
1

An Efficient and Scalable Loss Recovery Scheme
For Video Multicast

Jun Peng and Biplab Sikdar
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute (RPI), Troy, NY 12180
{pengj2, sikdab}@rpi.edu

Abstract— With the increased popularity of multimedia ser-
vices on the Internet, efficient video multicast strategies that can
scale easily are of critical importance. This paper addresses the
issue of video multicast loss recovery and presents an efficient and
scalable scheme: Active Injection Recovery (AIR). The proposed
scheme has three distinguishing features: active injection of
repair packets into loss regions, on-demand construction of loss
recovery structures, and unique rate control over repair traffic.
All these features can save considerable network resources in
a large-scale video multicast session. In addition, the proposed
scheme simultaneously meets the three well-known requirements
for efficiency and scalability in multicast loss recovery: request
suppression, local recovery, and retransmission scoping. Another
important feature of the proposed scheme is its low recovery
latency, which is essential for video multicast. Our analysis shows
that the proposed scheme achieves significantly better overall
performance as compared to existing multicast loss recovery
schemes. Simulation results show that the proposed scheme can
improve the video quality considerably in a streaming video
multicast session.

Keywords: Algorithm/protocol design and analysis

I. INTRODUCTION

Multimedia applications will be among the most popular
users of Internet multicast services because of their inher-
ent one-to-many transmission requirement. Efficiency and
scalability are essential for multimedia multicast because a
multimedia multicast session can have a very large scale in
terms of both geographical spread as well as the number
of nodes involved (e.g., the multicast of a football game
on the Internet may spread across several continents and
have tens of thousands of receivers). Therefore, efficiency
and scalability are also critical for a loss recovery scheme
designed for large-scale video multicast. Research on multicast
loss recovery focuses on two directions: end-to-end schemes
and network-assisted schemes. The schemes in the end-to-end
direction such as [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
[12] 1, in general, are not very efficient or scalable because
of the lack of information about the underlying network.
Therefore, efforts have also been made to explore schemes
in the network-assisted direction, such as [14] [15] [16] [17]
[18] [19] [20] [21] [22]. Although these network-assisted
schemes can achieve better overall performance than most
end-to-end schemes, their overhead limits their efficiency and
scalability (e.g., some of them require data caching at router

1A survey on multicast loss recovery schemes can be found in [13].

sites). Therefore, new techniques for enhancing the efficiency
and scalability of multicast loss recovery are still needed for
supporting large-scale video multicast.

It has been shown in [23] that distributed multicast loss
recovery schemes usually outperform source-based multicast
loss recovery schemes in efficiency and recovery latency,
both of which are essential for large-scale video multicast.
However, existing distributed schemes, end-to-end or network-
assisted, usually need to prepare a loss recovery structure
before or at the beginning of a multicast session (e.g., to
distribute distance information among receivers or to set up
states in routers across the multicast tree). Even if there is
not a single loss during a multicast session, these schemes
still set up the structure across the multicast tree. This is not
efficient, since setting up a loss-recovery structure requires
spreading control messages and sometimes activating states
in related routers. Another factor degrading the efficiency of
existing distributed schemes is that they do not specifically
control the rate of the repair traffic generated by them across
a multicast tree. The uncontrolled repair traffic can exacerbate
the congestion on a bottleneck that it traverses. Consequently,
network efficiency is reduced. In addition, existing schemes
either still have low performance in request suppression,
local recovery, or retransmission scoping, which are the three
essential elements for efficiency and scalability in multicast
loss recovery, or they need data caching at router sites, which
also limits their scalability.

The proposed scheme, Active Injection Recovery (AIR),
overcomes all the above disadvantages of existing multicast
loss recovery schemes that limit their efficiency and scalability.
Unlike existing distributed schemes, the AIR scheme does
not prepare a loss recovery structure across a multicast tree
in advance. Instead, AIR only proceeds to build a minimum
loss recovery structure when a loss event does occur and
recovery is indeed necessary. When losses occur on a branch,
the AIR agent residing in the router just above the branch
dynamically defines a loss region and proceeds to find a pair
of receivers (the request source and the repair source) near
the loss site to supply loss information and repair packets,
respectively. The AIR agent then subcasts the repair packets
to the loss region. After the loss event ends, the AIR agent
deletes related states, and the request source and the repair
source release their roles. Thus, the temporary loss recovery
structure is torn down when there are no further losses. In
addition, during the loss recovery process, the request source

2

of a loss region controls the submission of repair requests to
alleviate the interference of the repair traffic on the bottleneck.
Our simulations show that not only is the number of losses
on a bottleneck significantly reduced with our repair traffic
control mechanism, but also the average recovery latency is
not increased. This is a great advantage for large-scale video
multicast.

Using this new active and dynamic approach and by involv-
ing only local nodes and routers in the recovery process, AIR
can save significant network resources during a large-scale
video multicast session. Furthermore, AIR simultaneously
meets the three well-known requirements for efficiency and
scalability in multicast loss recovery. With AIR, retransmission
requests are produced only by the request source instead of all
receivers in each loss region. Meanwhile, these requests are
transmitted to the repair source by unicast instead of multicast
or hop-by-hop extra-processing. Therefore, AIR suppresses
requests not only in production but also in spreading. Because
repair packets are subcast at the branch where losses occur, the
leakage of repair packets to unrelated receivers is impossible
with AIR. All these measures allow the AIR scheme to achieve
better request suppression and retransmission scoping than
other schemes that have been proposed (e.g., SRM [7] and
LMS [17]). Also, AIR does not require data caching at router
sites to achieve ideal local recovery. Our analysis shows that
the AIR scheme has a significantly better overall performance
in efficiency and scalability as compared to existing schemes.
Furthermore, AIR has very low recovery latency. Our simula-
tions show that AIR can significantly increase the quality of
the transmitted video in a streaming video multicast session.

The rest of the paper is organized as follows. The next
section introduces the related work to AIR. Section III presents
the AIR scheme. Section IV analyzes the interference of repair
traffic on bottlenecks in multicast and the mechanism used
by AIR to reduce the interference. Analysis of the proposed
scheme appears in Section V. Section VI presents simulation
results. Finally, we give our conclusion in Section VII.

II. RELATED WORK

In existing network-assisted multicast loss recovery schemes
such as [14] [15] [16] [17] [18] [19] [20] [21] [22], LMS
[17] is probably the most closely related work to the pro-
posed scheme. LMS achieves good performance in request
suppression, local recovery, and retransmission scoping by
maintaining a replier link in each router of the multicast
tree for each multicast session. Although with the same goal
of achieving high efficiency and scalability in multicast loss
recovery, LMS and the proposed scheme have a fundamental
difference: how the recovery structures in a multicast tree
are constructed and maintained. With the proposed scheme,
the recovery structure for a loss event is constructed and
maintained actively and on-demand; with LMS, the recovery
structure is set up passively and maintained permanently in
a multicast session. In addition, the proposed scheme has a
mechanism for rate control over its repair traffic, which LMS
does not have. Because of the difference of the approach in
constructing and maintaining the loss recovery structures in

a multicast tree, the proposed scheme, in general, introduces
less overhead for recovering the lost packets in a multicast
session than LMS, as analyzed in Section V. However, with
its permanently maintained replier links across a multicast tree,
LMS does not need to temporarily set up the replier links for
a loss event before the recovery process begins. So it have
advantages in loss recovery latency in some situations where
the request or repair source can not be found locally, which
is discussed in the scheme analysis part, Section V. In the
end-to-end direction, SRM [7] is possibly the most related
scheme to AIR in terms of the roles that receivers play in
loss recovery. SRM does not set up special agents/servers in a
multicast tree as repair sources. Instead, it solely depends on
receivers and the multicast source in providing repair packets
in a multicast tree. This characteristic also applies to LMS
and AIR. Basically, SRM spreads the loss information of a
loss event across the multicast tree and each receiver capable
of repairing the losses is a potential repair source. Meanwhile,
SRM uses distance-based random timers to suppress duplicate
repair requests and repair packets. Although SRM is robust,
it usually introduces significant overhead in loss recovery. In
addition, SRM has relatively long recovery latency because of
the use of suppression timers. Section V analyzes the three
related schemes and gives details about their performance.
Before that, we first present the AIR scheme in the next
section.

III. THE AIR SCHEME

A. Scheme Overview

To illustrate how the proposed scheme works, this subsec-
tion considers the simple scenario of a multicast tree with a
single bottleneck. The next subsection will present the details
of the complete AIR scheme and how the scheme works in
multiple-bottleneck scenarios.

Part of the topology of a multicast tree is shown in Fig. 1.
In this topology, if congestion occurs on the link between
the routers RT0 and RT3 (we call this link LK0-3), some
packets will be lost there, and all receivers downstream from
LK0-3 will not receive the lost packets. So a multicast loss
recovery scheme is needed to retransmit all or some of the
lost packets to those receivers (for video multicast, some
lost packets that may not be recovered timely for decoding
are usually neglected). Ideally, only one receiver downstream
from LK0-3 (e.g., RV4) needs to supply the loss information,
only one receiver near LK0-3 (e.g. RV1) needs to supply the
repair packets, and the repair packets only need to be subcast
at LK0-3. If all of these are realized, then the three well-
known requirements for an efficient and scalable multicast loss
recovery scheme are met: only one retransmission request is
produced by RV4 for lost packets; repair packets are locally
supplied by RV1; and only the receivers that experienced
losses receive the repair packets.

The AIR scheme aims to achieve the ideal loss recovery
scenario described above. The router just above a congested
link is called a reference router in AIR, and the two receivers
that need to cooperate to provide repair packets to a loss
region are called a pair. In the example above, RT0 is the

3

 RT3

 RT5

 RT4

 RT9

 RT8

 RT7

 RT6

 RT0

 RT1

 RT2

RV1

 RV2

RV5

RV4

RV6

 RV9

RV8

RV7

Fig. 1. Topology for Scheme Overview

reference router, while RV1 and RV4 form the pair. Since a
reference router has the best information about the loss event
at the bottleneck, it is responsible for initiating a process
to select the pair. After the pair have been selected (the
details of the selection process will be given in the next
subsection), the reference router becomes passive and the pair
play active roles in the rest of the loss recovery process
(e.g., ensuring that the recovery process is complete). This
helps to relieve the reference router from excessive burden. In
addition, unless explicitly requested by a reference router, no
receiver produces or sends retransmission requests. Therefore,
the proposed scheme suppresses requests in both production
and spreading. After the loss event ends, the reference router
deletes related states and the pair release their roles.

Now we briefly describe how the pair is selected in the
example above. When the reference router RT0 detects that
congestion occurs on LK0-3, it sends a control message down-
stream to LK0-3. This control message is processed hop by
hop and only reaches the nearest receiver along each branch.
In this example, only RV4 and RV5 get the message, and then
each of them unicasts a response to the reference router RT0.
Upon receiving the first response (e.g., from RV4), RT0 sends
out another message to seek a repair source. This message
is also processed hop by hop and only reaches receivers in
a specific region (details in the next subsection). We assume
that RV1 and RV2 are the only receivers getting the message,
and then each of them unicasts a response to RT0. RT0 only
acknowledges the first responder (e.g., RV1). Upon getting the
acknowledgement, RV1 knows that it has assumed the role of
repair source and starts to contact RV4. RV4 then sends loss
information continuously to RV1 (the information is usually
not sent for those lost packets that may not be recovered timely
for video decoding. For simplicity, we will not mention this
in the following text). Meanwhile, RV1 sends repair packets
to RT0 to subcast at LK0-3.

In this overview on how the scheme works, many details are
omitted, such as the details of processing control messages
and how the scheme works when several bottlenecks exist
concurrently in a multicast tree. The next subsection answers
these questions and presents the details of the scheme.

B. The Scheme

The subsection above introduces the AIR loss recovery
process in a simple scenario. This subsection presents the

details of the AIR scheme in a general multiple-bottleneck
scenario. In a multiple-bottleneck scenario, each bottleneck
in a multicast tree initiates a loss recovery process like that
introduced in the previous subsection. Since each lost packet
is recovered right at its loss site, every receiver eventually gets
all the data sent from the multicast source even if most of them
do not actively participate in the loss recovery process.

We give some definitions below to assist the description of
the scheme:

• a reference branch: a multicast branch that is congested
and in loss recovery.

• a reference router: a router that is just above a reference
branch.

• a pair: the two receivers selected by a reference router
to provide loss information and repair packets.

• a good branch: a multicast branch that is not experiencing
congestion and did not experience congestion recently (if
no AIR loss recovery state exists for a branch, then that
branch is a good branch).

• a stable receiver: a receiver that has been in a multicast
group for a period of time (e.g., 30 seconds).

• a direct receiver of a router: a receiver located in the
same LAN with the router.

• NACK Delay: a parameter whose value decides the delay
between a receiver detecting losses and producing a loss
report. Initially, it is set to 0.

1) Finding a Request Source: An optimal request source of
a reference branch should be a receiver downstream from and
close to the reference branch. Furthermore, there should be no
other congested links along the path from the reference branch
to the receiver. In this case, the request source will request
retransmissions only for the packets lost on the reference
branch. However, it is possible that there is not such an optimal
request source in existence. In this case, a sub-optimal request
source has to be selected. Upon detecting congestion on a
branch, the reference router initiates a process to find a request
source by sending out a control message. The reference router
first sets the ENFORCE flag in the header of the message to 0
to search for an optimal request source. If no optimal request
source is found, the reference router sets the ENFORCE flag to
1 to get a sub-optimal request source. The specific procedure
for finding a request source is as follows:

(a). The reference router first sends a SEEK NACK SRC
message downstream to the reference branch with the
ENFORCE flag in the packet header set to 0. If the
reference router does not receive a NACK SRC ACK
response from a receiver after a period of time, it
sends the SEEK NACK SRC message again but with
the ENFORCE flag set to 1, and then this message is
repeated until a NACK SRC ACK response is received.

(b). The SEEK NACK SRC message is processed hop by
hop. When a router receiving the message has a direct
receiver, the router only forwards the message to the
direct receiver. Otherwise, the router only forwards the
message to all downstream good branches if the EN-
FORCE flag is 0; if the ENFORCE flag is 1, the router
forwards the message to all downstream branches.

4

(c). When a stable receiver receives the SEEK NACK SRC
message, it sends a NACK SRC ACK message back to
the reference router (this message also contains current
loss information).

(d). Upon receiving the first NACK SRC ACK response,
the reference router sends out a SEEK REPAIR SRC
message, while subsequent NACK SRC ACK responses
are discarded.

2) Finding a Repair Source: After the reference
router receives the first NACK SRC ACK response to
its SEEK NACK SRC message, it initiates a process to find
a repair source by sending out another control message. Two
fields, Start Hop and Depth, in the header of the message
assist to find an optimal repair source efficiently. Combined
with the Time To Live (TTL), Start Hop decides which
segment to search along the path from the reference router
upstream to the original multicast source. Meanwhile, Depth
decides how far the search should go downstream along each
branch of the segment. Thus TTL, Start Hop and Depth
together define a specific area to seek a repair source.

Usually, the receiver nearest to the reference router but not
downstream from the reference branch is a good candidate
for the repair source. However, if any link along the path
from the multicast source to that receiver is congested and
if that congested link is not shared by the path from the
multicast source to the reference router, the nearest receiver
is not an optimal candidate for the repair source. This is
because in this case the nearest receiver possibly has to wait
for repair packets itself before it can provide repair packets to
its own loss region, and thus, such receivers must be avoided.
This is the reason why the message for seeking a repair
source, SEEK REPAIR SRC, is only sent to downstream good
branches by each router in the procedure below. Furthermore,
receivers too far away from the path connecting the multicast
source and the reference router are not good candidates for
the repair source either. Therefore, Depth is used to restrict
the search to a specific depth along each branch on the path.
In the following procedure, each round of search covers an
area farther away from the reference router than the previous
round of search. The specific procedure is as follows:

(a). The reference router sends a SEEK REPAIR SRC mes-
sage to the upstream branch and all downstream good
branches. The TTL, Start Hop and Depth fields in the
message header are set appropriately (details in the next
paragraph). If the reference router does not receive any
response to its SEEK REPAIR SRC message within a
period of time, it initiates another round of search by
sending out a new SEEK REPAIR SRC message with
a modified TTL (details in the next paragraph). This
process repeats until at least one REPAIR SRC ACK
response is received. When the reference router receives
the first REPAIR SRC ACK message, it responds with
a REPAIR SRC CONFIRMED message. This message
is repeated until repair packets are received.

(b). The SEEK REPAIR SRC message is processed hop by
hop. When a router receives this message, it may take
three possible actions. First, if the router has a direct

receiver, the router forwards the message to the direct
receiver only. Second, if it does not have a direct receiver
and the message comes from upstream, the router for-
wards the message to all downstream good branches.
Third, if it does not have a direct receiver and the
message comes from downstream, the TTL and the Start
Hop fields of the message are checked. There are two
possible results from the check. (1) If the TTL is greater
than the Start Hop, the message is forwarded upstream
only. (2) If the TTL is less than or equal to the Start Hop,
besides being forwarded upstream, the message is also
copied and forwarded to all downstream good branches
except the one where the original message came from.
Meanwhile, the TTL of each copied message is set to
the value of the Depth field in the original message.

(c). When a stable receiver receives the SEEK REPAIR SRC
message, it responds with a REPAIR SOURCE ACK
message.

(d). When a receiver receives the RE-
PAIR SRC CONFIRMED message from the reference
router, it assumes the role of the repair source and sends
repair packets to the reference router for subcasting. At
the same time, it contacts the request source, whose
address is in the SEEK REPAIR SRC message received
earlier, for further loss information.

 RT5

 RT2

 RT0

 RT3

RV4

 RT6

 RT8

 RT4

 RT7

 RT1

loss

region

The first segment

for searching

The second segment

for searching

The third segment

for searching

Fig. 2. Topology for the Introduction of the Segment-by-Segment Search

A search example is shown in Fig. 2. If it is preferred to
search for a repair source two hops per round along the path
connecting the reference router and the multicast source, the
Start Hop should be set to 2. Meanwhile, Depth should also be
set to a preferred value, such as 3. The TTL then is changed
in each round of search to search a different segment. In the
first round, the TTL is set to 2. In this case, RT3 and RT5 will
search their downstream receivers at most 3 hops away (Depth
is 3); RT2 discards the message because the TTL is 0 when the
message reaches it. If no response is received in the first round
of search, the reference router RT5 initiates the second round

5

of search by sending a new SEEK REPAIR SRC message with
the TTL set to 4. With this new TTL setting, RT3 and RT5
only forward the message upstream, since when the message
reaches them the TTL is greater than the Start Hop. The TTL
becomes less than or equal to the Start Hop after the message
passes RT3, so RT1 and RT2 copy the message and send a
copy to each downstream good branch except the one where
the original message came. RT0 discards the message because
the TTL of the message is 0 when the message reaches it. If
there is still no response, the TTL will be set to 6 in the next
round of search. This search process continues until a repair
source is found.

With the introduction of the Start Hop and the Depth fields,
the search for the repair source is very efficient. Unlike the
expanding-ring search, the “segment by segment” search does
not involve overlapping search areas.

3) Filtering Interference and Completing the Loss Recov-
ery: After the pair is selected, the loss recovery process
starts. Now it is necessary to filter out interference among
bottlenecks. It is possible that several bottlenecks exist si-
multaneously in a multicast tree and they may interfere with
each other. Although during the pair-search process the chance
of potential interference has been considerably reduced by
forwarding messages to good branches, additional procedures
are still needed to deal with the interference that does occur.

 RT4

 RT3

 RT2

 RT1

 RT0

RV0

RV1

 RT4

 RT3

 RT2

 RT1

 RT0

RV0

RV1

BN2

BN1

BN1

BN2

 Case B

 Case A

Fig. 3. Topology for the Introduction of Interference

Since a congested branch affects all receivers downstream
from it, it is possible that the pair of a specific bottleneck is
under the influence of several congested branches. In Case A
of Fig. 3, the pair of the bottleneck BN2, RV0 and RV1, are
under the influence of another bottleneck BN1. Because the
repair packets from the repair source of BN1 (not shown in the
figure) may reach the pair, RV0 and RV1, at different times,
special situations may arise that cause duplicate repair packets
to reach receivers downstream from BN2. For example, if
packet A is lost on BN1, a repair packet, A′, will be produced
by the repair source of BN1 and be subcast to all receivers
downstream from BN1. It can be assumed that A′ reaches
RV0 at time t1 and reaches RV1 at time t2 (t1 < t2). If RV1
produces a loss report between t1 and t2, it reports the loss of
A to RV0. Since RV0 has received A′ by that time, it sends
A′ to RT3 for subcasting. The consequence is duplicate A′s

for receivers downstream from BN2.
To avoid the above interference problem, the AIR scheme

uses the NACK Delay parameter to compensate for the time
difference between t1 and t2. When a request source receives
duplicate repair packets caused by interference, it increases its
NACK Delay parameter by a small step. The request source
then waits for a period of time decided by the current value of
its NACK Delay parameter before producing a loss report after
detecting losses. In the previous example, if the NACK Delay
parameter of RV1 has been adjusted by other duplicate repair
packets before RV1 detects loss A, then RV1 will wait for a
period of time before producing a loss report for A. Now,
it is possible that RV1 will try to produce the loss report
after time t2. However, by that time A′ has arrived at RV1,
so no loss report will be produced. Therefore, the event of
duplicate A′s is avoided. Fig. 4 shows the timelines for the
original case and the modified case where the NACK Delay
parameter compensates for the time difference. The final value
of NACK Delay that can avoid the duplicate repair packets
caused by interference depends on the difference between t1
and t2. The difference between t1 and t2 is decided by the
difference of the delays along the two paths to the pair, RV0
and RV1, from the interference bottleneck BN1.

 t

 t

 t
1

 t
2

 t
1

 t
2

NACK_Delay

RV1 detects loss

A and generates a

repair request.

RV1 detects

loss A.

RV1 tries to generate a

repair request for loss A.

(A) The original case

(B) The modified case

Fig. 4. Timelines for the Introduction of Interference

Another form of interference only causes some delay in
recovery but not duplicate repair packets. Case B in Fig. 3
shows an example, where RV0 and RV1 form a pair. In this
case, the interference bottleneck BN1 only affects RV0. If a
packet is lost both on BN1 and BN2, RV0 needs to wait for
the repair packet itself before it can produce a repair packet
for the receivers downstream from BN2, so an additional small
recovery latency is added.

In addition to filtering out interference, how to complete
the recovery process is another important issue. With AIR, the
request source decides when the loss recovery process com-
pletes, since losses on the reference branch are experienced by
the request source but not the repair source. When the request
source detects the end of the loss event, it notifies the repair
source, and then both of them release their roles.

Another concern is that the recovery process must be error
tolerant. For this purpose, control messages may be repeated if
no acknowledgement is received. Additionally, if either part of
the pair fails, the other part must be able to detect the failure
and start to fix it by informing the reference router.

The specific procedures for accomplishing the above goals
are given below. After the repair source has been selected by
the REPAIR SRC CONFIRMED message:

6

(a). The repair source sends a NACK SRC CONFIRMED
message to the request source whose address is in
the SEEK REPAIR SRC message received earlier. The
request source responds with a NACK INFO message
immediately. However, if the value of the NACK Delay
parameter of the request source is not 0, each subsequent
NACK INFO message is delayed for a period of time
decided by the value of the parameter.

(b). If the repair source has repair packets for all or some
of the losses indicated in the NACK INFO message,
it sends the repair packets to the reference router for
subcasting. The repair source ignores the requests that
it can not help now (the request source may send
the ignored requests again if the lost packets are not
recovered by repair packets from other repair sources
some time later).

(c). When the request source receives duplicate repair pack-
ets caused by interference, it increases its NACK Delay
parameter by a small step.

(d). If the request source does not experience losses any-
more or losses are recovered before the request source
produces any NACK INFO message, the request source
enters the completion state. If the request source can
stay in the completion state for a specified period of
time, it sends a RECOVERY COMPLETE message to
the repair source. This message is repeated until a
response is obtained. When the repair source receives the
RECOVERY COMPLETE message, it responds with a
RECOVERY COMPLETE CONFIRMED message and
deletes related states to release its role.

(e). If the repair source does not receive NACK INFO
within a period of time before receiving the RE-
COVERY COMPLETE message, it contacts the request
source. If the request source does not respond, the repair
source notifies the reference router to find a new request
source. Meanwhile, if the request source does not receive
repair packets for its NACK INFO message within a
period of time, it contacts the repair source. If the repair
source does not respond, the request source also notifies
the reference router to find a new repair source.

IV. CONTROLLING REPAIR TRAFFIC RATE

The preceding section presents the general AIR scheme
that does not apply rate control over its repair traffic. In this
section we introduce the repair traffic interference problem in
multicast and present the mechanism used by AIR to deal with
this problem for enhancing its efficiency and scalability, which
are important for supporting a large-scale video multicast.

A. The Repair Traffic Interference Problem

Without appropriate rate control over the repair traffic
generated by them across a multicast tree, existing distributed
multicast loss recovery schemes can exacerbate congestion
on a bottleneck. When congestion occurs on a bottleneck,
the queue overflows and packets are lost. With an existing
distributed multicast loss recovery scheme, receivers usually

instantly submit the repair requests after detecting losses 2.
With distributed loss recovery, repair packets are provided
locally, so the repair traffic can reach the bottleneck while
the congestion is still severe. Consequently, the congestion
on the bottleneck is exacerbated and the network utilization
is reduced. The interference problem becomes more serious
when the congestion on a bottleneck is more severe. This is
because more severe congestion implies more losses, while
more losses cause higher rate of repair traffic.

We can analyze the issue over the partial multicast tree
shown in Fig. 1. We consider the situation when the link
between RT4 and RT6 (LK4-6) becomes congested for a
period of time and a distributed multicast loss recovery scheme
with local recovery (e.g. SRM [7]) is applied to the multicast
session. RV4 is the receiver that is located closest and up-
stream from LK4-6, so RV4 will be the repair source. In this
case, when losses occur on LK4-6, RV4 will generate repair
traffic (RT) that traverses the already congested link LK4-6 to
reach receivers downstream from LK4-6 (e.g., RV6). If the rate
of the repair traffic generated by RV4 is not controlled, what
will be the consequence? We can assume that the congestion
event begins at t1 and ends at t2. Thus, some packets are lost
after t1. Packet losses bring the loss recovery scheme into
action. So RV6 or another receiver downstream from LK4-6
reports losses to the group and RV4 starts to generate repair
traffic a short time later. We can assume that the repair traffic
arrives at LK4-6 at t1 + δ. Usually δ is small because of the
introduction of distributed loss recovery, which enables local
receivers/agents to provide repair packets. So it is possible that
t1 + δ is less than t2. In this case, the total traffic rate at the
bottleneck becomes:

R = RET + RRT

where ET denotes the “existing traffic” at the bottleneck
except the repair traffic (RT denotes the repair traffic). With
heavier traffic on LK4-6, the congestion there is worsened.
With worsened congestion, more packets are lost. With more
losses, the repair traffic rate, RRT , becomes higher. Therefore,
R is further increased by RRT . The increased R worsens the
congestion further and causes even more losses, which implies
even heavier repair traffic (higher RRT) a moment later. This
devastating process repeats until the rate of the existing traffic,
RET , is reduced after time t2 (due to traffic fluctuation,
departing sessions, or congestion control over some sessions).
The network utilization is significantly reduced in this process.
Consequently, efficiency and scalability of the loss recovery
scheme are affected adversely.

In the analysis above we only used a very simple scenario.
In reality the situation can be much worse, especially when
there are many concurrent multicast sessions and the multicast
sessions have a large scale. First, in this case, there may be
many concurrent congestion events in a multicast tree, so a
congested link may be under the influence of several repair
sources. Second, the control traffic of a loss recovery scheme
may also spread across a multicast tree, so a bottleneck may

2Requests may be intentionally delayed for other reasons such as avoiding
redundant requests but not for controlling repair traffic rate.

7

also be under the influence of control traffic.
To alleviate the interference of repair traffic on bottlenecks

for improving efficiency and scalability, the rate of the re-
pair traffic generated by a distributed multicast loss recovery
scheme must be controlled. The next subsection presents the
unique mechanism used by AIR to control its repair traffic.

B. Mechanisms for Controlling Repair Traffic

In general, there are two methods for controlling the repair
traffic for a loss region. The first is to enhance the repair
source, while the second is to enhance the request source. With
the first method, the repair traffic can be directly controlled by
the repair source according to some criteria (e.g., congestion
feedback from the request source). With the second method,
the repair traffic cannot be directly controlled, because the
request source does not generate the repair traffic itself.
Although the first method seems more straightforward, the
second method is more effective and efficient. There are two
reasons:

• Congestion feedback is saved if the second method is
adopted. This is because the request source can infer
congestion information from the traffic coming from the
bottleneck, while the repair source does not have the
traffic to analyze.

• Confusion is avoided with the second method. If the
repair source is responsible for controlling the repair
traffic rate, it has to intentionally introduce some delay
in responding to repair requests for controlling the repair
traffic rate. Without additional procedures, this delay in
response can cause confusion for the request source,
because in this case, the request source has no way to
know whether the responses to its requests have been
intentionally delayed by the repair source or its requests
(or the corresponding repair packets) have been lost in
transmission. This confusing situation does not happen if
the request source is responsible for controlling the repair
traffic rate.

The key mechanism to control the repair traffic by the
request source is to control the submission of repair requests.
With this method, the request source maintains a request
buffer. When the request source needs to decrease the rate
of the repair traffic, it simply decreases the rate of submitting
repair requests. Some repair requests are then buffered. When
congestion is alleviated on the bottleneck, the request source
increases its rate of submitting repair requests.

We can take a look at the example in the previous subsec-
tion. If the submission of repair requests is properly controlled,
RV6 will hold most repair requests when the congestion is still
severe (sensed with heavy losses) on LK4-6. Only after the
congestion on LK4-6 has been alleviated, RV6 starts to send
out buffered repair requests. In this way, the total traffic rate,
R, on LK4-6 will not devastatingly increase when a congestion
event occurs, so the congestion on the bottleneck will not be
exacerbated.

After the above introduction of the general methods for con-
trolling repair traffic rate in multicast, we present the specific
mechanism used by AIR in controlling its submission of repair

requests at a request source. There are two questions about
controlling the submission of repair requests. The first question
is when to submit, while the second is how fast to submit
(i.e., the submission rate). With AIR, only if the number of
in-order packets received by a request source from the original
multicast source is greater than a threshold, Threshsubmit, the
request source submits a sequence of repair requests 3. In each
request submission event, the number of losses that can be
reported is controlled by another scheme parameter, Maxloss,
which is the upper limit for the number of losses that can
be reported in each event. Generally, greater Threshsubmit

implies less interference of repair traffic on the corresponding
bottleneck, because more in-order packets indicate lighter
congestion. Meanwhile, smaller Maxloss implies less repair
traffic interference, since Maxloss indirectly limits the number
of repair packets that can be sent from the repair source each
time. However, being too conservative in submitting repair
requests may cause longer recovery latency. In our experiments
in Section 5, Threshsubmit and Maxloss are set to 3 and 4,
respectively.

V. ANALYSIS OF THE SCHEME

This section analyzes the scheme and compares it with
two well-known multicast loss recovery schemes, SRM [7]
and LMS [17]. SRM, LMS and AIR have one important
common characteristic: enabling receivers as potential repair
sources instead of having data caching at router sites. The three
schemes are first analyzed generally and then numerically over
binary trees and an example multicast tree. For simplicity, in
the analysis we do not consider the effect of the rate control
over repair traffic with AIR. The simulations in Section VI
will show that the unique feature of rate control over repair
traffic with AIR enhances the efficiency of the scheme without
increasing its recovery latency. Therefore, the conclusions
drawn in this section are not weakened by the neglect of the
rate control over repair traffic with AIR.

For request suppression, SRM uses distance-based random
timers to suppress the production of requests, while LMS
uses replier links to suppress the spreading of requests but
without suppressing their production. With AIR, requests are
suppressed both in production and in spreading. So AIR is
better than SRM and LMS in request suppression. For local
recovery, SRM is the best, since every receiver in a multicast
session competes to repair each loss in the session, but the
price is the flooding of each retransmission request over the
multicast tree. With LMS, only the nearest receiver of a router
is considered as a potential repair source, so it is possible
that a good repair source may be missed. With AIR, regions
near a router are searched for a potential repair source, so
the chance of missing a good repair source is quite low.
For retransmission scoping, SRM floods the whole multicast
tree with repair packets, while LMS may leak repair packets
to unrelated receivers in some situations. With AIR, repair
packets are subcast at the link where losses occur, so leakage
is impossible. For recovery latency, LMS is usually quick

3If the session ends before a request source completes its loss recovery, this
rule is ignored, since no original packets will flow in after a session ends.

8

(the choice of replier links may affect its performance), but
the price is to store replier-link related states in each router
across the multicast tree of a multicast session, and these
states exist during the whole multicast session. SRM uses
distance-based random timers for both request suppression
and reply suppression, so considerable delay is introduced
in loss recovery. AIR needs to find a pair at the beginning
of a congestion event. The search process takes some time,
but since the search is usually local, it is quick. Furthermore,
after the pair are selected, retransmission requests are unicast
from the request source to the repair source without any extra
processing along the path. However, with LMS, every request
needs to be extraordinarily processed at each hop (e.g., being
checked if coming from the replier link). Therefore, AIR is
the quickest after the pair is ready. In terms of adaptability to
changing topologies, both LMS and AIR are excellent because
of the assistance from underlying networks while SRM is
not so good because it may need timer adjustment and new
distance information.

After the general analysis above, we numerically analyze
the three schemes over binary trees and an example multicast
tree. The numerical analysis has the following assumptions:

1) 50 packets are lost on one bottleneck in one congestion
event.

2) On average, 5 lost packets are reported in each retrans-
mission request. Hence there are 50/5 = 10 independent
retransmission requests for the 50 lost packets.

3) Message processing delay and queuing delay are the
same for all schemes.

4) Path delay is counted as number of hops for simplicity.

Before proceeding to the analysis, we define the following
performance indexes 4:

1) The request suppression index is the total number of
hops that all requests traverse for a single loss.

2) The local recovery index is the number of hops between
the repair source and the nearest receiver that needs
repair packets from it.

3) The retransmission scoping index is the percentage ratio
of the number of receivers that do not need the repair
packets but receive them over the number of receivers
that do need the repair packets.

4) The recovery latency index is the total number of hops
that the request and the repair packet for a single
loss traverse plus other delays in hops introduced by
a specific scheme.

Obviously, for each performance index, lower value shows
better performance. Table I and Table II presents the final
comparison results of the three schemes over binary trees
and the example multicast tree shown in Fig. 5, respectively.
As shown in these tables, AIR has a significantly better
overall performance in efficiency than the other two schemes.
Furthermore, Table I shows that the AIR scheme is not affected
by the scale of the tree, while the other two schemes are
affected adversely. Especially, the recovery latency of AIR
does not increase as the scale of the tree increases. This is

4To our knowledge, no numerical criterion has been defined for evaluating
the efficiency of a multicast loss recovery scheme.

a great advantage for supporting large-scale video multicast,
which requires not only high efficiency and scalability but also
low recovery latency.

We now demonstrate how to calculate the performance
indexes of the three schemes over a n-level binary tree (a
3-level binary tree shown in Fig. 6 is used for reference).
We assume that the congestion occurs on the last hop of the
binary tree (it has been shown that most losses in MBone
happen in local networks [24]). Because of the symmetry of
the tree, it can be assumed that the losses occur on any last
hop of the tree (in the 3-level binary tree, we assume that
losses occur on the link between RT3 and RT5, LK3-5). One
factor that complicates the calculation of the indexes of LMS
is the choice of the replier link of a router. We assume that the
two downstream links of a router in a binary tree are equally
likely to be chosen as the replier link with LMS.

 SRC

 RT1

 RT6

 RT11

 RT10

 RT5

 RT3

 RT8

 RT9

 RT15

 RT2

 RT7

RV16

 RV8

R
V11

 RV9

RV14

RV17

 RT18

 RT14

 RT4

 RT16

 RV1

 RV3

 RV4

 RV6

 RV5

 RT19

RV18

 RT12

 RT13

 RV13

 RV12

RV19

 RT20

 RT21

 RT22

 RT17

RV22

RV21

RV20

Fig. 5. The Example Multicast Tree

 RT2

 RV6

 SRC

 RT4

 RT3

 RT10

 RT11

 RT9

 RT1

 RT15

 RT7

 RT8

 RT12

 RT13

 RT14

 RT6

 RT5

 RV8

 RV7

 RV12

 RV13

 RV15

 RV14

 RV5

Fig. 6. 3-level Binary Tree for Analysis

First we calculate the request suppression index of each
scheme. With SRM, each request is multicast to the whole
group and traverses the 2(2n−1) hops of a n-level binary tree.
With k losses reported in each request, the index of SRM is
2(2n

−1)
k

(we assumed k = 5 in our case). With LMS, we first
take the 3-level tree as an example (as noted before, assuming
losses on LK3-5 and 5 losses reported in each request). In this
case, either LK3-6 or LK3-5 can be chosen as the replier link
of RT3 with a probability of 0.5. If LK3-6 is chosen as the
replier link, the request from RV5 traverses 2 hops to reach
RV6, so the request suppression index is 2/5=0.4. However,
if LK3-5 is chosen as the replier link, the request from RV5
will go upstream to RT2. Again, with a probability of 0.5, the
request will go downstream to reach RV7 or RV8 (i.e., LK2-4
is chosen as the replier link of RT2) or go upstream to reach

9

TABLE I

PERFORMANCE INDEXES BASED ON A N-LEVEL BINARY TREE: LAST-HOP CONGESTION

n = 3 n ≥ 3
Scheme SRM LMS AIR SRM LMS AIR

Request Suppression 2.8 0.55 0.4 0.4(2n − 1) 0.8 − (0.2n + 0.4)(0.5)n−1 0.4
Local Recovery 2 2.75 2 2 4 − (n + 2)(0.5)n−1 2

Retransmission Scoping 700 100 0 100(2n − 1) 50(n − 1) 0
Recovery Latency 19 5.5 4.5 4n + 7 8 − (2n + 4)(0.5)n−1 4.5

TABLE II

PERFORMANCE INDEXES BASED ON THE EXAMPLE MULTICAST TREE: CONGESTION ON LK15-16

Scheme SRM LMS AIR
Request Suppression 4.2 0.9 0.4

Local Recovery 2 2.5 2
Retransmission Scoping 500 67 0

Recovery Latency 23 5.0 4.5

the multicast source (i.e., LK2-3 is chosen as the replier link
of RT2). In the former case, the index is 4/5=0.8, while in the
latter case, the index is 3/5=0.6. Therefore, the average index
of LMS over the 3-level binary tree is {2× 1

2 +4× (1
2)2 +3×

(1
2)2} × 1

5 = 0.55 (as analyzed above, RV6, RV7/RV8, and
the multicast source have a probability of 1

2 , (1
2)2 and (1

2)2,
respectively, to become the repair source). We can apply the
same logic to a n-level binary tree with k losses reported in
each request. In this case, the index becomes a series:

{

2 ×
1

2
+ 4 ×

(

1

2

)2

+ 6 ×

(

1

2

)3

+ . . . +

2(n − 1)

(

1

2

)n−1

+ n

(

1

2

)n−1
}

×
1

k

=

{

n

(

1

2

)n−1

+

n−1
∑

m=1

2m

(

1

2

)m
}

×
1

k

=

{

4 − (n + 2)

(

1

2

)n−1
}

×
1

k
(1)

With AIR, each request traverse 2 hops to reach the repair
source (in the 3-level tree case, the request from RV5 traverses
2 hops to reach RV6), so the index of AIR is 2

k
if k losses

are reported in each request.
For local recovery index, with SRM, the repair source is 2

hops away from the nearest receiver that needs repair packets
(from RV6 to RV5 in the 3-binary tree case), so the index of
SRM is 2 hops. With LMS, in the 3-level binary tree case,
RV6, RV7/RV8, and the multicast source have a probability
of 1

2 , (1
2)2 and (1

2)2, respectively, to become the repair source.
Therefore, the average local recovery index of LMS over the
3-level binary tree is 2 × 1

2 + 4 × (1
2)2 + 3 × (1

2)2 = 2.75
hops. Using the same logic over a n-level binary tree, we get
the index of LMS:

2 ×
1

2
+ 4 ×

(

1

2

)2

+ 6 ×

(

1

2

)3

+ . . . +

2(n − 1)

(

1

2

)n−1

+ n

(

1

2

)n−1

= n

(

1

2

)n−1

+

n−1
∑

m=1

2m

(

1

2

)m

= 4 − (n + 2)

(

1

2

)n−1

(2)

With AIR, the repair source is 2 hops away from the nearest
receiver that needs repair packets (from RV6 to RV5 in the
3-level binary tree case), so the local recovery index of AIR
is 2 hops.

For retransmission scoping, the performance index of SRM
over a n-level binary tree is: (2n − 1)/1 × 100%, since only
1 receiver needs the repair packets and the other (2n − 1)
receivers will get them unnecessarily because of the flooding
of the repair packets over the tree. With LMS and in the 3-
level binary tree case, with a probability of 0.5, RV6 will be the
repair source. In this case, the index is 0 (no leakage). With a
probability of 0.25, RV7 or RV8 will become the repair source.
In this case, the index is 1/1x100%=100% (RV6 will get the
repair packets unnecessarily). Also with a probability of 0.25,
the multicast source will be the repair source. In this case, the
index is 3/1x100%=300% (RV6, RV7, and RV8 will get the
repair packets unnecessarily). Therefore, the average index of
LMS over the 3-level binary tree is {0 × 1

2 + 1 × (1
2)2 + 3 ×

(1
2)2}× 100% = 100%. Applying similar calculation over the

n-level binary tree, we get the index of LMS:

0 ×
1

2
+ 1 ×

(

1

2

)2

+ 3 ×

(

1

2

)3

+ . . . +

(2n−2 − 1)

(

1

2

)n−1

+ (2n−1 − 1)

(

1

2

)n−1

= (2n−1 − 1)

(

1

2

)n−1

+
n−1
∑

m=1

(2m−1 − 1)

(

1

2

)m

=
1

2
(n − 1) × 100% (3)

With AIR, there is no leakage (in the 3-level binary tree case,
repair packets from RV6 only reaches RV5), so the index of
AIR is 0.

Last, we calculate the recovery latency index of each
scheme. In SRM, we assume that the timer parameters C1,
C2, D1 and D2 are 1, 6, 1 and 1, respectively (these values
are used in an example in SRM [7]). In the 3-level binary
case, the performance index of SRM is: (3+3x7)/2 + (2+2x2)/2
+ 2 + 2 = 19 hops. Here, (3+3x7)/2 is the average delay
introduced by the request suppression timer (RV5 is 3 hops

10

away from the multicast source), and (2+2x2)/2 is the average
delay introduced by the reply suppression timer (RV6 is 2 hops
away from RV5). The last 2+2 is the path delay of the request
and the repair packet between RV5 and RV6. Extending this
logic to a n-level binary tree, we get the recovery latency index
of SRM:

(n + n × 7) ×
1

2
+ (2 + 2 × 2) ×

1

2
+ 2 + 2

= 4n + 7 (4)

With LMS, we first take a look at the 3-level binary tree case.
If RV6 is the repair source, the index is 2+2=4 (2 hops for
each request and 2 hops for the corresponding repair packet);
if RV7 or RV8 is the repair source, the index is 4+4=8; if
the multicast source is the repair source, the index becomes
3+3=6. Therefore, the average recovery latency index of LMS
over the 3-level binary tree is 4× 1

2 +8×(1
2)2+6×(1

2)2 = 5.5
hops. Similarly, the index of LMS over a n-level binary tree
is:

4 ×
1

2
+ 8 ×

(

1

2

)2

+ 12 ×

(

1

2

)3

+ . . . +

4(n − 1)

(

1

2

)n−1

+ 2n

(

1

2

)n−1

= 2n

(

1

2

)n−1

+

n−1
∑

m=1

4m

(

1

2

)m

= 8 − (2n + 4)

(

1

2

)n−1

(5)

With AIR, the recovery latency of some lost packets is affected
by the delay in seeking a request source and a repair source.
The search delay is 5 hops in a n-level binary tree (2 hops
to find the request source and 3 hops to find and confirm
the repair source). If we assume that the average link delay
(transmission, queuing plus propagation) is 30ms, the search
delay is about 5x30=150ms. If we consider that the session
data rate is 512kb/s and the packet size is 1024 bytes, the
maximum number of packets of the session that can be lost
in 150ms is (150/1000)/(1024x8/512000)=9.4. So when the
search is finished, there are at most 10 packets of the session
lost. Thus 1 request is affected by the search delay (when
the second request needs to be submitted, the request source
has been found). Therefore, the performance index of the
proposed scheme is: (1x5x(5+4)+9x5x4)/50=4.5 (50 losses are
recovered, the first 1x5 repair packets have a latency of 5+4
hops, while the last 9x5 repair packets have a latency of 4 hops
each). As observed above, the recovery latency index of AIR
may change slightly with the pair search delay and the session
rate. However, the index of AIR does not increase when the
scale of the tree increases.

The good performance of AIR comes from its active and on-
demand construction and maintenance of minimum recovery
structures. Meanwhile, AIR also has several disadvantages that
existing schemes suffer from. If the loss rate is very low in a
multicast tree, the overhead of finding the pair for a loss event
(the overhead of setting up and maintaining states in routers
or receivers across the multicast tree in other schemes, such
as LMS and SRM) is significant compared to the recovered

packets. In addition, the search process may increase the
recovery latency considerably for AIR if the pair cannot be
found locally. So at the cost of permanent states, other schemes
(e.g., LMS) may outperform AIR in loss recovery latency in
some situations. However, local request and repair sources
usually exist for a loss event in a typical multicast session,
since it has been shown that losses mainly occur in local
networks in MBone [24]. Another common disadvantage for
most network-assisted schemes is the “soft state” problem:
before some “soft states” expire, a failure or un-optimal state
may not be recovered. With AIR, the possibly failed part of a
pair cannot be detected until the state maintained by the other
part expires. Similarly, other network-assisted schemes suffer
from the same kind of problems. Meanwhile, the locations
and times of the loss events in a multicast session can affect
the efficiency and effectiveness of a multicast loss recovery
scheme. For example, if losses occur heavily in a small part
of a multicast tree, some receivers/agents (the pair in AIR
and the request and repair sources in some other schemes) can
be overloaded. Besides, if the topology of the multicast tree
changes dramatically and continuously in a multicast session,
a multicast loss recovery scheme may work in a sub-optimal
state temporarily (e.g., with AIR, the pairs may be temporarily
sub-optimal; with LMS, the replier links may be temporarily
sub-optimal; SRM may temporarily not have the full distance
information).

Another thing that needs to be mentioned is that generally
there are two kinds of loss sources in reliable packet trans-
mission: congestion losses and bit-error losses. Congestion
losses come from queue overflows in networks, while bit errors
happen during packet processing and transmission. Thanks to
the high quality of the links in existing networks, bit-error
losses are negligibly low compared to congestion losses. The
active mechanism introduced in Section III only deals with
congestion losses but not bit-error losses. If total reliability
is required, receivers send requests to the original multicast
source to recover the losses that are not recovered by the active
mechanism (receivers can use timers to suppress redundant
requests as in SRM [7]). This does not significantly affect the
total performance of the proposed scheme because bit-error
losses are negligibly low compared to congestion losses.

VI. SIMULATION RESULTS

The previous section analyzes the AIR scheme generally and
numerically for its efficiency, scalability and recovery latency;
this section uses simulations to further test the performance
of AIR. The simulations are over the example multicast tree
shown in Fig. 5. In the tree, the capacity of LK7-10 and LK15-
16 is 512kb/s, while the capacity of other links is 1024kb/s.
The link delay of LK1-2, LK1-7 and LK2-4 is 100ms, and the
link delay of LK7-10 and LK10-15 is 50ms, while LK15-19
has a delay of 20ms. Other links have a delay of 10ms. When
necessary, a traffic source with exponentially distributed idle
and burst times is used to generate congestion on a bottleneck
in the simulations.

11

A. The General AIR Scheme

We first test the general AIR scheme without rate control
applied over the repair traffic.

1) One-Bottleneck Scenario: In this scenario, only LK15-
16 is congested. The congestion-causing traffic from RV14 to
RV18 starts at the first second and stops at the 10th second.
The average rate of the congestion-causing traffic is modified
to observe the performance of the AIR scheme under different
degrees of congestion. Table III shows the total number of
losses, the average recovery latency and the total number
of duplicate repair packets observed by RV16 with different
congestion-causing traffic rates.

From this table, the AIR scheme has low recovery latency,
which is a big advantage for video multicast. When the con-
gestion is light, the average loss recovery latency is less than
300ms. Even when the congestion is considerably severe, the
average recovery latency is only a little over 600ms. However,
the loss recovery latency of 286.8ms in the 70kb/s case is still
higher than expected, since the round trip propagation time
between RV16 and RV19 (the pair) is about 60ms. This can
be explained by the following two observations. First, packets
will be significantly delayed when the link is congested and
the queue is full. Second, repair packets can also be lost at the
bottleneck if the congestion is still going on when they reach
the bottleneck. The distribution of the recovery latency for the
70kb/s case is shown in Fig. 7. As shown in this figure, most
lost packets are recovered between 100ms and 200ms, which
is the propagation delay plus processing and queuing delay.
Additionally, there are also lost packets that are recovered with
a latency of more than 900ms, which is caused by the losses
of repair packets.

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

Loss Recovery Latency:(ms)

N
um

be
r

of
 P

ac
ke

ts
 in

 R
eg

io
n

Fig. 7. Recovery Latency Distribution: One-Bottleneck 70kb/s Case

2) Two-Bottleneck Scenario: In this scenario, both LK7-10
and LK15-16 are congested. The difference between the times
at which the repair packets from the interference bottleneck
LK7-10 reach the pair of LK15-16, RV19 and RV16, decides
the number of duplicate repair packets that needs to be de-
tected before the NACK Delay parameter of RV16 is adjusted
to a right value (see the example in Section III). The greater the
time difference, the higher the interference. To test AIR with
various degrees of interference, simulations were conducted
with LK15-16 set to different delays. The simulation results
for two cases, 10-second and 20-second congestion duration,
are shown in Table IV.

In Table IV, the average recovery latency and the number of
duplicate repair packets, in general, go up with the increase of

the delay on LK15-16. This can be explained by the following
observations. The difference between the times at which the
repair packets from LK7-10 reach the pair of LK15-16, RV16
and RV19, is partly decided by the delay of LK15-16. Larger
difference between the times means heavier interference. With
heavier interference, RV16 needs to detect more duplicate
repair packets before it can adjust its NACK Delay parameter
to a right value. So the number of duplicate repair packets may
go up with the increase of the delay on LK15-16. Meanwhile,
both the increased delay on LK15-16 and the consequently
increased value of the NACK Delay parameter contribute to
the increase of the average recovery latency when the delay
of LK15-16 is increased. However, there is one exception in
the table. When the delay of LK15-16 is 20ms, neither the
recovery latency nor the number of duplicate repair packets is
significantly greater than that in the 10ms-delay case. This is
because the delay of LK15-19 is also 20ms. In this case, the
repair packets from the interference bottleneck LK7-10 reach
the pair of LK15-16, RV16 and RV19, almost at the same time
if the difference of the queuing delays along the two paths to
RV16 and RV19 is not considered. Therefore, the interference
is the least when the delay of LK15-16 is 20ms.

Another observation from Table IV is that the length of
a congestion event does not significantly affect the number
of duplicate repair packets. From the table, we can find that
there is little or no increase in the number of duplicate repair
packets when the duration of the congestion event increases
from 10 seconds to 20 seconds. As pointed out and explained
in Section III, the number of duplicate repair packets produced
in a congestion event is primarily decided by the difference
between the delays along the two paths from the interference
bottleneck to the request source and the repair source of the
interfered bottleneck, while this difference does not depend on
congestion duration.

The final observation from Table IV is that the total number
of losses changes with the delay of LK15-16. This is because
the repair traffic reaches the bottleneck at a different time if
the delay of LK15-16 is different (requests from RV16 traverse
LK15-16 to reach RV19). Therefore, with a different delay on
LK15-16, the repair traffic may interfere on the bottleneck
differently. For example, if the repair traffic reaches the bot-
tleneck when the bottleneck is still severely congested, more
packets will be lost. The next subsection will show that the
rate control AIR applies over its repair traffic can significantly
reduce the repair traffic interference on bottlenecks.

B. The Enhanced AIR Scheme

The enhanced AIR scheme applies rate control over its
repair traffic to reduce the interference of repair traffic on
bottlenecks. We use two criteria to evaluate the enhanced AIR
scheme and compare it with the general AIR scheme: the
number of losses on a bottleneck and the average recovery
latency.

To test the enhanced AIR scheme with various lengths
of congestion on the bottleneck LK15-16, we change the
average burst/idle time of the congestion-causing traffic from
0.2 to 2.0 seconds with a step of 0.2 second in a series of

12

TABLE III

SIMULATION RESULTS OF THE ONE-BOTTLENECK SCENARIO

Congestion Source Rate (kb/s) Number of Losses Number of Duplicate Repairs Average Repair Latency (ms)
70 66 0 286.8
80 112 0 427.3
90 180 0 592.8
100 209 0 630.3

TABLE IV

SIMULATION RESULTS OF THE TWO-BOTTLENECK SCENARIO

Congestion Duration: 10 Seconds Congestion Duration: 20 Seconds
Delay of LK15-16 (ms) 10 20 30 40 50 10 20 30 40 50

Number of Losses 83 110 145 126 142 119 139 177 155 171
Average Repair Latency (ms) 323.1 320.3 341.8 413.9 438.3 324.3 326.1 343.5 402.8 424.8
Number of Duplicate Repairs 11 8 14 14 23 12 8 14 14 24

simulations. With each average burst/idle time setting, the
simulation duration is 10 burst-idle cycles. For example, if
the average burst/idle time is 0.2 second, then the congestion-
causing traffic continues for (0.2+0.2)x10=4 seconds. With
each average burst/idle time setting, seven simulations were
conducted. In the seven simulations, the average rate of the
congestion-causing traffic changes from 70 to 100 kb/s with
a step of 5 kb/s for testing the AIR scheme with different
degrees of congestion. After that, the number of losses and
the average recovery latency are averaged over the seven cases.
The simulation results are shown in Fig. 8 and Fig. 9. Fig. 8
shows the number of losses over the average per-burst time,
while Fig. 9 shows the average recovery latency over the
average per-burst time.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

100

200

300

400

500

600

700

800

900

Average Per−Burst Time (Seconds)

N
um

be
r

of
 L

os
se

s
at

 T
he

 B
ot

tle
ne

ck

Enhanced Scheme
Original Scheme
Difference

Fig. 8. Number of Losses Over Average Congestion Duration

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−200

0

200

400

600

800

1000

1200

Average Per−Burst Time (Seconds)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y(
m

s)

Enhanced Scheme
Original Scheme
Difference

Fig. 9. Recovery Latency Over Average Congestion Duration

As shown in Fig. 8, the enhanced AIR scheme significantly
reduces the number of losses on the bottleneck. In some cases,
the number of losses is reduced by nearly 30%. This is because

with the enhanced AIR scheme, the controlled repair traffic has
less interference on the bottleneck. Moreover, the performance
of recovery latency is not sacrificed for the reduced number of
losses. As shown in Fig. 9, the average recovery latency of the
enhanced AIR scheme is even shorter than that of the general
AIR scheme in most cases. Two observations can explain this.
First, the reduced number of losses on the bottleneck implies
less severe congestion there. With less severe congestion, the
queuing delay at the bottleneck is reduced. Second, with less
severe congestion on the bottleneck, the number of repair
packets that are also lost at the bottleneck is reduced. In
summary, the efficiency and the scalability of the scheme
are considerably enhanced with its unique rate control over
its repair traffic, while its recovery latency is still kept low.
This strengthens the ability of the proposed scheme to support
large-scale video multicast.

C. Streaming Video Multicast

Finally, we use the simulations of streaming video multicast
to test the enhanced AIR scheme. We simulated the the
transmission of 60-second streaming video over the example
multicast tree with different degrees of congestion on the
bottleneck LK15-16. Fig. 10 shows the PSNR of the received
video at receiver 16 over the average rate of the congestion-
causing traffic. The results of four cases are shown: without
loss recovery, with a recovery latency threshold of 500ms (only
lost packets recovered within 500ms are used in decoding),
with a recovery latency threshold of 1000ms, and with a
recovery latency threshold of 2000ms 5.

We can find from Fig. 10 that in general, the PSNR of
the received video decreases as the degree the congestion
increases. This is expected because more packets are lost with
higher degree of congestion and more losses imply poorer
video quality. The figure also shows that there are significant
gains when AIR loss recovery is applied to the streaming video
multicast session. When the loss recovery latency threshold is
2000ms, the gain from the loss recovery is about from 6 to
7 dB in the test region of congestion; when the loss recovery
latency threshold is 1000ms, the gain varies from 3 to 6 dB;
when the loss recovery latency threshold is 500ms, the gain

5In reality, the video buffer size usually decides the loss recovery latency
threshold: larger buffer size means higher threshold.

13

70 80 90 100 110 120
20

22

24

26

28

30

32

34

36

38

Average Congestion−Causing Traffic Rate (Kb/s)

P
S

N
R

(d
B

)

No Loss Recovery
Recovery Latency Threshold of 500ms
Recovery Latency Threshold of 1000ms
Recovery Latency Threshold of 2000ms

Fig. 10. PSNR of The Received Video

is from 1 to 5 dB. The simulations show that with a moderate
buffer size (indicated by the loss recovery latency threshold),
the AIR scheme can significantly increase the PSNR of the
transmitted video. In addition, a larger buffer usually means
a higher gain from the loss recovery (but with increased
playback delay).

VII. CONCLUSION

High efficiency and scalability and low recovery latency
are crucial for large-scale video multicast. To achieve these
goals, the AIR scheme proposed in this paper approaches
the multicast loss recovery problem from a new perspective:
active injection of repair packets and on-demand construction
and maintenance of minimum loss recovery structures. Instead
of waiting passively for loss reports from receivers as in
existing multicast loss recovery schemes, AIR actively recov-
ers losses right at each loss site upon detecting loss events.
With this new approach, AIR achieves good performance
in all the three aspects: request suppression, local recovery
and retransmission scoping, which are the three well-known
characteristics required for a scalable and efficient multicast
loss recovery scheme. In addition, AIR states are set up at
the beginning of a congestion event and are deleted shortly
after the disappearance of the congestion. Also, the temporary
states only exist in the reference router of a loss event. This on-
demand construction of minimum loss recovery structure can
save considerable resources in a large-scale video multicast
session. Another unique feature of the proposed scheme is
its rate control over repair traffic. Simulations show that the
number of losses on a bottleneck can be significantly reduced
with this unique feature. All the above features of the proposed
scheme contribute to the high efficiency and scalability of
the proposed scheme. In addition, the AIR scheme has very
low recovery latency. General and numerical analysis shows
that the AIR scheme achieves a significantly better overall
performance as compared to existing schemes. Our simulations
show that the proposed scheme can considerably enhance the
PSNR of the transmitted video in a streaming video multicast
session.

REFERENCES

[1] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss
recovery for reliable multicast transmission,” IEEE/ACM Trans. on
Networking, vol. 6, pp. 349–361, Aug 1998.

[2] S. Pejhan, M. Schwartz, and D. Anastassiou, “Error control using
retransmission schemes in multicast transport protocols for real-time
media,” IEEE/ACM Trans. on Networking, vol. 4, pp. 413–427, June
1996.

[3] P.A.Chou, A.E.Mohr, A. Wang, and S. Mehrotra, “Error control for
receiver-driven layered multicast of audio and video,” IEEE Trans. on
multimedia, vol. 3, pp. 108–122, March 2001.

[4] W. Tan and A. Zakhor, “Video multicast using layered fec and scalable
compression,” IEEE Trans. on Circuits and Systems for Video Technol-
ogy, pp. no. 3, Vol. 11, February 2001.

[5] I. Rhee, S. Joshi, M. Lee, S. Muthukrishnan, and V. Ozdemir, “Layered
multicast recovery,” in Technical Report TR-9909, NCSU, Computer
Science Dept, February 1999.

[6] J. Byers, M. Luby, M. Mitzenmacher, , and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” in Proc of ACM
SIGCOMM., Vancouver, Canada, Sept 1998, pp. 56–67.

[7] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang, “A
reliable multicast framework for light-weight sessions and application
level framing,” in Proc of ACM SIGCOMM., October 1995.

[8] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton, “Log-based receiver-
reliable multicast for distributed interactive simulation,” in Proc of ACM
SIGCOMM., August 1995, pp. 328–341.

[9] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable multicast
transport protocol (rmtp),” IEEE J. on Select. Areas Commun., vol. 15,
pp. 407–421, Apr 1997.

[10] R. Kermode, “Scoped hybrid automatic repeat request with forward error
correction (sharqfec),” in Proc of ACM SIGCOMM., Vancouver, Canada,
Sept 1998, pp. 278–289.

[11] R. Yavatkar, J. Griffioen, and M. Sudan., “A reliable dissemination
protocol for interactive collaborative applications,” in Proc of ACM
Multimedia, 1996.

[12] X. Xu, A. Myers, H. Zhang, and R. Yavatkar, “Resilient multicast
support for continuous-media application,” in Proc of IEEE NOSSDAV,
New York, May 1997, pp. 183–194.

[13] V. O. K. Li and Z. Zhang, “Internet multicast routing and transport
control protocols,” in Proceedings of the IEEE, March 2002, p. Vol 90
No. 3.

[14] T. Speakman, D. Farinacci, S. Lin, and A. Tweedly, “Pgm reliable
transport protocol,” Internet Draft, Aug 1998.

[15] S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. Kurose,
D. Towsley, and S. Zabele, “Scalable fair reliable mulitcast using active
services,” IEEE Network Magazine (Special Issue on multicast), vol. 14,
pp. 48–57, January/February 2000.

[16] L. Lehman, S. Garland, and D. Tennenhouse, “Active reliable multicast,”
in Proc of IEEE INFOCOM., San Francisco, California, March 1998.

[17] C. Papadopoulos, G. Parulkar, and G. Varghese, “An error control
scheme for large-scale multicast application,” in Proc of IEEE INFO-
COM., 1998, pp. 1118–1196.

[18] B. Levine and Garcia-Luna-Aceves, “Improving internet multicast with
routing labels,” in Proc of ICNP, Oct 1997, pp. 241–250.

[19] B. Cain, T. Speakman, and D. Towsley, “Generic router assist (gra)
building block: motivation and architecture,” Technical report, IETF,
2000.

[20] A. M. Costello and S. McCanne, “Search party: Using randomcast for
reliable multicast with local recovery,” in Proc of IEEE INFOCOM.,
Mar. 1999, pp. 1256–1264.

[21] Y. Gao, Y. Ge, and J. C. Hou, “Rmcm: Reliable multicast for corebased
multicast trees,” in IEEE Int. Conf. Network Protocols, Nov. 2000, pp.
83–94.

[22] M. Calderon and et al., “Active network support for multicast applica-
tions,” in IEEE Network, May 1998, pp. 46–52, Vol. 12.

[23] J. Nonnenmacher and et al, “How bad is reliable multicast without local
recovery?” in Proc of IEEE INFOCOM., March 1998.

[24] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in the
mbone multicast network,” in Proc of IEEE Global Internet Conf,
London, Nov 1996.

