also be accommodated in our model. In this case, the circuyt_ | p, D1 Do 0 ... 0 0

and sensing power is first normalized in terms of the poweér
required to transmit a packet and let this normalized power m m K
be w. Then a new set of power consumption probabilities P D1 Pi 2amoPi oo o 20 P L
is used in the model formulation below instead iof with
pi=0for0<i<wandp;, =p;_, fori>w.

Letn(t) be a(m+1)-dimensional vector Whosith ele_:ment, n(t+1) = An(t) 3)
n;(t), denotes the number of nodes in age growg timet,
i.e. n;(t) denotes the number of nodes which have used uhis formulation is equivalent to a discrete time Markovicha
units of the total battery capacity ofi at timet¢. Note that as the number of nodes at a particular energy level is depénde

(2)
The model then can be expressed as the vector difference
equation



only on the number at the previous cycle. The solution growth (or decay) rate of the populatipnand its infinitesimal
this difference equation is easily obtained, using a reegrs varianceos? are given by

definition, as: o2

n(t+1) = A"1n(0) 4 wo~ In)y— 5 (8)
where n(0) is the initial distribution of nodes among the o2 iaTcé )
various energy levels. In practical situations, it is resie NS

to assume that at time= 0, all the nodes are fully powered,where .\, is the dominant eigenvalue of the projection matrix
i.e.n;(0) = 0 Vi > 0 andng(0) = N. What now remains 4 and § is a column vector of the sensitivity coefficients
is determining the probabilities for the energy consumptio% with a; ; being the(i, j)-th element ofd. The transpose

during a cycle and this is done in Section V. of ¢ is denoted bys” and the sensitivity coefficients are

given by 22> = vju) where vy and uj are thei-th and
. . ] . . .
A. Network Lifetime j-th elements of the normalized left and right eigenvectors

When the batteries at sensor nodes do not have the capdffil<}- The normalization is done such that, u; = 1 and
ity to recharge, the network lifetime is an important quagnof (v, uo) = 1. Finally, C'is the variance-covariance matrix of
interest. In this section we characterize the expectedaritwthe elements ind. Let = represent the natural logarithm of
lifetime and the probability of the availability of nodesti the total populatiord_; 7; representing the number of sensors
non-empty battery as a function of time. To this end, we ud States 0 ton —1 and Ieton =InVp be its adjusted initial
techniques that have been developed in [11] for calculatiNg!Ue at timet = 0. Let o = o(z, t|zo) be the probability
the extinction dynamics in biological populations. density function of the log population sizeat timet, given

We start by modeling the impact of the initial battery statd§at its initial value wasz,. The function characterizing
on the network lifetime. From Eqn. (4) the dynamics of thgwckly_approaches the solution of the diffusion equation f
energy model in the interval O to can be represented as ghe Weiner process ([13] p. 151)
product of¢ projection matricesA. In existing literature on do do o2 0% 10
population dynamics [10] it has been shown that asymptoti- ot _“373 9 Ox2 (10)

cally with the initial condition o(z,0lzo) = &(z — z) where

n(t) = R(0,t){vo, n(0))uo ®) §(z — x¢) is the Dirac delta function ato. Also, since the
whereR(0,t) is a scalar representing the growth of the matriROpulation becomes extinct (i.e. all sensors move to stgte
product,uy andu are the dominant left and right eigenvector§/hen the population becomes less than one, we have the
of the matrix product, normalized such that,, u,) = 1 and Poundary condition
the notation(c, d) is used to represent the scalar or dot product 0(0, t|zo) = 0. (11)
of vectorsc andd. Consider the non-normalized dominant left ) ) _ o
eigenvecton of the matrix4. The impact of the initial battery T0 obtain the solution for Eqn. (10) subject to the aboveahit

states on the longevity of the network is then given by and boundary conditions, we use the known solutions for
Weiner processes with absorbing barriers [14]. This reguir

Vo = (v,n(0)) (6) a linear transform of the coordinates and the solution to the

The rate at which the number of sensors without any remainifyStem in Eans. (10) and (11) is given by (refer to the appendi
energy increases in the network is dependent on the domint@itdetails)

eigenvalue of the matrix. In population studies, the size of (2, t]z0) = 1 e,(z*;o;tm)z B e,@,(ﬁ;o;ﬁutﬂ
the species under consideration varies with time. In ceftra ¢\ *1¥0/ = Vorolt
the number of sensors in the network stays constant (in the (12)

absence of new nodes being added). Now state the model Now, the probability that the population exists at timé.e.
in Egns. (2) and (3) corresponds to the state where a sensorlt@s a size of at least one at timhés given by [ o(x, t|z)dx
no remaining battery power. This is an absorbing state sing@ere the lower limit starts from 0 singgz, t|z) is defined
the batteries do not have any recharging capability. Then @ the log of the population size (i.e. the sensors in states

may consider the model 0 to m — 1). The rate of decrease of the probability that the
. . population exists at timethen corresponds to the probability
At +1) = An(t) @) density function of the random variable denoting the popu-

where 7(t) is a m-dimensional vector corresponding to thdalion is extinct at timet. Let g(¢xo) denote the probability
number of sensors at timein states 0 ton — 1 of the original that the population becomes extinct in an intenvahdt + d.
model in Egns. (2) and (3) and is am x m matrix obtained Then g(t|x0). can be obtained by taking the Qerlyatlvg of the
from the matrix A by eliminating its(m + 1)-th row and totgl probability of the event that the population is notirct
column. This modified model can now be used to evaluafé tmet:

the network lifetime by treating the model in Eqn. (7) as a [

. . S t = —— t|zo)d 13
population model and computing the extinction time of the 9(tlzo) dt J, o(@ thwo)dw (13)
“species” 7 modeled by the “population” projection matrix o _(wgtun? 14
A. In [12] it has been shown that the infinitesimal long-run Voo T (14)



From Eqgns. (12) and (14), the cumulative probability that tithe end of the cycle. Also, the recharge process is assumed to
population is extinct before timeis then be independent of the traffic at the node.

t
G(tlzg) = / g(t'|zo)dt’ (15) A sensor in statg at timet stays in the same state at time
0 t+ 1 if the amount of energy it expends in time cyc¢lés the
_ _Totpt ~2mmo L o | To— HE same as the amount of energy it generates. Since the traffic
= (b —|— [ o 1 <I> 6) . R .
oVt oVt and energy generation processes are independent, thissoccu
with probability }:" ) p;cv;. Along the same lines, a sensor

where ®[a] is the standard normal probability integral i i : ’ )
moves from statej to state; after a cycle,j < i < m, if
Bla] = 1 /" e‘édz 17) the energy consumed in the cycleiis- j units more than
Vor J_oo that generated in the cycle. The probability of this event is

m 7 .
Note that when nodes cannot recharge their batteries, we hgllen 2o Ph+i—;jk- Similarly, the probability that a node

@ < 0 and thusG(oo|zg) = 1, i.e. the network eventually g\ S;ESJ movesl t? Séztetszegoiﬁﬁreﬂ; rij dEoTr:Lé I\?vr?zle\:gnwe
runs out of energy. Y 2 k=0 PkQhej—i- y

_— I consider the transition to stateésndm, additional events need
The definition of network lifetime used here corresponds {0 . . : " o

. ... 10 be considered while calculating the transition probdd.
the time when all sensors run out of energy. Other definitions

L . . IR particular, a sensor in stateat timet, 0 < ¢ < m, moves
that have been used in literature include the time when tbe fi P " . =
. o statemn at timet + 1 if at leastm — i more units of energy
sensor runs out of energy, when a certain percentage ofrsenso . ) o
. were consumed than generated in the time cycle. Similarly, a
run out of energy, when the network becomes disconnecte . . _ .
. o ) Sehsor in staté at timet, 0 < ¢« < m, moves to staté at time
to name a few. The lifetime for cases when it is defined as

the time when the first or a certain thresheldf the sensors +1if at Igastz more units of energy were generated than

. i consumed in the cycle. Then, the number of nodes at each
run out of energy can be evaluated using the derivation aboé’r?er level at an arbitrary time step is qiven b
by taking zo to be the distance from the adjusted initial size oy y Pi1Sg y
(In Vp) to the threshold in the log scale [12]. The time when a
network becomes disconnected depends on various additiona

factors such as the topology and is not considered here.

B. Moments of the Network Lifetime m i m =l
From Eqn. (12), the distribution of the extinction time or no(t+1) = no(t) Zainj +m(t) Zainj

the network lifetime has an inverse Gaussian distribufidre ::0 Z_::1+1 =t . J :Oi_m
mean and variance of this distribution and the networkififet
o o) Y e D0 pytm(t) Y Yo
1=m—1 7=0 i=m 7=0
2
T @ _o o0 m m
= |M| and o° = 7|/J|3 (18) nl(t+1) = no(t) Zpiaifl + nl({;) Zplal
i=1 =0
Thus the expected network lifetime is equal to the logarithm m m
of the adjusted initial population size, divided by the dbs® ot 1 () pittipm—2 + M (t) > Pittitm-1
value of the long-run growth rate. The dependence of the i=0 i=0

network lifetime on the infinitesimal variance is only thgbu

its effect on u. Also, the network lifetime distribution is m m

positively skewed and the third central moment%fl%%—4 and L (t+1) = ne(t) Z PiCimi1 + 1M1 (t)z PiCti maa
the mode of the network lifetime is less than the mean.

i=m—1 i=m—2

m m
[1l. SENSORS WITHRECHARGEABLE BATTERIES +o o (t) Zpio‘i + (1) Zpia“rl

Equipping sensors nodes with rechargeable batteries is m ifmo m 2 Oiferl
the easiest way to extend the lifetime of the network. Inp, (t+1) = ng(t) Zp,b- aj +ny(t) Z Di aj
the typical deployment scenarios of sensor networks, these i=m  j—=0 i=m—1  j=0
batteries would typically recharge by scavenging energgnfr m -1 m i
the environment such as by converting solar power, ambient ot () i Yt nm(t)Y pi >y
heat, and motion into electricity [15], [16]. In this sectiove i=1 ;=0 i=0 ;=0

extend our model to accommodate sensors with rechargeable

batteries. We consider an arbitrary recharge process igoger

the replenishing of the sensor batteries. We denotebthe

probability that a sensor generatesnits of energy in a cycle,

with ¢ = 0,1,---m. We assume that the recharge energy

generated or harvested in a cycle becomes available fortus@tae formulation above can be expressed in the form @ha



1) x (m 4+ 1)-dimensional projection matriy: and

r m m m i—m 7 Ht(z) = Z pt(V07 Ui, L, )Z(’;Ozl’jl .. ZrVnm (23)
Z%Zm Z%Zm DI ij
i=m Now consider the conditional PGH,;(z). Recall that at
Zpiaiq sz'ai Zpiaﬂmq time ¢, the state transition of each sensor in claggcurs as
per a multinomial trial. The PGF of the resulting vector from
A= : . . : the multinomial trials on the:;(¢) members of class at time
o m ' m t is given by
Zpiai%l Zpiammz e ZpiaiJrl , ni(t)
=l R (a0,iz0+a1,i21++ -+ i2m)" ) = [Z k,iZk (24)
p a p a DY p a
L Zz,; 12 ! i;n_lljzz(:) ! Z zz ! Now, the number of sensors in classat timet + 1 is the

(19) sum of the number of sensors that move to clagom each
The model then can be expressed as the vector differemiethe m other classes at the end of timeas well as the
equation sensors of clask that do not change their state. Since we are
n(t+ 1) = An(t) (20) working with the transforms of the probability mass funogp
the resulting PGF is the product of the individual PGFs. Thus
whose recursive solution in terms of the initial distrilutiof we have
nodes can again be written ast + 1) = A™*1n(0). ni(®)
[Z ag zzk] (25)
k=0

Hi4(2) H

=0

A. Energy Distribution Unconditioning ont, we have

When nodes are capable of recharging their batteries,
sensor does not always stay devoid of energy. Howeveﬁt“(z) - Z pe(n0(), - (6)) Hyyre(2)
network properties such as connectivity and coverage are no(t),++ mm (1)
dependent on the number of nodes with non-zero energy at any m [ m mi(®)
given point in time. Also, the amount of available energy at = Y ) ]] [Z ak,izk] (26)
the sensors determines the traffic that the network can suppo n(t) i=0 Lk=0
and this affects the application running on the sensor mtwo = Hi(60,61,- ,&m) (27)

In this section we characterize the distribution of the ladé
energy at the sensors as a function of time. ]
At each cycle, a sensor in any stdtéransits to any other &= Zak,izk (28)

state or stays in the same state according to the probesiliti

defined in thei-th column of A. In other words, the transition Then given a starting state vectof0), we can recursively

of a sensor in staté at the end of a cycle is determinecbuild the PGF ofn(¢) and use it to obtain the exact distribu-
according to a multinomial trial withn + 1 possible outcomes tions and its confidence intervals. As an illustration, weeha

where

with the probability of each outcome defined the entries in m

the i-th column of the matrixA. Then withn;(¢) denoting Ho(z) = 200 om0 = HZZ”(O) (29)
the number of sensors in classat time ¢, we haven;(t) i=0

multinomial trials corresponding to each sensor in classgng

that determines their transition at the start of time 1. To m [ m ni(0)
characterize the vecta(t+1), we start with a characterization Hy(z) = Ho(§) = H lz ak,izkl (30)
of n(t + 1) conditioned onn(t) and evaluate the probability i=0 Lk=0

Pr{n(t +1)=6(t+ 1)|n(t)} wheref(t + 1) is a (m +1)- and so on.
dimensional vector of non-negative integers. Since eacbme

is assumed to operate independently, we have B. Approximate Distribution
m In this subsection we obtain an approximation for the proba-
Prin(t+1) = 0(t+1)[n(t)} = [ [ Pr{ni(t+1) = 6:(t+1)|n() Yyility distribution function ofn(t) that is easier to calculate as
=0 (1 compared to the expression in the previous subsectioneSinc

These conditional probabilities may be computed quiteilgad (€ State transitions of the sensors are governed by indepén
However unconditioning the expression to obtain the uncofultinomial trials, we can use the normal approximation to
ditional distribution is quite laborious. Thus we use a faultd Multinomial distribution [17]. Then for a given(t), the
variate probability generating function (PGF) to charegee 'andom variables
the number of nodes at different power levels. We define _n(t+1) =B+ 1Dn@) .o
Yi(t+1) = =0,1,
[var(n;(t + 1)|n(t))]}/2
Pt(V(th»"‘ an):Pr{n(t):{l/Ovl/la"' 7V’m}} (22) (31)




are each distributed approximately as the standard norraald the recursive solution for this system is given by
random variableN (0,1) and the random vectdY (¢t + 1) is

_ t—1
defined as n(f) _ Atn(O) + ZAlS (40)
Ve - M) =Bl Dn®) g =
[var(n(t + 1)|n(t))]*/2 To evaluate the distribution of the state occupancy vectoy,

where vatn(t + 1)|n(t)) = diagvar(n(t + 1)|n(t))] is a W€ note that the system in Eqn. (39) can be vyrittem(asf
diagonal matrix whose diagonal elements are the componént= A7(f) where the(m +2) x (m + 2)-dimensional matrix
variances. Thert’ (¢ + 1) has a multi-dimensional standard4 iS defined using thel matrices in Eqgn. (2) or Eqn. (19) as
normal distributionV (0, I).

apo a1 ' Gom  So
o Aai1 o Aim S

C. Mean and Variance of State Occupancy A= : : ; : (41)
Closed form expressions for the mean and variance of the @m0 Om,1 “*° Gmm Sm
state occupancy vectot(t) denoting the number of sensors 0 0o - 0 1

in each state can be obtained either by differentiating (&g P
H(z) or by the method outlined next. We first define th
matrix W with elements

gnd n(t) is a (m + 2)-dimensional vector whose first + 1
elements denote the number of sensors in each state at time
t and the(m + 2)-th element is a constant, set equal to the
wi ;= a;;(1—aj;) 0<i,j<m (33) total number of new sensors added to the network in a cycle.
With this transformation, the expressions of Section Illyma

wherea; ; are the elements of the matrix defined in Eqn. pe used to evaluate the distributionft) and its moments.
(19). We denote byu(t) and V (¢) the (m+ 1)-dimensional
vectors corresponding to the mean and variance(of. We V. IMPACT OF NETWORK PARAMETERS
also define the matrixD; as a diagonal matrix with )
] The potency of the framework developed here lies in it's
Dy = diag(W p¢) (34) inherent ability to be abstracted to networks with varied
node deployment as well as routing schemes. In this section
we highlight and investigate the interplay between a node’s

geographical co-ordinates in space and it's power condompt

where the diagonal elements correspond to the veldtor.
Then, taking the expectation of Eqn. (20)

ir1 = Ay (35) under the aegis of shortest path routing by considering two

Viei = Dy + AV, AT (36) scenarios:(1) a spatial model where the sensor nodes are
located at the vertices of a finite grid aif@) a non-spatial

Substituting the recurrence relations, we have model where nodes are randomly and homogeneously dis-
. tributed such that traffic conditions at each node is staditby

Ht = ;41”(0) (37) identical. In general, the number of packets transmitted in

a cycle p;, depends on the application, the route selecting
mechanism as well as the placement of nodes. The exact
methodology for deriving they;'s depends on the network
Thus the variance of the sensor states at different cyclessienario and in this section we illustrate two specific cases

a weighted sum of the one-step conditional variances of the

mean process at all preceding steps. A Spatial Network

To consider the impact of a node’s spatial location on its
energy consumption rates and node lifetime, we consider a

In some scenarios where battery recharging is not a vialeleployment scenario where the sensor nodes are placed at the
option due to cost and size requirements, an alternativevisrtices of a finite grid, as shown in Fig. (1). The co-ordasat

Vi

Y ARD AT (38)
k=0

IV. EFFECT OFNODE ADDITIONS

to periodically add new sensors to the network to act a$ nodei, i =1,---,N in the grid (z;, ;) is determined as
substitutes for sensors without any energy. In this seatien follows: z; = (i—1)/v/N andy; = (i —1)%V/N.
extend our framework to model this scenario. We now incorporate the contribution of a node’s geographic

To model the periodic addition of new nodes to the networlgcation into the derivation of the power consumption proba
we denote by thém + 1)-dimensional vectolS, the number bilities under the assumption that the network empkystest
of new nodes added to the network in each cycle. THus path routing. The following probabilities are assumed known:
represents the number of new nodes that belong to clasg,, the probability that in a given cycle a sensor node (say
One can imagine that in geneigy = 0 for i # 0 because new ;) has a new packet to send to another node (Jaiy the
sensors would typically have a full battery. Then the systegtid andp., the probability that any two given nodes in the
described by Egns. (3) and (2) or Egns. (20) and (19) can §8d communicate. The probability that a nodeas a packet
rewritten as to transmit during a cycle is the probability of the union of

n(t+1)=An(t)+ S (39) two mutually exclusive events: the event of a node initgén



(0,0) (0.1) (0,4)

or starts a communication session and receivesl routing
requests. In our model we limit the number of communication
sessions taVp,, though theoretically the upper bound .
The simulations validate our intuition that the expectechhar

is a good approximation of the underlying communication
process. Denoting®r{node id = B by P;, the energy con-
sumption probabilities can be expressed as follows:

(1—p)(1 — prk)Np*“}Pk i=0
(1= ps) (NP)piy (1 — pri) VP

pi = . .
,— i—1 Np.— .
S ps (VP TPl (1= pri) P 1}7’1« 0 <i< Nps
(4,0) (4.4) .
0 otherwise
Fig. 1. An example of a grid topology for sensor networks. Also, the evaluation oPr{node id = K has two possibilities:

one where the choice of a node is equally likely among/the
o , , ) nodes present and the second, where the selection of the node
communication session and the event where it receives a rqgtgoverned by it's location. Assuming shortest path ragtin

ing request. The probability of the lattgr,;, can be obtained ;o 4nnroximate the likelihood of the node being chosen by
by using the conditional probability of it receiving a patkehe number of shortest paths it lies on. That is
given two nodes in the network communicate. Mathematically

‘ N—-1 N
for nodezNi1 i | | SO {rin iy =rint
reaS 3 R e | prioteia =y = A
= = N N-1 N
J£i kAik>j (42) SN T{rik+rig=rin}
For each pair f,k), the expression fork{j) communicating k=t ik ik

through node: has the same numerical value since the )

grid is symmetric and hence the summation in Egn (42) yhere Z{rix +ri; = rjuy = 1if vy +rij = rjp, O
multiplied by two. Now, the probability that two particularOtherW'Se'

nodes sayj andk communicate isPr{j-k communicat¢ =

1=(1=r:)* " |n other words, the pairj(k) can be selected B. Non-spatial Homogeneous Networks

N—1
fro(m2 ()N — 1) nodes (since node is not a candidate) in In the case of scenarios where the sensor network is

(V') ways and for nodes and k& to communicate, it is homogeneous and is either assumed to span an extremely

sufficient if either node initiates a session. The expressi§ideally infinitely) large space or to be very densely depiy
for Pr{sessionj-k is throughi} is derived as follows. Let the traffic conditions at each node can be approximated to

(zs,9:), (x,y;), (zx,y) denote the co-ordinates of nodeg?e _statist_ically identical. To qualitativ_ely evaluate thede

i,j and k respectively. DefiningAz; ; A l&; — z;| and lifetimes in these scenarios, we consider a model_where_the
A . - number of packets transmitted by each node during a time

Ayij = |yi —yjl, we obtainir; ; = Ax;; + Ay, ;. Similar cycle follows a Poisson distribution with mean irrespective

values forr;; andr,; can be obtained using the previoug geographical location. The power consumption proba-

definition. Now, bilities p; in this case are given byi; = 672”.

Ljk,i
Pr{sessionj-k is throughi} = {OLM

if Tik T Tij =Tik
otherwise VI. SYSTEM DESIGN AND MODEL USE
The modeling framework proposed in the previous sections
can be used to aid in the design of system parameters. For
Ljpi= < " >< Tk > and L) = < Tk ) instance, the model may be used to compute the required
o Azij) \Azik ’ Az recharging capabilities of the sensor nodes such that the
Given the probability of a sensor to initiate a sessipp, Probability that their energy is not depleted is above amive
each cycle sees an average ¥p, sessions. To obtain thethreshold. In this section we present a methodology forgusin

where

energy consumption probabilities;, i = 0, --- ,m, we again the proposed models to aid in the system design process.
condition on the node’s geographic location.
N A. Sensors with Rechargeable Batteries
pi = Y _ Pr{i packets transmittédode id = K x P, (43)  |n sensor networks with rechargeable batteries, the dvalut
k=1 of the system as described byt + 1) = An(t) in Equation

Note that node: transmitsi, i > 0 packets during a cycle if it (20) can be solved as a discrete time Markov chain to yield a
either receives routing packets and does not initiate a sessiaron-trivial steady state distribution for the energy lewetl each



node. This is in contrast to the time-dependent state ocamypaalso be used to compute the allowable traffic rates for a
probabilities in Sections IlI-A and llI-B. The steady-®at desired lifetime). Since most sensor networks are targieted
distribution may be used to design system parameters suchaagarticular application, it is reasonable to assume that th
the desired recharge rates or battery sizes for a desiregyendraffic generation process for the application is knownggiv
distribution, including the fraction of nodes that are devof the rich literature on traffic modeling [18], [19]. Also, the

energy in the steady state. model may be used to evaluate the impact of various strategie
The steady state solution vectof the systemn (¢ + 1) = such as in-network processing, aggregation and compressio

An(t) is obtained by solving on the network lifetime by appropriately scaling the traffic
= Ap (44) parameters. Finally, the model may be used to evaluate the

impact of different traffic types and traffic mixes on the
along with the conditiony_ p = 1. Then, if the fraction of network lifetime and energy distribution.

nodes that do not have energy in the steady-state is desired t

be less than, 0 < e < 1, we solve VII. RESULTS

(45) In this section, we evaluate the accuracy of the proposed
framework by comparing the analytic results against simula
for the desired parameter. If more than one parameters gig;s. The simulation results were generated using a custom
required to be designed, equations for the steady state djigilt simulator written in C that, unlike existing simulati
tribution of additional states and their desired values ban tools such ass-2, allows the use of rechargeable batteries
solved simultaneously to obtain the parameter values. at nodes. To avoid repetitive results, we only present those
The steady state solution of the Markov chain degenerateg non-spatial networks with randomly distributed nodes
to the trivial solution of all nodes being depleted of enei@y (the results for spatial (grid) networks are similar). Facle
networks without rechargeable batteries. This is also &%® ¢ simulation result, ten runs of the simulation were condiicte
when a constant number of nodes are added to the netwgjikh different seeds and the average of these runs is pesent
in each slot. Thus the design for a steady state distributign the figures. User datagram protocol (UDP) was used as
of node battery levels only applies to nodes with recharigealthe transport protocol and a code division multiple access

p(m) <€

batteries. (CDMA) based medium access control protocol with 256
codes was used to ensure that there were no collisions. The
B. Sensors without Rechargeable Batteries parameters used for the results have not been selected with

a particular sensor platform or application in mind. This is

For networks without rechargeable batteries, our model m ) R . ;
be used to design the parameters required for a desired wketwggcause our goal here is to provide insights into the behavio

lifeti ) ) . of the network lifetime as a function of various parameters
ifetime. The design process requires the use of the time . .
dependent distribution of the energy levels of sensor noq%r%d to evaluate the accuracy of the model in diverse settings
given in Egn. (27). The PGF is inverted and the marginal
probability mass function for state:, p;(m) is equated to A. Network Lifetime
the fractione of the nodes that are devoid of energy used to We first consider the model in Section Il where batteries
define the lifetime. The desired value of the lifetime is thedo not have the capability to recharge. We start with the
substituted fort and the equatiop,(m) < € is solved for the case where lifetime is defined as the time when all nodes
desired parameter. For more than one parameter, the miargigad out of energy and is measured in terms of the number
probability mass functions of additional states are equéte of cycles. For this scenario, Figure 2 shows the analytic and
their desired values and solved simultaneously. simulation values of the expected network lifetime for a-non
A particularly important design problem is that of choosingpatial network where 100 nodes are distributed randomly in
the smallest battery capacity that leads to a desirableanktwthe network and the packet arrival process at each node is
lifetime. To solve this design problem, the marginal praligb modeled according to a Poisson process. The network is a
mass functionp;(m) is evaluated as a function of. by 2000x2000 meter square region and the transmission radius
inverting Eqn. (27). The expression fpf(m) at the desired of each node is 250 meters. We consider initial battery teol

lifetime is then equated to theused for defining the lifetime. 100 (i.e.m = 100) or 200 ¢n = 200) and the x-axis represents

The required battery capacityy, is then given by the parameter\ of the Poisson process. The analytic and
7 = argmax {p(m) : p(m) < €} (46) simulation results match closely and as expected, the mketwo
- P P ‘ lifetime decreases as the traffic intensity increases.

Next we consider the case where the lifetime is defined as
time when a given fraction (taken as 20% of the nodes
r illustrative purposes) of the nodes run out of energy. &o
random network of 100 nodes, Figure 3 compares the analytic
and simulation results for the network lifetime. Resulte ar
C. Comments on Model Usage presented for initial battery levels of 100 and 200 and again
A requirement for using the model is the knowledge dhere is a close match between the analysis and simulations.
the traffic arrival process at each node (the model maye analysis and simulations match closely for other nedtwor

In cases where a closed form expressiongdn) in terms of
m is not available, numerical methods may be used to comp I
m.



that have fully exhausted their batteries. For random nexsyo

1200

| O Analysis: m=100 the new nodes are randomly placed in the given area. Node

\ —+— Simulation: m=: .. . .

1000l — % — Analysis: m=200 || additions are more appropriate in networks where nodes do
\ —A— - Simulation: m=200

\ not have the capability to recharge their batteries andese
results we assume thafy = 1 anda; = 0 for ¢ > 0. The
residual battery power distribution in the sensors of a 100-
node random network after 25 and 50 cycles of operation are
shown in Fig. 5 forA = 1.0 and we consider the cases where
either one or three nodes are added to the network in each
cycle. From the results we see that the addition of new nodes
helps to maintain higher residual energy levels in the ngtwo
Again, the analytic results match closely with the simualati
results.

®
=]
=]

Network Lifetime

D. Sensitivity Analysis and Observations

Fig. 2. Network Lifetime: Analysis versus simulation results In the next set of results. we use the proposed model to

gain insights into the impact of various system parametars o
the network lifetime. These results consider the time when

1000

T T T
—©— Simulation: m=100

900%\ o Analysis me100 || 20% of the nodes run out of energy as the network lifetime.
\ ~ * — Simulation: m=200 A random network with 100 nodes and= 1 is considered.
8001 \ A~ Analysis: m=200 | | . 3 )
\ We only show the analytic results since the simulation tssul
o ] match closely and our interest is only in the trends in the
1 results.

Figure 6(a) shows the effect of the battery capacity and the
addition of nodes on the network lifetime. For these resuéts
do not consider rechargeable batteries. The first observati
that the lifetime increases linearly with the battery céfyac
The second observation is that while increasing the number
of nodes added in a cycle increases the lifetime, the liketim
quickly saturates. Also, the increase in lifetime is greébe
larger battery capacities.

Figure 6(b) shows the effect of the battery capacity and
the average recharge rates on the network lifetime. A two
state recharge model is assumed where in each cycle either
a node does not generate any energy (with probabitiy
or it generates a single unit of energy (with probability
sizes also for all the cases considered in this subsectidn an = 1 — «p). The figure usesy; or the average recharge

Network Lifetime

Fig. 3. Network Lifetime (time for first 20% nodes to run out ofeegy):
Analysis versus simulation results.

thus have been omitted. rates as the x-axis. Again, we observe that the networlirtifet
increases linearly with the battery capacity. Also, thetithe
B. Residual Energy Distribution increases exponentially with the recharge rates and thedse

. . . is larger for larger battery sizes.
We next con5|d_e_r the model in Sgctlon [Il where each nOdSeFigure 6(c) shows the impact of the number of nodes and
has some capability to recharge its battery. For the resyl

. Iﬁs loading factor at each node on the network lifetime.
presented here we assume a simple model where a nwe

enerates a sinale unit of enerav in a cvcle with probabilit ile increasing the number of nodes increases the traffic
9 ingie uni oy ! ycle With probabiliye o ated in the network, the total load in the network may
0.25 and does not generate any energy with probability O.

The initial batterv level of each sensor was kept at 100 Pndt increase at the same rate if schemes such as in-network
y b "_processing and aggregation are used. In the best case, the

Fig. 4 we compare the an_alytlc and_5|mulat|on results fﬁgad at each node does not change (perfect compression or
the number of sensors at different residual power leveks af

25, 50 and 75 cycles of operation in a random network, Wi{H_-network processing). In most cases the load at each node

increase linearly with the network size and in applioas
A = 1.0. Results are presented for the case when there are B . ) . )
and 200 nodes in the network and= 1.0. Again we note ased on flooding, the increase is faster than linear. To mode

. . . the effect of loading, the x-axis of the figure considers the
the close match between the simulation and analytic reSUItFoad at each node of a network with 100 nodes (denoted
by Ai1g0) as the base and the load for a network with
C. Effect of New Nodes nodes is modeled asny = Aigo(1;)? With v being the

Next, we consider the scenario where new nodes are pédoiading factor. We usé\;o0 = 1. Thus~y = 0 corresponds

odically added to the network to act as replacements forsiode the case of perfect compression,= 1 corresponds to
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Fig. 4. The residual power distribution at different timesaimandom network: Analytic versus simulation results.
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Fig. 5. Effect of node additions on the residual power distiibn at different times in a random network: Analytic veysimulation results.

linear increase andy > 1 is faster than linear increase. APPENDIX

We observe that the lifetime increases exponentially as theTh ndix present th tline for obtaining the solution
in-network processing or compression increases. Also, th € appe prese € outline obtaining the Solutio

lifetime decreases exponentially with number of nodes & ﬂ?FEqn. (10) as per the results of [14]. First consider the:sol

network, with the decrease being faster for networks whthoﬂon of the system in Eqn. (10) without the absorbing boupdar
in—netwo'rk processing condition. We first use the transformatign= (z — o — ut) /o

which when substituted in Eqn. (10) gives

1 2
=55 47
VIIl. CONCLUSION Y

and the procesg has the initial conditiorp(y, 0|z¢) = 6(y).

In this paper we have motivated the need and importang@nsider the moment generating function (MGF)
of analyzing the network lifetime as a function of time and o0
energy consumption. Using the work on population dynamics M(0,t) = / o(y, t)e”"dy. (48)
as the basis, we developed a general model for evaluating the
residual battery power levels in networks with and withouthen from Eqn. (47)M (0, t) satisfies the equation
battery recharging as well as networks with node additions.
Expressions were derived for the network lifetime in the ab- 192 M = oM (49)
sence of battery recharging and the distribution and masnent 2 ot
of the state occupancy of the sensors for the other cases. i the initial condition M (0,0) = 1. The solution of the

impact of packet arrival rate at the sensor nodes and a sensgitial differential equation above is given by
node’s geographic location on the energy consumption was

modeled. M(6,t) = 2%t (50)

— 00
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Fig. 6. Network lifetime as a function of various parametersiirmandom network.

which is the MGF of a normal distribution with zero mean9] V. Chen, C. Chuah and Q. Zhao, “Sensor placement for maximizi
and variance t. Thus it follows that= x( + ut + oy also has lifetime per unit cost in wireless sensor network®rbc. IEEE MILCOM,

| distributi di . b pp. 1097-1102, Atlantic City, NJ, October 2005.
a normal distribution and Is given by [10] S. Tuljapurkar, “An uncertain life: Demography in ramdoenviron-

1 (g —pit)? ments,” Theoretical Population Biology, vol. 35, no. 3, pp. 227-294, June
o(z,t|zg) = ———=e~ 27t (51) 1989. o _
Voro2t [11] R.Lande and S. Orzack, “Extinction dynamics of ageettrited popula-

. . . ", tions in a fluctuating environmentProceedings of the National Acad
To obtain a solution that also satisfies the boundary canditi  of ssjences, vol. 85,9,10_ 19, pp. 7418_7423 October 1988. e
of Egn. (11), we first note that fomy, > 0 the linear [12] S. Tuljapurkarand S. Orzack, “Population dynamics iriatele environ-
; ; ments I: Long-run growth rates and extinctioheoretical Population
transformation of Eqn. (51) given by Biology, vol. 18, no. 3, pp. 314-342, December 1980.
13] E. Ewens,Mathematical Population Genetics, Springer, New York,
oz, t|z0) = o(x, tlzo) + Bo(x, t|z,) (52) MIEE P pring
. . .. . ...[14] D. Cox and H. Miller,The theory of Stochastic Processes, pp. 208-222,
Wher.e.xa is a constant also satisfies Eqn. (10) gnd its initid} ]Chapman and Hall, London 19){35' PP
conditiono(x, 0|zg) = 6(z—x(). We thus need to find suitable[15] J. Paradiso and T. Starner, “Energy scavenging for reaiild wireless

values of B andz, such that the boundary condition in Eqn. & ectionics 1EEE Pervasive Compuing, vol. 4, no. 1, pp. 18-27, January-
Marc 5.

(11) is also satisfied in O_rder to compllete-the solution. Tq%] M. Pereyma, “Overview of the Modern State of the VibratiEnergy
value of 2, can be obtained by considering the boundary Harvesting Devices,Proc. MEMSTECH, pp.107-112, May 2007.

at 0 as a mirror and placing a source at= —zx,, the [17] H.-O. Georgii, Sochastics: Int_roduction to Probability and Statistics,

i f the initial condition in the mirror. This leads t@th ;151”5 S a6 Mermed o odeli ;

Image ot the Inilial co Y € or. S leads 1®tN 18] v. Frost and B. Melamed, “Traffic modeling for telecommuricas

solution ¢(x,t) = o(x,t|xg) + Bo(z,t| — xo). Then, using networks,” |IEEE Communications Magazine, vol. 32, no. 3, pp. 70-81,
— 2470 . : March 1994,

B = —e "> we get the final solution [19] S. Shah-Heydari and T. Le-Ngoc, “MMPP models for multinzetiaf-

1 wwgut)? oumg  (wdeq-ut)? fic,” Telecommunication Systems, vol. 15, no. 3-4, pp. 273-293, December
QD(I,HZL'O) = \/j 202t —e o2 202t . 2000.
2mo2t
(53)
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