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A Population Based Approach to Model the
Lifetime and Energy Distribution in Battery

Constrained Wireless Sensor Networks
K. Ramachandran and B. SikdarSenior Member, IEEE

Abstract—The residual power levels of the nodes in a wireless
sensor network determine its important performance metrics like
the network lifetime, coverage, and connectivity. In this paper,
we present a general framework to model the availability of
power at sensor nodes as a function of time, based on models for
population dynamics in biological studies. Models are developed
for sensors with and without battery recharging and expressions
are derived for the network lifetime as well as the distribution
and moments of random variables describing the number of
sensors with different levels of residual energy as a function of
time. The model is also extended to the case where new sensors
are periodically added to the network to substitute older sensors
that have expended their energy. Finally, the effect of the packet
arrival rates and a sensor’s geographical location are modeled.
Simulation results to verify the accuracy of the proposed models
are presented.

Index Terms—Network lifetime, sensor networks, modeling

I. I NTRODUCTION

A major constraint in the design and deployment of sensor
networks is their limited battery capacity. The finite battery
limits the lifetime of the network, and may also cause the
network to become disconnected or lose coverage over time.
To be able to provide guarantees on the performance of a
sensor network and develop schemes to maximize the network
lifetime, it is important to be able to characterize the available
battery power at the sensors. In this paper, we present a general
methodology for modeling the lifetime and available battery
power of sensor nodes. The model is motivated by the methods
used to study population dynamics by researchers in the area
of biology.

Existing research has primarily concentrated on developing
algorithms, be it either distributed or centralized, to optimize
network longevity metrics. Works along the lines of actually
building network models for energy consumption such as
[4] fail to capture the interplay between a node’s spatial
location and it’s energy consumption. In [5] an optimization
model to evaluate the maximum network lifetime is proposed,
taking into account the network topology and data aggregation
scheme. A Markov chain model for calculating the energy
dissipation in sensors networks is presented in [6] while
accounting for the transitions between active and sleep modes.
A model for the network lifetime in a general form that is

K. Ramachandran and B. Sikdar are with the Department of Electrical,
Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY 12180 USA

Manuscript received March 17, 2009; revised October 19, 2009.
This work supported in part by NSF grant 0347623.

independent of the underlying network is proposed in [7]. The
node density and the lifetime upper bound which ensures that
a certain portion of network area is covered is studied in [8].
The effect of increasing the number of nodes on the network
lifetime is examined in [9]. However, the existing literature
fails to provide a unified framework for modeling the energy
consumption and residual battery levels of sensor networks
that simultaneously is capable of accounting for network and
device related factors such as battery recharging, the traffic
patterns, and the geographical location of the nodes. This paper
tries to address these issues.

A number of deterministic as well as stochastic factors affect
the battery power consumption at a sensor. These include
the sensor application and the resulting traffic model, deploy-
ment scenario, the choice of communication and networking
protocols etc. In our current work, we develop an unifying
framework to characterize the lifetime and residual energy
distribution of such energy constrained networks, and obtain
insights into their working. In particular, we use techniques
similar to population models for biological systems to develop
our framework. Our model allows the computation of the
distribution of the network lifetime and its moments, as well
as the distribution of the available power at the nodes in
the network. The proposed framework is general enough to
accommodate scenarios with and without battery recharging,
in addition to scenarios where new nodes are periodically
added to the network. Our model also allows the inclusion
of network related parameters in the energy calculations.
We consider bothspatial scenarios where a node’s power
consumption is governed by it’s position in space as well
asnon-spatial scenarios where the node’s location and power
consumption model are independent entities.

The rest of the paper is organized as follows. Our model
for the scenarios where the sensors are incapable of recharging
their batteries is presented in Section II while Section IIIex-
tends to model for sensors with rechargeable batteries. Section
IV models scenario where new nodes are periodically added
to the network and Section V quantifies the impact of network
parameters on the models. Section VI presents methodologies
for using the proposed models for system design. Section VII
presents our simulation results and Section VIII presents the
concluding remarks.

II. SENSORNETWORKS WITHOUTBATTERY RECHARGING

In this section, we develop the formulation of the analytical
framework to study the network lifetime and the distribution of
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residual power in sensor networks. At any time, we categorize
each sensor in terms of its residual battery level. The change
in the state or residual battery level of a sensor depends on its
instantaneous power consumption which in turn is dependent
on several factors, such as the spatial location, routing pro-
tocols deployed, communication pattern etc.. Categorization
of sensors by their power levels thus facilitates the genesis
of a model that depends on the characterization of the power
consumption probabilities.

To model the lifetime of energy constrained networks, we
propose a generalization of Leslie’s population matrix [1],
which is used to study populations structured by age. The
“age” of a node in our model corresponds to the amount of
the battery power consumed, with one unit of power expended
per packet transmitted, and the “age” of any node lies in one
of the m + 1 possible intervals;0, 1, · · · ,m. In other words,
we assume that each sensor has enough energy to transmitm
packets and the nodes in the network are structured based on
this value. Our model makes the following assumptions:

1) The power is mainly expended to transmit packets.
2) The network lifetime can be discretized into “cycles”,

wherein each cycle spans a communication round among
the nodes. This also implies that the nodes are synchro-
nized.

3) The probability that a node receivesi packets (its own as
well as those it forwards),i = 0, 1, · · · ,m, to transmit
is same in all cycles and we denote this probability by
pi.

Note that the sleep-wake cycles used by many sensor net-
works to conserve energy is incorporated in our model by
choosingp0 (the probability that no energy is consumed in
a slot) appropriately. Thus in these scenarios,p0 includes
the fraction of cycles where the node is in the sleep state
in addition to the fraction of cycles in which the node is
awake but does not have any packets to transmit. Further,
power is also consumed by sensor nodes in order to sense the
environment for any phenomenon that the application running
on the network is interested in. The first assumption implies
that the energy expended in sensing the environment is not
incorporated into the model. This energy being independent
of the node’s geographic location, impacts all nodes in the
network uniformly, and hence is omitted. Additionally, the
power consumption on communications dominates that for
running the onboard circuitry [2]. Thus modeling the network
lifetime based on the power spent on communications serves
as a good approximation. Cases where the energy consumption
of the circuitry and sensing devices is non-negligible can
also be accommodated in our model. In this case, the circuit
and sensing power is first normalized in terms of the power
required to transmit a packet and let this normalized power
be ω. Then a new set of power consumption probabilitiesp̂i

is used in the model formulation below instead ofpi, with
p̂i = 0 for 0 ≤ i < ω and p̂i = pi−ω for i ≥ ω.

Let n(t) be a(m+1)-dimensional vector whosei-th element,
ni(t), denotes the number of nodes in age groupi at time t,
i.e. ni(t) denotes the number of nodes which have used upi
units of the total battery capacity ofm at time t. Note that

the time t is discretized and is measured in units of cycles.
Unlike biological population models where in each time step
the age of each individual increases by 1, our model allows for
arbitrary power consumption or increase in age in each time
step. The number of nodes at each energy level at an arbitrary
time step is given by

n0(t+1) = p0n0(t)

n1(t+1) = p0n1(t) + p1n0(t)

...

nm−1(t+1) = p0nm−1(t) + p1nm−2(t) + · · · + pm−1n0(t)

nm(t+1) = nm(t) +

m
∑

i=1

pinm−1(t) +

m
∑

i=2

pinm−2(t)

+ · · · +
m

∑

i=m−1

pin1(t) + pmn0(t) (1)

The rationale behind the above formulation can be justified
as follows. A node with full power at timet (classn0) will
retain it’s entire battery reserve only if it receives no packets
to transmit for the duration of the cycle. The probability of
this event isp0, and since each node has the same probability
distribution pi, the expected number of nodes who receive
zero packets isp0n0(t), which in turn is the count of nodes
with full battery power at timet + 1. Similarly the number
of nodes in classn1 at time t + 1 is the sum of nodes in
classn1 who transmit zero packets, and the nodes in class
n0 that spend one unit of energy at timet. For evaluating the
number of nodes in classm, note that a sensor in classni,
i = 0, · · · ,m − 1 will expend all its energy if it transmits
more thanm − i packets in a cycle and the probability of
this event is given by

∑m
k=(m−i) pi, i = 0, · · · ,m. Also, in

the scenarios where the batteries are not capable of recharging
or replenishing expended energy, a sensor that had no battery
power during the cycle starting att will continue to remain
powered down att + 1 and hence the equation fornm(t +
1). Note that the power spent on idle listening and receiving
are almost the same (p. 75 of [3]). Thus whether a packet is
received or not, almost the same energy is spent, if the sensor
is not transmitting. Thus the receiving power is not included
in the model. The receiving/idle listening power can be easily
incorporated by shifting the indexi of the pi’s appropriately.

The above formulation can also be expressed in a vector-
matrix form. To this end, we first define the(m+1)×(m+1)-
dimensional “projection” matrixA as

A =















p0 0 0 0 . . . 0 0
p1 p0 0 0 . . . 0 0
p2 p1 p0 0 . . . 0 0
...

...
...

.. .
. ..

...
...

pm

∑m
m−1 pi

∑m
m−2 pi . . . . . .

∑m
1 pi 1















(2)
The model then can be expressed as the vector difference
equation

n(t + 1) = An(t) (3)

This formulation is equivalent to a discrete time Markov chain
as the number of nodes at a particular energy level is dependent
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only on the number at the previous cycle. The solution of
this difference equation is easily obtained, using a recursive
definition, as:

n(t + 1) = At+1n(0) (4)

where n(0) is the initial distribution of nodes among the
various energy levels. In practical situations, it is reasonable
to assume that at timet = 0, all the nodes are fully powered,
i.e. ni(0) = 0 ∀i > 0 and n0(0) = N . What now remains
is determining the probabilities for the energy consumption
during a cycle and this is done in Section V.

A. Network Lifetime

When the batteries at sensor nodes do not have the capabil-
ity to recharge, the network lifetime is an important quantity of
interest. In this section we characterize the expected network
lifetime and the probability of the availability of nodes with
non-empty battery as a function of time. To this end, we use
techniques that have been developed in [11] for calculating
the extinction dynamics in biological populations.

We start by modeling the impact of the initial battery states
on the network lifetime. From Eqn. (4) the dynamics of the
energy model in the interval 0 tot can be represented as a
product of t projection matricesA. In existing literature on
population dynamics [10] it has been shown that asymptoti-
cally

n(t) ≈ R(0, t)〈v0, n(0)〉u0 (5)

whereR(0, t) is a scalar representing the growth of the matrix
product,v0 andu0 are the dominant left and right eigenvectors
of the matrix product, normalized such that〈v0, u0〉 = 1 and
the notation〈c, d〉 is used to represent the scalar or dot product
of vectorsc andd. Consider the non-normalized dominant left
eigenvectorv of the matrixA. The impact of the initial battery
states on the longevity of the network is then given by

V0 = 〈v, n(0)〉 (6)

The rate at which the number of sensors without any remaining
energy increases in the network is dependent on the dominant
eigenvalue of the matrixA. In population studies, the size of
the species under consideration varies with time. In contrast,
the number of sensors in the network stays constant (in the
absence of new nodes being added). Now statem in the model
in Eqns. (2) and (3) corresponds to the state where a sensor has
no remaining battery power. This is an absorbing state since
the batteries do not have any recharging capability. Then we
may consider the model

n̂(t + 1) = Ân̂(t) (7)

where n̂(t) is a m-dimensional vector corresponding to the
number of sensors at timet in states 0 tom−1 of the original
model in Eqns. (2) and (3) and̂A is am×m matrix obtained
from the matrix A by eliminating its(m + 1)-th row and
column. This modified model can now be used to evaluate
the network lifetime by treating the model in Eqn. (7) as a
population model and computing the extinction time of the
“species” n̂ modeled by the “population” projection matrix
Â. In [12] it has been shown that the infinitesimal long-run

growth (or decay) rate of the populationµ and its infinitesimal
varianceσ2 are given by

µ ≈ lnλ0 −
σ2

2
(8)

σ2 ≈ 1

λ2
0

δT Cδ (9)

whereλ0 is the dominant eigenvalue of the projection matrix
Â and δ is a column vector of the sensitivity coefficients
∂λ0

∂âi,j
with âi,j being the(i, j)-th element ofÂ. The transpose

of δ is denoted byδT and the sensitivity coefficients are
given by ∂λ0

∂âi,j
= vi

0u
j
0 where vi

0 and uj
0 are the i-th and

j-th elements of the normalized left and right eigenvectors
of Â. The normalization is done such that

∑

i ui
0 = 1 and

〈v0, u0〉 = 1. Finally, C is the variance-covariance matrix of
the elements inÂ. Let x represent the natural logarithm of
the total population

∑

i n̂i representing the number of sensors
in states 0 tom − 1 and letx0 = lnV0 be its adjusted initial
value at timet = 0. Let ̺ , ̺(x, t|x0) be the probability
density function of the log population sizex at time t, given
that its initial value wasx0. The function characterizing̺
quickly approaches the solution of the diffusion equation for
the Weiner process ([13] p. 151)

∂̺

∂t
= −µ

∂̺

∂x
+

σ2

2

∂2̺

∂x2
(10)

with the initial condition ̺(x, 0|x0) = δ(x − x0) where
δ(x − x0) is the Dirac delta function atx0. Also, since the
population becomes extinct (i.e. all sensors move to statem)
when the population becomes less than one, we have the
boundary condition

̺(0, t|x0) = 0. (11)

To obtain the solution for Eqn. (10) subject to the above initial
and boundary conditions, we use the known solutions for
Weiner processes with absorbing barriers [14]. This requires
a linear transform of the coordinates and the solution to the
system in Eqns. (10) and (11) is given by (refer to the appendix
for details)

̺(x, t|x0) =
1√

2πσ2t

[

e−
(x−x0−µt)2

2σ2t − e−
2µx0

σ2 −
(x+x0−µt)2

2σ2t

]

(12)
Now, the probability that the population exists at timet, i.e.
has a size of at least one at timet, is given by

∫ ∞

0
̺(x, t|x0)dx

where the lower limit starts from 0 since̺(x, t|x0) is defined
for the log of the population size (i.e. the sensors in states
0 to m − 1). The rate of decrease of the probability that the
population exists at timet then corresponds to the probability
density function of the random variable denoting the popu-
lation is extinct at timet. Let g(t|x0) denote the probability
that the population becomes extinct in an intervalt andt+dt.
Then g(t|x0) can be obtained by taking the derivative of the
total probability of the event that the population is not extinct
at time t:

g(t|x0) = − d

dt

∫ ∞

0

̺(x, t|x0)dx (13)

=
x0√

2πσ2t3
e−

(x0+µt)2

2σ2t (14)
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From Eqns. (12) and (14), the cumulative probability that the
population is extinct before timet is then

G(t|x0) =

∫ t

0

g(t′|x0)dt′ (15)

= Φ

[

−x0 + µt

σ
√

t

]

+ e−
2µx0

σ2

[

1 − Φ

[

x0 − µt

σ
√

t

]]

(16)

whereΦ[a] is the standard normal probability integral

Φ[a] =
1√
2π

∫ a

−∞

e−
z2

2 dz (17)

Note that when nodes cannot recharge their batteries, we have
µ ≤ 0 and thusG(∞|x0) = 1, i.e. the network eventually
runs out of energy.

The definition of network lifetime used here corresponds to
the time when all sensors run out of energy. Other definitions
that have been used in literature include the time when the first
sensor runs out of energy, when a certain percentage of sensors
run out of energy, when the network becomes disconnected,
to name a few. The lifetime for cases when it is defined as
the time when the first or a certain thresholdǫ of the sensors
run out of energy can be evaluated using the derivation above
by takingx0 to be the distance from the adjusted initial size
(lnV0) to the threshold in the log scale [12]. The time when a
network becomes disconnected depends on various additional
factors such as the topology and is not considered here.

B. Moments of the Network Lifetime

From Eqn. (12), the distribution of the extinction time or
the network lifetime has an inverse Gaussian distribution.The
mean and variance of this distribution and the network lifetime
are

t̄ =
x0

|µ| and σ̄2 =
x0σ

2

|µ|3 (18)

Thus the expected network lifetime is equal to the logarithm
of the adjusted initial population size, divided by the absolute
value of the long-run growth rate. The dependence of the
network lifetime on the infinitesimal variance is only through
its effect on µ. Also, the network lifetime distribution is
positively skewed and the third central moment is3x0σ4

|µ|5 and
the mode of the network lifetime is less than the mean.

III. SENSORS WITHRECHARGEABLE BATTERIES

Equipping sensors nodes with rechargeable batteries is
the easiest way to extend the lifetime of the network. In
the typical deployment scenarios of sensor networks, these
batteries would typically recharge by scavenging energy from
the environment such as by converting solar power, ambient
heat, and motion into electricity [15], [16]. In this section we
extend our model to accommodate sensors with rechargeable
batteries. We consider an arbitrary recharge process governing
the replenishing of the sensor batteries. We denote byαi the
probability that a sensor generatesi units of energy in a cycle,
with i = 0, 1, · · ·m. We assume that the recharge energy
generated or harvested in a cycle becomes available for use at

the end of the cycle. Also, the recharge process is assumed to
be independent of the traffic at the node.

A sensor in statej at timet stays in the same state at time
t+1 if the amount of energy it expends in time cyclet is the
same as the amount of energy it generates. Since the traffic
and energy generation processes are independent, this occurs
with probability

∑m
i=0 piαi. Along the same lines, a sensor

moves from statej to statei after a cycle,j < i < m, if
the energy consumed in the cycle isi − j units more than
that generated in the cycle. The probability of this event is
then

∑m
k=0 pk+i−jαk. Similarly, the probability that a node

in statej moves to statei after a cycle,i < j < m, is given
by

∑m
k=0 pkαk+j−i. For the boundary conditions where we

consider the transition to states0 andm, additional events need
to be considered while calculating the transition probabilities.
In particular, a sensor in statei at time t, 0 ≤ i < m, moves
to statem at timet + 1 if at leastm− i more units of energy
were consumed than generated in the time cycle. Similarly, a
sensor in statei at timet, 0 < i ≤ m, moves to state0 at time
t + 1 if at least i more units of energy were generated than
consumed in the cycle. Then, the number of nodes at each
energy level at an arbitrary time step is given by

n0(t+1) = n0(t)
m

∑

i=0

αi

i
∑

j=0

pj + n1(t)
m

∑

i=1

αi

i−1
∑

j=0

pj

+ · · · + nm−1(t)

m
∑

i=m−1

αi

i−m+1
∑

j=0

pj + nm(t)

m
∑

i=m

αi

i−m
∑

j=0

pj

n1(t+1) = n0(t)
m

∑

i=1

piαi−1 + n1(t)
m

∑

i=0

piαi

+ · · · + nm−1(t)
m

∑

i=0

piαi+m−2 + nm(t)
m

∑

i=0

piαi+m−1

...

nm−1(t+1) = n0(t)

m
∑

i=m−1

piαi−m+1 + n1(t)

m
∑

i=m−2

piαi−m+2

+ · · · + nm−1(t)

m
∑

i=0

piαi + nm(t)

m
∑

i=0

piαi+1

nm(t+1) = n0(t)

m
∑

i=m

pi

i−m
∑

j=0

αj + n1(t)

m
∑

i=m−1

pi

i−m+1
∑

j=0

αj

+ · · · + nm−1(t)
m

∑

i=1

pi

i−1
∑

j=0

αj + nm(t)
m

∑

i=0

pi

i
∑

j=0

αj

The formulation above can be expressed in the form of a(m+
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1) × (m + 1)-dimensional projection matrixA:

A =







































m
∑

i=0

αi

i
∑

j=0

pj

m
∑

i=1

αi

i−1
∑

j=0

pj · · ·
m

∑

i=m

αi

i−m
∑

j=0

pj

m
∑

i=1

piαi−1

m
∑

i=0

piαi · · ·
m

∑

i=0

piαi+m−1

...
. ..

.. .
...

m
∑

i=m−1

piαi−m+1

m
∑

i=m−2

piαi−m+2 · · ·
m

∑

i=0

piαi+1

m
∑

i=m

pi

i−m
∑

j=0

αj

m
∑

i=m−1

pi

i−m+1
∑

j=0

αj · · ·
m

∑

i=0

pi

i
∑

j=0

αj







































(19)
The model then can be expressed as the vector difference
equation

n(t + 1) = An(t) (20)

whose recursive solution in terms of the initial distribution of
nodes can again be written asn(t + 1) = At+1n(0).

A. Energy Distribution

When nodes are capable of recharging their batteries, a
sensor does not always stay devoid of energy. However,
network properties such as connectivity and coverage are
dependent on the number of nodes with non-zero energy at any
given point in time. Also, the amount of available energy at
the sensors determines the traffic that the network can support
and this affects the application running on the sensor network.
In this section we characterize the distribution of the available
energy at the sensors as a function of time.

At each cycle, a sensor in any statei transits to any other
state or stays in the same state according to the probabilities
defined in thei-th column ofA. In other words, the transition
of a sensor in statei at the end of a cycle is determined
according to a multinomial trial withm+1 possible outcomes
with the probability of each outcome defined the entries in
the i-th column of the matrixA. Then with ni(t) denoting
the number of sensors in classi at time t, we haveni(t)
multinomial trials corresponding to each sensor in classi
that determines their transition at the start of timet + 1. To
characterize the vectorn(t+1), we start with a characterization
of n(t + 1) conditioned onn(t) and evaluate the probability
Pr{n(t + 1) = θ(t + 1)|n(t)} whereθ(t + 1) is a (m + 1)-
dimensional vector of non-negative integers. Since each sensor
is assumed to operate independently, we have

Pr{n(t+1) = θ(t+1)|n(t)} =

m
∏

i=0

Pr{ni(t+1) = θi(t+1)|n(t)}

(21)
These conditional probabilities may be computed quite readily.
However unconditioning the expression to obtain the uncon-
ditional distribution is quite laborious. Thus we use a multi-
variate probability generating function (PGF) to characterize
the number of nodes at different power levels. We define

ρt(ν0, ν1, · · · , νm) = Pr{n(t) = {ν0, ν1, · · · , νm}} (22)

and

Ht(z) =
∑

ν0,ν1,··· ,νm

ρt(ν0, ν1, · · · , νm)zν0
0 zν1

1 · · · zνm
m (23)

Now consider the conditional PGFHt+1|t(z). Recall that at
time t, the state transition of each sensor in classi occurs as
per a multinomial trial. The PGF of the resulting vector from
the multinomial trials on theni(t) members of classi at time
t is given by

(a0,iz0+a1,iz1+· · ·+am,izm)ni(t) =

[

m
∑

k=0

ak,izk

]ni(t)

(24)

Now, the number of sensors in classk at time t + 1 is the
sum of the number of sensors that move to classk from each
of the m other classes at the end of timet as well as the
sensors of classk that do not change their state. Since we are
working with the transforms of the probability mass functions,
the resulting PGF is the product of the individual PGFs. Thus
we have

Ht+1|t(z) =

m
∏

i=0

[

m
∑

k=0

ak,izk

]ni(t)

(25)

Unconditioning ont, we have

Ht+1(z) =
∑

n0(t),··· ,nm(t)

ρt(n0(t), · · · , nm(t))Ht+1|t(z)

=
∑

n(t)

ρt(n(t))

m
∏

i=0

[

m
∑

k=0

ak,izk

]ni(t)

(26)

= Ht(ξ0, ξ1, · · · , ξm) (27)

where

ξi =

m
∑

k=0

ak,izk (28)

Then given a starting state vectorn(0), we can recursively
build the PGF ofn(t) and use it to obtain the exact distribu-
tions and its confidence intervals. As an illustration, we have

H0(z) = z
n0(0)
0 z

n1(0)
1 · · · znm(0)

m =
m
∏

i=0

z
ni(0)
i (29)

and

H1(z) = H0(ξ) =
m
∏

i=0

[

m
∑

k=0

ak,izk

]ni(0)

(30)

and so on.

B. Approximate Distribution

In this subsection we obtain an approximation for the proba-
bility distribution function ofn(t) that is easier to calculate as
compared to the expression in the previous subsection. Since
the state transitions of the sensors are governed by independent
multinomial trials, we can use the normal approximation to
a multinomial distribution [17]. Then for a givenn(t), the
random variables

Yi(t+1) =
ni(t + 1) − E(ni(t + 1)|n(t))

[var(ni(t + 1)|n(t))]1/2
i = 0, 1, · · · ,m

(31)
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are each distributed approximately as the standard normal
random variableN(0, 1) and the random vectorY (t + 1) is
defined as

Y (t + 1) =
n(t + 1) − E(n(t + 1)|n(t))

[var(n(t + 1)|n(t))]1/2
(32)

where var(n(t + 1)|n(t)) = diag[var(ni(t + 1)|n(t))] is a
diagonal matrix whose diagonal elements are the component
variances. ThenY (t + 1) has a multi-dimensional standard
normal distributionN(0, I).

C. Mean and Variance of State Occupancy

Closed form expressions for the mean and variance of the
state occupancy vectorn(t) denoting the number of sensors
in each state can be obtained either by differentiating the PGF
Ht(z) or by the method outlined next. We first define the
matrix W with elements

wi,j = ai,j(1 − ai,j) 0 ≤ i, j ≤ m (33)

whereai,j are the elements of the matrixA defined in Eqn.
(19). We denote byµ(t) and V (t) the (m+1)-dimensional
vectors corresponding to the mean and variance ofn(t). We
also define the matrixDt as a diagonal matrix with

Dt = diag(Wµt) (34)

where the diagonal elements correspond to the vectorWµt.
Then, taking the expectation of Eqn. (20)

µt+1 = Aµt (35)

Vt+1 = Dt + AVtA
T (36)

Substituting the recurrence relations, we have

µt = Atn(0) (37)

Vt =
t−1
∑

k=0

AkDt−1−kATk (38)

Thus the variance of the sensor states at different cycles is
a weighted sum of the one-step conditional variances of the
mean process at all preceding steps.

IV. EFFECT OFNODE ADDITIONS

In some scenarios where battery recharging is not a viable
option due to cost and size requirements, an alternative is
to periodically add new sensors to the network to act as
substitutes for sensors without any energy. In this sectionwe
extend our framework to model this scenario.

To model the periodic addition of new nodes to the network,
we denote by the(m + 1)-dimensional vectorS, the number
of new nodes added to the network in each cycle. ThusSi

represents the number of new nodes that belong to classi.
One can imagine that in generalSi = 0 for i 6= 0 because new
sensors would typically have a full battery. Then the system
described by Eqns. (3) and (2) or Eqns. (20) and (19) can be
rewritten as

n(t + 1) = An(t) + S (39)

and the recursive solution for this system is given by

n(t) = Atn(0) +
t−1
∑

i=0

AiS (40)

To evaluate the distribution of the state occupancy vectorn(t),
we note that the system in Eqn. (39) can be written asñ(t +
1) = Ãñ(t) where the(m + 2)× (m + 2)-dimensional matrix
Ã is defined using theA matrices in Eqn. (2) or Eqn. (19) as

Ã =















a0,0 a0,1 · · · a0,m S0

a1,0 a1,1 · · · a1,m S1

...
...

. . .
...

...
am,0 am,1 · · · am,m Sm

0 0 · · · 0 1















(41)

and ñ(t) is a (m + 2)-dimensional vector whose firstm + 1
elements denote the number of sensors in each state at time
t and the(m + 2)-th element is a constant, set equal to the
total number of new sensors added to the network in a cycle.
With this transformation, the expressions of Section III may
be used to evaluate the distribution ofñ(t) and its moments.

V. I MPACT OF NETWORK PARAMETERS

The potency of the framework developed here lies in it’s
inherent ability to be abstracted to networks with varied
node deployment as well as routing schemes. In this section
we highlight and investigate the interplay between a node’s
geographical co-ordinates in space and it’s power consumption
under the aegis of shortest path routing by considering two
scenarios:(1) a spatial model where the sensor nodes are
located at the vertices of a finite grid and(2) a non-spatial
model where nodes are randomly and homogeneously dis-
tributed such that traffic conditions at each node is statistically
identical. In general, the number of packets transmitted in
a cycle pi, depends on the application, the route selecting
mechanism as well as the placement of nodes. The exact
methodology for deriving thepi’s depends on the network
scenario and in this section we illustrate two specific cases.

A. Spatial Network

To consider the impact of a node’s spatial location on its
energy consumption rates and node lifetime, we consider a
deployment scenario where the sensor nodes are placed at the
vertices of a finite grid, as shown in Fig. (1). The co-ordinates
of nodei, i = 1, · · · , N in the grid (xi, yi) is determined as
follows: xi = (i − 1)/

√
N andyi = (i − 1)%

√
N .

We now incorporate the contribution of a node’s geographic
location into the derivation of the power consumption proba-
bilities under the assumption that the network employsshortest
path routing. The following probabilities are assumed known:
ps, the probability that in a given cycle a sensor node (say
i) has a new packet to send to another node (sayj) in the
grid andpc, the probability that any two given nodes in the
grid communicate. The probability that a nodei has a packet
to transmit during a cycle is the probability of the union of
two mutually exclusive events: the event of a node initiating a
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Fig. 1. An example of a grid topology for sensor networks.

communication session and the event where it receives a rout-
ing request. The probability of the latter,pri, can be obtained
by using the conditional probability of it receiving a packet
given two nodes in the network communicate. Mathematically,
for nodei

pri = 2

[

N−1
∑

j=1

j 6=i

N
∑

k=1

k 6=i,k>j

Pr{session forj-k is throughi}
×Pr{j andk communicate}

]

(42)
For each pair (j,k), the expression for (k,j) communicating
through nodei has the same numerical value since the
grid is symmetric and hence the summation in Eqn (42) is
multiplied by two. Now, the probability that two particular
nodes sayj andk communicate is:Pr{j-k communicate} =
1−(1−ps)2

(N−1
2 )

. In other words, the pair (j,k) can be selected

from (N − 1) nodes (since nodei is not a candidate) in
(

N−1
2

)

ways and for nodesj and k to communicate, it is
sufficient if either node initiates a session. The expression
for Pr{sessionj-k is throughi} is derived as follows. Let
(xi, yi), (xj , yj), (xk, yk) denote the co-ordinates of nodes

i, j and k respectively. Defining,∆xi,j
∆
= |xi − xj | and

∆yi,j
∆
= |yi − yj |, we obtain:ri,j = ∆xi,j + ∆yi,j . Similar

values forrj,k and rk,i can be obtained using the previous
definition. Now,

Pr{sessionj-k is throughi} =

{

Lj,k,i

Lj,k
if ri,k + ri,j = rj,k

0 otherwise

where

Lj,k,i =

(

ri,j

∆xi,j

)(

ri,k

∆xi,k

)

and Lj,k =

(

rj,k

∆xj,k

)

Given the probability of a sensor to initiate a session,ps,
each cycle sees an average ofNps sessions. To obtain the
energy consumption probabilities,pi, i = 0, · · · ,m, we again
condition on the node’s geographic location.

pi =
N

∑

k=1

Pr{i packets transmitted|node id = k} × Pk (43)

Note that nodek transmitsi, i > 0 packets during a cycle if it
either receivesi routing packets and does not initiate a session

or starts a communication session and receivesi − 1 routing
requests. In our model we limit the number of communication
sessions toNps, though theoretically the upper bound isN .
The simulations validate our intuition that the expected number
is a good approximation of the underlying communication
process. DenotingPr{node id = k} by Pk, the energy con-
sumption probabilities can be expressed as follows:

pi =



























{

(1 − ps)(1 − prk)
Nps

}

Pk i = 0
{

(1 − ps)
(

Nps

i

)

pi
rk(1 − prk)

Nps−i
+

ps

(

Nps−1
i−1

)

p
(i−1)
rk (1 − prk)

Nps−i
}

Pk 0 < i ≤ Nps

0 otherwise

Also, the evaluation ofPr{node id = k} has two possibilities:
one where the choice of a node is equally likely among theN
nodes present and the second, where the selection of the node
is governed by it’s location. Assuming shortest path routing,
we approximate the likelihood of the node being chosen by
the number of shortest paths it lies on. That is

Pr{node id = k} =

N−1
∑

i=1

i6=k

N
∑

j=i+1

j 6=k

I{ri,k + ri,j = rj,k}

N
∑

k=1

N−1
∑

i=1

i6=k

N
∑

j=i+1

j 6=k

I{ri,k + ri,j = rj,k}

where I{ri,k + ri,j = rj,k} = 1 if ri,k + ri,j = rj,k, 0
otherwise.

B. Non-spatial Homogeneous Networks

In the case of scenarios where the sensor network is
homogeneous and is either assumed to span an extremely
(ideally infinitely) large space or to be very densely deployed,
the traffic conditions at each node can be approximated to
be statistically identical. To qualitatively evaluate thenode
lifetimes in these scenarios, we consider a model where the
number of packets transmitted by each node during a time
cycle follows a Poisson distribution with meanλ, irrespective
of its geographical location. The power consumption proba-
bilities pi in this case are given by:pi = e−λλi

i! .

VI. SYSTEM DESIGN AND MODEL USE

The modeling framework proposed in the previous sections
can be used to aid in the design of system parameters. For
instance, the model may be used to compute the required
recharging capabilities of the sensor nodes such that the
probability that their energy is not depleted is above a given
threshold. In this section we present a methodology for using
the proposed models to aid in the system design process.

A. Sensors with Rechargeable Batteries

In sensor networks with rechargeable batteries, the evolution
of the system as described byn(t + 1) = An(t) in Equation
(20) can be solved as a discrete time Markov chain to yield a
non-trivial steady state distribution for the energy levels at each
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node. This is in contrast to the time-dependent state occupancy
probabilities in Sections III-A and III-B. The steady-state
distribution may be used to design system parameters such as
the desired recharge rates or battery sizes for a desired energy
distribution, including the fraction of nodes that are devoid of
energy in the steady state.

The steady state solution vectorρ of the systemn(t+1) =
An(t) is obtained by solving

ρ = Aρ (44)

along with the condition
∑

ρ = 1. Then, if the fraction of
nodes that do not have energy in the steady-state is desired to
be less thanǫ, 0 ≤ ǫ ≤ 1, we solve

ρ(m) ≤ ǫ (45)

for the desired parameter. If more than one parameters are
required to be designed, equations for the steady state dis-
tribution of additional states and their desired values canbe
solved simultaneously to obtain the parameter values.

The steady state solution of the Markov chain degenerates
to the trivial solution of all nodes being depleted of energyfor
networks without rechargeable batteries. This is also the case
when a constant number of nodes are added to the network
in each slot. Thus the design for a steady state distribution
of node battery levels only applies to nodes with rechargeable
batteries.

B. Sensors without Rechargeable Batteries

For networks without rechargeable batteries, our model may
be used to design the parameters required for a desired network
lifetime. The design process requires the use of the time
dependent distribution of the energy levels of sensor nodes
given in Eqn. (27). The PGF is inverted and the marginal
probability mass function for statem, ρt(m) is equated to
the fractionǫ of the nodes that are devoid of energy used to
define the lifetime. The desired value of the lifetime is then
substituted fort and the equationρt(m) ≤ ǫ is solved for the
desired parameter. For more than one parameter, the marginal
probability mass functions of additional states are equated to
their desired values and solved simultaneously.

A particularly important design problem is that of choosing
the smallest battery capacity that leads to a desirable network
lifetime. To solve this design problem, the marginal probability
mass functionρt(m) is evaluated as a function ofm by
inverting Eqn. (27). The expression forρt(m) at the desired
lifetime is then equated to theǫ used for defining the lifetime.
The required battery capacity,̂m, is then given by

m̂ = argmax
m

{ρ(m) : ρ(m) < ǫ} (46)

In cases where a closed form expression forρt(m) in terms of
m is not available, numerical methods may be used to compute
m̂.

C. Comments on Model Usage

A requirement for using the model is the knowledge of
the traffic arrival process at each node (the model may

also be used to compute the allowable traffic rates for a
desired lifetime). Since most sensor networks are targetedfor
a particular application, it is reasonable to assume that the
traffic generation process for the application is known, given
the rich literature on traffic modeling [18], [19]. Also, the
model may be used to evaluate the impact of various strategies
such as in-network processing, aggregation and compression
on the network lifetime by appropriately scaling the traffic
parameters. Finally, the model may be used to evaluate the
impact of different traffic types and traffic mixes on the
network lifetime and energy distribution.

VII. R ESULTS

In this section, we evaluate the accuracy of the proposed
framework by comparing the analytic results against simula-
tions. The simulation results were generated using a custom
built simulator written in C that, unlike existing simulation
tools such asns-2, allows the use of rechargeable batteries
at nodes. To avoid repetitive results, we only present those
for non-spatial networks with randomly distributed nodes
(the results for spatial (grid) networks are similar). For each
simulation result, ten runs of the simulation were conducted
with different seeds and the average of these runs is presented
in the figures. User datagram protocol (UDP) was used as
the transport protocol and a code division multiple access
(CDMA) based medium access control protocol with 256
codes was used to ensure that there were no collisions. The
parameters used for the results have not been selected with
a particular sensor platform or application in mind. This is
because our goal here is to provide insights into the behavior
of the network lifetime as a function of various parameters
and to evaluate the accuracy of the model in diverse settings.

A. Network Lifetime

We first consider the model in Section II where batteries
do not have the capability to recharge. We start with the
case where lifetime is defined as the time when all nodes
run out of energy and is measured in terms of the number
of cycles. For this scenario, Figure 2 shows the analytic and
simulation values of the expected network lifetime for a non-
spatial network where 100 nodes are distributed randomly in
the network and the packet arrival process at each node is
modeled according to a Poisson process. The network is a
2000×2000 meter square region and the transmission radius
of each node is 250 meters. We consider initial battery levels of
100 (i.e.m = 100) or 200 (m = 200) and the x-axis represents
the parameterλ of the Poisson process. The analytic and
simulation results match closely and as expected, the network
lifetime decreases as the traffic intensity increases.

Next we consider the case where the lifetime is defined as
the time when a given fraction (taken as 20% of the nodes
for illustrative purposes) of the nodes run out of energy. For a
random network of 100 nodes, Figure 3 compares the analytic
and simulation results for the network lifetime. Results are
presented for initial battery levels of 100 and 200 and again
there is a close match between the analysis and simulations.
The analysis and simulations match closely for other network
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Fig. 2. Network Lifetime: Analysis versus simulation results.
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Fig. 3. Network Lifetime (time for first 20% nodes to run out of energy):
Analysis versus simulation results.

sizes also for all the cases considered in this subsection and
thus have been omitted.

B. Residual Energy Distribution

We next consider the model in Section III where each node
has some capability to recharge its battery. For the results
presented here we assume a simple model where a node
generates a single unit of energy in a cycle with probability
0.25 and does not generate any energy with probability 0.75.
The initial battery level of each sensor was kept at 100. In
Fig. 4 we compare the analytic and simulation results for
the number of sensors at different residual power levels after
25, 50 and 75 cycles of operation in a random network, with
λ = 1.0. Results are presented for the case when there are 100
and 200 nodes in the network andλ = 1.0. Again we note
the close match between the simulation and analytic results.

C. Effect of New Nodes

Next, we consider the scenario where new nodes are peri-
odically added to the network to act as replacements for nodes

that have fully exhausted their batteries. For random networks,
the new nodes are randomly placed in the given area. Node
additions are more appropriate in networks where nodes do
not have the capability to recharge their batteries and for these
results we assume thatα0 = 1 and αi = 0 for i > 0. The
residual battery power distribution in the sensors of a 100-
node random network after 25 and 50 cycles of operation are
shown in Fig. 5 forλ = 1.0 and we consider the cases where
either one or three nodes are added to the network in each
cycle. From the results we see that the addition of new nodes
helps to maintain higher residual energy levels in the network.
Again, the analytic results match closely with the simulation
results.

D. Sensitivity Analysis and Observations

In the next set of results, we use the proposed model to
gain insights into the impact of various system parameters on
the network lifetime. These results consider the time when
20% of the nodes run out of energy as the network lifetime.
A random network with 100 nodes andλ = 1 is considered.
We only show the analytic results since the simulation results
match closely and our interest is only in the trends in the
results.

Figure 6(a) shows the effect of the battery capacity and the
addition of nodes on the network lifetime. For these resultswe
do not consider rechargeable batteries. The first observation is
that the lifetime increases linearly with the battery capacity.
The second observation is that while increasing the number
of nodes added in a cycle increases the lifetime, the lifetime
quickly saturates. Also, the increase in lifetime is greater for
larger battery capacities.

Figure 6(b) shows the effect of the battery capacity and
the average recharge rates on the network lifetime. A two
state recharge model is assumed where in each cycle either
a node does not generate any energy (with probabilityα0)
or it generates a single unit of energy (with probability
α1 = 1 − α0). The figure usesα1 or the average recharge
rates as the x-axis. Again, we observe that the network lifetime
increases linearly with the battery capacity. Also, the lifetime
increases exponentially with the recharge rates and the increase
is larger for larger battery sizes.

Figure 6(c) shows the impact of the number of nodes and
the loading factor at each node on the network lifetime.
While increasing the number of nodes increases the traffic
generated in the network, the total load in the network may
not increase at the same rate if schemes such as in-network
processing and aggregation are used. In the best case, the
load at each node does not change (perfect compression or
in-network processing). In most cases the load at each node
will increase linearly with the network size and in applications
based on flooding, the increase is faster than linear. To model
the effect of loading, the x-axis of the figure considers the
load at each node of a network with 100 nodes (denoted
by λ100) as the base and the load for a network withN
nodes is modeled asλN = λ100(

N
100 )γ with γ being the

loading factor. We useλ100 = 1. Thus γ = 0 corresponds
to the case of perfect compression,γ = 1 corresponds to
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Fig. 4. The residual power distribution at different times ina random network: Analytic versus simulation results.

0 20 40 60 80 100
0

2

4

6

8

10

12

Sensor State

N
um

be
r 

of
 S

en
so

rs

 

 
Simulation: new=1
Analysis: new=1
Simulation: new=3
Analysis: new=3

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Sensor State

N
um

be
r 

of
 S

en
so

rs

 

 
Simulation: new=1
Analysis: new=1
Simulation: new=3
Analysis: new=3

(a) t = 25 cycles (b) t = 50 cycles

Fig. 5. Effect of node additions on the residual power distribution at different times in a random network: Analytic versus simulation results.

linear increase andγ > 1 is faster than linear increase.
We observe that the lifetime increases exponentially as the
in-network processing or compression increases. Also, the
lifetime decreases exponentially with number of nodes in the
network, with the decrease being faster for networks without
in-network processing.

VIII. C ONCLUSION

In this paper we have motivated the need and importance
of analyzing the network lifetime as a function of time and
energy consumption. Using the work on population dynamics
as the basis, we developed a general model for evaluating the
residual battery power levels in networks with and without
battery recharging as well as networks with node additions.
Expressions were derived for the network lifetime in the ab-
sence of battery recharging and the distribution and moments
of the state occupancy of the sensors for the other cases. The
impact of packet arrival rate at the sensor nodes and a sensor
node’s geographic location on the energy consumption was
modeled.

APPENDIX

The appendix present the outline for obtaining the solution
of Eqn. (10) as per the results of [14]. First consider the solu-
tion of the system in Eqn. (10) without the absorbing boundary
condition. We first use the transformationy = (x−x0−µt)/σ
which when substituted in Eqn. (10) gives

∂̺

∂t
=

1

2

∂2̺

∂y2
(47)

and the processy has the initial condition̺ (y, 0|x0) = δ(y).
Consider the moment generating function (MGF)

M(θ, t) =

∫ ∞

−∞

̺(y, t)e−θydy. (48)

Then from Eqn. (47),M(θ, t) satisfies the equation

1

2
θ2M =

∂M

∂t
(49)

with the initial conditionM(θ, 0) = 1. The solution of the
partial differential equation above is given by

M(θ, t) = e
1
2 θ2t (50)
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Fig. 6. Network lifetime as a function of various parameters ina random network.

which is the MGF of a normal distribution with zero mean
and variance t. Thus it follows thatx = x0 +µt+σy also has
a normal distribution and is given by

̺(x, t|x0) =
1√

2πσ2t
e−

(x−x0−µt)2

2σ2t (51)

To obtain a solution that also satisfies the boundary condition
of Eqn. (11), we first note that forx0 > 0 the linear
transformation of Eqn. (51) given by

ϕ(x, t|x0) = ̺(x, t|x0) + B̺(x, t|xa) (52)

wherexa is a constant also satisfies Eqn. (10) and its initial
condition̺(x, 0|x0) = δ(x−x0). We thus need to find suitable
values ofB andxa such that the boundary condition in Eqn.
(11) is also satisfied in order to complete the solution. The
value of xa can be obtained by considering the boundary
at 0 as a mirror and placing a source atx = −x0, the
image of the initial condition in the mirror. This leads to the
solution ϕ(x, t) = ̺(x, t|x0) + B̺(x, t| − x0). Then, using

B = −e−
2µx0

σ2 we get the final solution

ϕ(x, t|x0) =
1√

2πσ2t

[

e−
(x−x0−µt)2

2σ2t − e−
2µx0

σ2 −
(x+x0−µt)2

2σ2t

]

.

(53)
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