
1

Multi-layer Multicast Congestion Control in
Satellite Environments

Jun Peng and Biplab Sikdar
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute (RPI), Troy, NY 12180
{pengj2, sikdab}@rpi.edu

Abstract— It is well known that long and variable link delays,
link errors, and hand-offs in satellite environments seriously
interfere with TCP’s congestion control mechanisms. These
channel characteristics also adversely affect existing multi-layer
multicast congestion control schemes when they are used in
satellite environments. In these schemes, multicast pruning is
usually used for dropping a layer when receivers detect severe
losses. As in the TCP case, link errors and variable link delays
may cause unnecessary rate reduction for these schemes because
they may wrongly interpret some events like link errors as
congestion events. Another problem specific to these multi-layer
schemes arises from the long delay of satellite links. While
the delay in dropping a layer is already a serious problem in
wireline networks for existing multi-layer multicast congestion
control schemes, long link delays in satellite environments will
further increase the delay in dropping a layer, so the problem
is exacerbated. In addition, almost all existing schemes still
have problems with fairly sharing bandwidth with TCP flows,
controlling the overhead of frequent grafting and pruning, and
handling misbehaving receivers. In this paper, we present a
new multi-layer multicast congestion control scheme that is
suitable for satellite environments and overcomes most of the
disadvantages of existing schemes. Our scheme is not affected by
the long and variable delays of satellite links. Link errors also
do not decrease the performance of our scheme. Further, our
scheme has very limited control overhead. In addition to these
advantages specific to satellite environments, our scheme achieves
good fairness in sharing bandwidth with TCP sessions and is not
sensitive to misbehaving receivers.

Index: congestion control, multicast, and satellite

I. INTRODUCTION

With their incomparable coverage capability, satellite net-
works will play an essential role in the future global dig-
ital personal communication system. However, satellite net-
working poses many challenges for protocol designers. The
propagation delay of a satellite link is long and may be
highly variable. Hand-offs may also happen from time to time
to a satellite link. In addition, interference and fading may
render frequent or bursty errors on satellite links. Finally,
when a satellite link is shared, the bandwidth of the link
may become scarce. All of these and other characteristics of
satellite links can adversely affect transport, routing and MAC
protocols that are specifically designed for wireline networks.
For example, link errors and long and variable link delays
in satellite environments may cause TCP congestion control
to cut rate unnecessarily, which may considerably decrease
its performance. In this paper, we investigate the effects of
satellite links on existing multi-layer multicast congestion

control schemes and present a new scheme that is immune
to these adverse effects and also has better performance than
existing schemes in other aspects such as fairness in sharing
bandwidth among competing sessions.

Existing multi-layer multicast congestion control schemes,
such as [1] [2] [3] [4] [5] [6], usually depend on receivers for
adjusting their receiving rates according to detected network
conditions. Specifically, the source encodes data into several
layers 1 and sends each layer to a separate multicast group.
A receiver then adds some layers by subscribing to more
groups when it “senses” free bandwidth. When a receiver
“senses” congestion, it drops some layers by unsubscribing
from some groups. However, these “senses” may be wrong
sometimes, especially in a satellite environment. This is not
the only problem for multi-layer schemes. Because of the
design of the Internet Group Management Protocol (IGMP),
there is a significant delay in pruning a multicast branch,
so dropping a layer usually needs a considerable amount of
time. The layer-drop delay is already a serious problem in
wireline networks [4] [6]. To deal with this problem, some
schemes like [4] [6] schedule the transmission of the data in
each layer according to some special patterns at the source.
Although these schemes can alleviate the layer-drop delay
problem, they usually introduce significant control overhead
by frequently adding and dropping layers. Furthermore, it
is hard to apply these schemes to some applications such
as streaming multimedia, where data can hardly be freely
scheduled for transmission at the source.

If existing multi-layer multicast congestion control schemes
are adopted in satellite environments, the problems caused
by their disadvantages mentioned above will become more
severe. As in the TCP case, errors on satellite links can
cause these schemes to drop layers unnecessarily because they
may mistake link-error losses as congestion losses. Wrongly
dropping layers results in poor performance in session fairness,
traffic stability and bandwidth utilization. Another problem
specific to these multi-layer schemes arises from the long
delays of satellite links. Since pruning information has to
traverse satellite links to reach upstream routers, additional
delay will be introduced in dropping a layer besides the delay
already introduced by the IGMP protocol. Even with special
scheduling of data transmission at the source, in addition to

1We are interested in cumulative layers in this paper, although the proposed
scheme can also be used for non-cumulative layers.

2

the limitation in applications of this mechanism, the control
overhead introduced may become a problem if satellite links
are shared among multiple receivers (this is highly possible,
since one satellite can not serve an unlimited number of earth
stations simultaneously at high speed). Besides these specific
disadvantages to satellite environments, usually these schemes
still have problems in fairly sharing bandwidth among com-
peting sessions, especially with the existence of TCP sessions
[7] [8] [4] [6]. For example, a late TCP session may not be
able to grab a right share of bandwidth from existing sessions.
In addition, the throughput for a multicast receiver is usually
not stable with these schemes, which is a big disadvantage
for multimedia applications. Another common disadvantage
of existing multi-layer multicast congestion control schemes
is their sensitiveness to misbehaving receivers. For example, a
misbehaving receiver may prevent a large group of receivers
from receiving their data properly by adding layers continu-
ously without considering the network conditions.

Instead of depending on individual receivers in adjusting
their receiving rates, we propose a multi-layer multicast con-
gestion control scheme that deals with congestion right at
the site where the congestion occurs. Our scheme enriches
the abstractions of the multicast routing layer to adjust the
rate of the multicast traffic passing through a congested link.
When congestion occurs or is about to occur on a link, some
layers of multicast application sessions are ”blocked” from
entering the congested link; when the link is lightly utilized,
some blocked layers are ”released” to pass through the link.
More specifically, the state of the output queue of the link
is continuously observed. When the number of packets in the
queue is above a threshold, some layers are usually blocked;
while when the number of packets is below another threshold
for some time, some layers are released. When the number of
packets is between these two thresholds, usually no adjustment
is made for multicast sessions. In steady state, the number of
packets in the queue should stay between the two thresholds
most of the time. This scheme is based on our previous work
in wireline networks [9]. In wireline networks, the bandwidth
of a link is usually constant and always available, so it is
a good metric to consider while fairly assigning bandwidth
to competing sessions. In satellite environments, the available
bandwidth of a satellite link is usually not constant and not
always available because of interference, fading and access
competition. Therefore, in this case, link bandwidth is not a
good metric in the fair assignment of bandwidth to competing
sessions. Instead of using the link bandwidth, in this scheme
we use the queue state of a link as the metric in adjusting the
rate of the multicast traffic passing through the link.

Our scheme is immune to the problems that existing
schemes may suffer from in satellite environments. Link
errors can not cause our scheme to wrongly block a layer,
since the queue state at a bottleneck instead of the loss
information at receivers is used in adjusting the number of
layers passing through the bottleneck. Long link delay also can
not cause problems to our scheme because our scheme does
not depend on traditional pruning and grafting in adjusting
multicast traffic rate. All of these features of our scheme
exists because our scheme adjusts multicast layers right at

each bottleneck in a multicast tree. For the same reason,
our scheme only introduces very limited control overhead. In
addition to the above features that enable our scheme to work
effectively and efficiently in satellite environments, our scheme
achieves good fairness in bandwidth sharing among competing
sessions, even with the existence of TCP sessions. Besides, the
traffic for multicast receivers is fairly stable with our scheme.
Another feature of our scheme is that it is not sensitive to
misbehaving receivers. Meanwhile, like existing multi-layer
multicast congestion control schemes, our scheme has some
communication overhead resulting from grafting and pruning.
Also, it introduces the possible overhead of an empty layer
for a multicast session for avoiding the explicit interactions
among routers and receivers and for reducing control traffic
in a congestion affected area.

The rest of the paper is organized as follows. We introduce
our scheme in detail in Section II. Section III analyzes our
scheme for fairness among competing sessions, effectiveness
in satellite environments, and scheme cost. Section IV presents
our simulation results. Finally, our conclusions appear in
Section V.

II. THE MULTI-LAYER CONGESTION CONTROL SCHEME

A. Scheme Overview

The profile of our scheme is shown in Fig. 1. When
multicast application sessions pass through a link, our scheme
begins to observe the output queue of the link and the traffic
passing through the link. When the number of packets in
the queue, NQuPkt, goes beyond a threshold, QuThresh2,
some layers of multicast application sessions are blocked from
entering the link. When NQuPkt is below another threshold,
QuThresh1, for some time, some blocked layers of multicast
application sessions are released to pass through the link. In
other cases, there is usually no layer adjustment. In this way,
congestion can be alleviated while free bandwidth can also be
claimed. This is only a profile of the scheme. Some important
details are missing. For example:

• How is it ensured that the bandwidth of a bottleneck is
shared fairly between TCP sessions and multicast appli-
cation sessions if some TCP sessions are also passing
through the link?

• How do multicast application sessions share the band-
width available to them fairly among themselves?

• How is the layer priority information communicated if
the layers of a multicast application session have different
priorities?

We will present details of our scheme in the next subsection.
In this subsection we used a “multicast application session”
to represent an application session whose data needs to be
multicast to multiple receivers. For simplicity, we will use
“multicast session” equivalently with “multicast application
session” in the rest of the paper.

B. The Scheme

1) Retrieving Session Information from Traffic: Our scheme
retrieves some information from the passing-through traffic

3

Nearly Empty
 Queue

Release Layers No Action Block Layers

 Medium
 Queue

Nearly Full
 Queue

Fig. 1. The Profile of the Proposed Scheme

on a bottleneck for assisting its operations. Specifically, the
number of TCP sessions (NTcpSes), the number of multicast
sessions (NMctSes), the number of layers of each multicast
session (N i

LiveLayer, 0 < i ≤ NMctSes), the relative average
session rate of TCP sessions (RTcpAvg) and the relative
average session rate of multicast sessions (RMctAvg) are
the information retrieved. Usually, the destination address of
a packet can indicate whether it belongs to a layer of a
multicast session or an independent TCP session. The number
of layers, N i

LiveLayer, that the ith multicast session has at a
bottleneck is indicated by the number of different multicast
addresses that the traffic of the session has at the bottleneck.
For obtaining the relative average session rates, the total
number of passing-through TCP packets (NTcpPkt) and the
total number of passing-through multicast packets (NMctPkt)
in a period of time are counted, then they are divided by the the
number of TCP sessions and the number of multicast sessions
passing through the bottleneck, respectively (we assume that
the average packet length for multicast sessions is close to that
of TCP sessions):

RTcpAvg = NTcpPkt/NTcpSes

RMctAvg = NMctPkt/NMctSes

All the information retrieved from traffic is the basis for later
congestion control actions. In our scheme, we assume that
the number of layers that a multicast session possesses at a
bottleneck can reflect its relative data rate among the multicast
sessions passing through the link. Specifically, a multicast
session with more layers has higher data rate than a multicast
session with less layers at the bottleneck. A general case is
that all the sessions have the same or similar layer size. For
simplicity, we will introduce the scheme in this general case
below.

2) Layer Priority Information: For some applications such
as streaming multimedia, different layers in an application
session usually have different priorities. In general, in the ith

session the jth layer has higher priority than the kth layer if
j is less than k:

PLi
j

> PLi
k

if j < k

A layer with higher priority implies that its data are more
useful for a receiver to get the wanted information than the
data from a layer with lower priority. For example, when a
piece of video is encoded into L layers, usually the data of

the mth layer can be useful in decoding only if the data from
all the lower layers (1, 2, 3, ..., m − 1) are available. In this
case, the layer with the lowest priority among the living layers
of a session should be blocked when a layer needs to be
blocked from this session on a bottleneck. The layer priority
information in a multicast session must be communicated if
our scheme wants to follow the priorities among the layers.

In our scheme, the layer priority information is embedded
in the multicast addresses that the layers of a multicast session
use. Specifically, the jth layer in session i has higher priority
than the kth layer in session i if the address of the jth layer
is lower than the address of the kth layer:

PLi
j

> PLi
k

if ALi
j

< ALi
k

In general, when a multicast session applies for multicast
addresses, it is assigned a block of addresses. With our scheme,
the session lets its lower priority layers use higher addresses
and higher priority layers use lower addresses. Specifically, the
address of the jth layer in session i is lower than the address
of the kth layer in session i if j is less than k:

ALi
j

< ALi
k

if j < k

Fig. 2 shows an example of the relationship between the
position of an address and the priority of its represented
layer. This kind of information embedding is important for our
scheme, since it eliminates the need of defining new fields in
the packet header to indicate the priority of the packet among
the packets from the same source. Otherwise, new fields have
to be added to the packet header and the information in these
fields has to be retrieved separately upon the arrival of a
packet. In that case, forwarding policy has to be changed
significantly and extra overhead will be introduced.

 228.0.0.20

 228.0.0.10

 228.0.0.1

Increasing
 Position

Increasing
 Priority

Fig. 2. Address Position and Layer Priority

3) Layer Blocking and Layer Releasing: Instead of using
layer-add and layer-drop as in existing multi-layer schemes,
our scheme uses layer-block and layer-release to alleviate
congestion and to claim bandwidth, respectively. Layer-block
is the modification of the multicast routing table to prevent a
layer from entering a congested link, while layer-release is the

4

modification of the routing table to re-enable a blocked layer
to pass through a link.

When layer-block is necessary among multicast sessions,
the multicast session with the greatest number of layers is
selected to block a layer. Within this session, the layer with
the lowest priority among un-blocked layers are blocked.
Specifically:

If Nm
LiveLayer ≥ Nn

LiveLayer for 0 < n ≤ NMctSes,

choose the mth session.
Then if PLm

i
≤ PLm

j
for 0 < j ≤ Nm

LiveLayer,

choose the ith layer.

When layer-release is required, the multicast session with
the least number of layers is selected to release a layer 2.
Within this session, the layer with the highest priority among
the blocked layers is released. Specifically:

If Nm
LiveLayer ≤ Nn

LiveLayer for 0 < n ≤ NMctSes,

choose the mth session.
Then if PLm

i
≥ PLm

j
for Nm

LiveLayer < j ≤ Nm
layer,

choose the ith layer.

The above procedures ensure that multicast sessions share
the bandwidth available to them fairly among themselves.
They also ensure that priorities among layers are followed
in an individual session. The following subsections will show
how it is ensured that multicast sessions as a whole get and
only get a fair share of bandwidth at a bottleneck.

4) Receiver Actions: When a receiver joins a multicast
session, it adds layers gradually. After adding a layer, a
receiver waits for some time before adding another layer. If
the previous layer is not blocked somewhere in the network
and the data of the layer are flowing into the receiver, the
receiver adds another layer. This process continues until an
empty layer is obtained. An empty layer for a receiver is a
layer subscribed to but whose data are not flowing into the
receiver because of being blocked somewhere in the network.

After its initialization, a receiver is responsible for main-
taining a single empty layer. The procedure is as follows:

• If there are more than one empty layer, the receiver drops
all but the lowest one.

• If the data of the maintained empty layer are flowing into
the receiver, the receiver adds another layer.

Several empty layers may appear when more than one layer
is blocked at the bottleneck during severe congestion. Extra
empty layers need to be dropped for possibly saving band-
width above the bottleneck (details will be given in the next
section of scheme analysis). When an empty layer becomes
not ”empty” because of being released at the bottleneck, a
new empty layer needs to be prepared. This is because the
bottleneck always needs to know the information of the next
possible layer of a multicast session in case free bandwidth
will be available later for this session. When free bandwidth
is available, the next layer can be released to claim the free
bandwidth. The advantages and disadvantages of maintaining

2If this session does not have any more layers, the session with the next
least number of layers will be considered.

an empty layer will be discussed in the next section of scheme
analysis.

5) Adjusting Multicast Layers: This subsection introduces
the most important part of our scheme: the adjustment of
the number of multicast layers (Nlayer) passing through a
bottleneck, where:

Nlayer =

NMctSes
∑

i=1

N i
LiveLayer

Appropriate adjustment of the number of layers passing
through a link is essential for alleviating congestion and
claiming free bandwidth while ensuring fairness in sharing
bandwidth among competing sessions.

Our scheme blocks and releases multicast layers on a link
according to the state of the output queue of the link. The
queue is classified into three phases: phase 1, phase 2 and
phase 3. The queue phase is decided by the number of packets
in the queue (NQuPkt) and the two specified thresholds
(QuThresh1 and QuThresh2). The two thresholds depends
two scheme parameters (FQuThresh1 and FQuThresh2):

QuThresh1 = QuSize× FQuThresh1

QuThresh2 = QuSize× FQuThresh2

where QuSize denotes the size of the queue. The phases are
classified in the following way:

QuPhase =

1 if NQuPkt ≤ QuThresh1

2 if QuThresh1 < NQuPkt < QuThresh2

3 if NQuPkt ≥ QuThresh2

A phase 1 queue may indicate free bandwidth on the link,
while a phase 3 queue may imply link congestion or potential
link congestion. To fully utilize available bandwidth and
effectively deal with congestion, different actions are required
in different queue phases.

When the queue is in phase 1, multicast layers are not
necessarily released. This is because a phase 1 queue does
not necessarily mean that free bandwidth is available on the
corresponding link. A TCP session has its famous fluctuation
pattern in rate from its AIMD congestion control scheme.
Upon congestion, a TCP session usually cuts its rate mul-
tiplicatively to relax the congested link, then it additively
builds up its rate to probe for free bandwidth. So a phase
1 queue may just mean that all TCP sessions passing through
the link cut their rates multiplicatively a moment ago and are
building up their rates now. In this case, no multicast layer
should be released, or TCP sessions may be deprived of their
share of bandwidth. However, if the queue stays in phase 1
for a relatively long time, it is almost certain that some free
bandwidth is available on the link. Therefore, multicast layers
are released in phase 1 with our scheme only if the queue can
stay in phase 1 for a specific amount of time (Tobserve).

When the queue is in phase 2, usually no action is taken
for multicast sessions. A kind of balance is achieved when
the queue stays in phase 2 most of the time, but this does
not necessarily mean that good fairness is also achieved
between TCP sessions and multicast sessions. For example,
if a multicast session leaves, TCP sessions may increase their
rates quickly and keep the queue in phase 2 most of the time

5

(i.e., to multicast sessions, there is no free bandwidth on the
link). In this case, other multicast sessions cannot get a share
of the bandwidth spared by the multicast session that has
departed. This is because without additional precautions, no
multicast layer will be released unless the queue stays in phase
1 for a duration longer than Tobserve. To avoid this kind of
unfairness situations, the average session rate of TCP sessions
(RTcpAvg) and the average session rate of multicast sessions
(RMctAvg) are checked in phase 2. If RMctAvg is less than
RTcpAvg , a multicast layer is released. Otherwise, no action
is taken.

When the queue is in phase 3, multicast layers may be
blocked instantly. This is because TCP sessions can be throt-
tled from frequent losses if the queue stays in phase 3 for a
long time. However, there is a special situation that needs to
be considered. If the traffic fluctuation of TCP sessions causes
the queue to visit phase 3 from time to time, multicast layers
may be blocked frequently. Although the blocked layers may
be released a moment later after TCP sessions back off for
congestion, the number of layers of multicast sessions fluctu-
ates in this case. To avoid this problem, the average session
rate of TCP sessions (RTcpAvg) and the average session rate
of multicast sessions (RMctAvg) are also checked in phase 3.
Only if RMctAvg is higher than RTcpAvg , a multicast layer
is blocked in phase 3. This procedure can stabilize multicast
traffic while ensuring fairness among participating sessions.

To finish this subsection, in Algorithm 1 we give the pseu-
docode for adjusting the number of multicast layers passing
through a link. The pseudocode shows a simple view of the
logic of the layer adjustment but without going into details.

6) Scheme Adaptation: If the scheme introduced above is
followed, our general design goal can be achieved: a scheme
suitable for satellite environments and with good fairness in
sharing bandwidth among competing sessions. However, the
scheme can be improved. Usually, multicast traffic should
be as stable as possible, which is good for some specific
applications such as streaming media and also good for band-
width utilization. When queue balance is achieved, usually
multicast sessions have a stable number of layers. In this
case, the multicast traffic has low fluctuation, but multicast
traffic is also under the influence of TCP traffic. If TCP traffic
fluctuates severely, the queuing delay for other traffic will also
fluctuate in a similar way. Highly variable path delay can cause
traffic fluctuation to receivers. This kind of traffic fluctuation
is unavoidable when sharing bottlenecks with TCP sessions.
Meanwhile, there is also another kind of traffic fluctuation that
can be prevented, which is from the constant layer adjustment
of multicast sessions. Constant layer adjustment may happen
even if the queue is in balance. For example, if the average
session rate of multicast sessions (RMctAvg) is lower than
the average session rate of TCP sessions (RTcpAvg) when the
queue is in phase 2, a layer is released for multicast sessions
(Nlayer ← Nlayer + 1). The queue may then enter phase 3
because of the increased traffic rate, but in phase 3 it is possible
RMctAvg is higher than RTcpAvg now. So a layer may be
blocked in phase 3 (Nlayer ← Nlayer − 1). Then, the queue
falls back to phase 2 and multicast sessions release a layer
again (Nlayer ← Nlayer+1). After that, the queue enters phase

Algorithm 1: Algorithm for layer adjustment

repeat
switch phase do

case phase1
if phase1-timer times out then

release a multicast layer;
end
if phase1-timer is idle then

start phase1-timer;
end

case phase2
if phase1-timer is running then

cancel phase1-timer;
end
if RMctAvg < RTcpAvg then

release a multicast layer;
end

case phase3
if phase1-timer is running then

cancel phase1-timer;
end
if RMctAvg > RTcpAvg then

block a multicast layer;
end

end
until forever ;

3 and a layer is blocked again (Nlayer ← Nlayer − 1). This
process repeats forever if no precautions are taken. This is not
the only situation where frequent layer adjustment occurs. For
example, if multicast sessions increase their rate too fast upon
detecting free bandwidth, layer fluctuation may also occur. To
avoid various kinds of layer fluctuation, we add the following
procedures to adapt our scheme to various situations:

1) When multicast sessions need to increase their traffic
rate continuously, the rate of increase is decreased
each time when a layer is released. Specifically, the
observation time (Tobserve) for the next layer release is
increased by a factor (FSlowDown > 1):

Tobserve ←− Tobserve × FSlowDown

2) When a layer is blocked right after a layer is released,
the observation time (Tobserve) for the next layer release
is increased by another factor (FBackOff > 1):

Tobserve ←− Tobserve × FBackOff

3) A layer is blocked in phase 3 only if the average
session rate of multicast sessions is larger than the
average session rate of TCP sessions by a ratio threshold
(RBlock):

(RMctAvg −RTcpAvg)/RTcpAvg > RBlock

The last procedure may result in a little higher priority for
multicast sessions, but arguably it does not hurt fairness in
general. A multicast session usually has a large number of
receivers downstream from a bottleneck while a TCP session
only has a single receiver. Therefore, assigning a little more
bandwidth to multicast sessions on a bottleneck is good for the

6

utilization of the bandwidth of the bottleneck from a global
point of view.

7) Scheme Parameters: In our scheme, there are two pa-
rameters for defining the two queue thresholds. They are
FQuThresh1 and FQuThresh2. The two queue thresholds are
obtained by multiplying the two factors with the queue size,
respectively. In general, FQuThresh1 should be close to 0
while FQuThresh2 should be close 1. In addition, there are
three parameters in scheme adaptation: the slow-down factor
(FSlowDown) in continuous layer adding, the back-off factor
(FBackOff) upon congestion, and the rate difference ratio
threshold (RBlock) in blocking a layer. As introduced above,
the first two parameters are used for increasing the observation
time (Tobserve) in releasing a layer, while the last parameter is
for comparing the average session rate of TCP sessions with
the average session rate of multicast sessions before blocking
a layer. Two other parameters of our scheme are the interval
in checking queue state (IChekQu) and the initial observation
time (Tobserve) in releasing a layer. The former controls the
frequency in checking queue state, while the latter decides the
initial observation time before a layer can be released in phase
1.

We give the definitions for the parameters of our scheme
and the values used in our experiments for these parameters
in Table I.

III. ANALYSIS OF THE SCHEME

The previous section described our scheme in detail. In this
section we analyze our scheme for fairness among competing
sessions, effectiveness in satellite environments, and scheme
cost. In our analysis we assume that multicast sessions as
a whole always need more bandwidth when bandwidth is
available.

A. Fairness Among Competing Sessions

1) General Analysis: We begin by showing that our scheme
is able to achieve balance (i.e., the queue stays in phase 2
most of the time). From the scheme description in the previous
section, the queue can only be in one of the 3 phases: phase
1, phase 2 and phase 3. So can the queue stay in phase 1
or phase 3 for a long time? If the queue stays in phase 1,
TCP sessions will increase their congestion windows. The
rates of TCP sessions will then increase. So the queue will
leave phase 1 eventually. Even if TCP sessions can not increase
their rates because of the limitation of the receiver’s advertised
window, multicast sessions will release a layer if the queue
stays in phase 1 for a period of time longer than Tobserve.
Consequently, the queue will also eventually leave phase 1.
Therefore, the queue can not stay in phase 1 for a long
time with our scheme. On the other hand, the queue can
not stay in phase 3 for a long time either. Multicast sessions
will block a layer instantly when the queue enters phase 3
if the average session rate of multicast sessions (RMctAvg)
is significantly higher than the average session rate of TCP
sessions (RTcpAvg). Even if no multicast layer is blocked,
TCP sessions will back off upon queue overflow. Therefore,
the queue can not stay in phase 3 for a long time.

The only left phase now is phase 2. Can the queue stay
in phase 2 for a long time? The answer is yes. Except in
a temporary state where multicast sessions grab a share of
bandwidth from TCP sessions to achieve fairness, multicast
sessions take no action in phase 2. Therefore, the behavior
of TCP sessions usually decides where the queue will go in
phase 2. In general, TCP sessions increase their rates slower
and slower after the queue enters phase 2. This is because
when the queue is building up, the RTT will keep increasing
from increasing packet-queuing delays. With increasing RTT,
TCP sessions slow down in increasing their rates. Now there
are two cases. The first case is that the TCP receiver’s
advertised window is not large enough. In this case, TCP
sessions may stop increasing their rates in phase 2. The queue
will then stay in phase 2. The second case is that the TCP
receiver’s advertised window does not limit the rate increase
of TCP sessions. In this case, TCP sessions will continuously
increase their rates, although slower and slower, until the queue
overflows. The queue then returns to phase 2 or temporarily
visit phase 1 after TCP sessions cut their rates upon queue
overflow. Therefore, in both cases the queue can stay in phase
2 for a relatively long time.

Fig. 3 shows the queue trend patterns when the queue is in
balance. In general, there are four patterns: staying in phase 2,
staying in phase 2 but visiting phase 3 and phase 1 from time
to time, staying in phase 2 but visiting phase 3 from time to
time, and staying in phase 2 but visiting phase 1 from time to
time.

Phase3

Phase1

Phase2 Phase2

Phase3

Phase1

Phase2

Phase3

Phase2

Phase1

Phase3

Phase1

 (1) (2) (3) (4)

Fig. 3. Queue Trend Patterns When the Queue is in Balance

We now show that fairness is indeed achieved when the
queue is in balance. There are two cases of unfairness. The
first case is that the average session rate of TCP sessions
is much higher than the average session rate of multicast
sessions (RTcpAvg � RMctAvg). This kind of unfairness does
not happen when the queue is in balance. This is because
multicast sessions will release layers in phase 2 if their
average session rate is lower than the average session rate
of TCP sessions (RMctAvg < RTcpAvg). The second case of
unfairness is that the average session rate of multicast sessions

7

TABLE I

SCHEME PARAMETERS

Parameter Definition Value Used
FQuThresh1 the factor for the first queue threshold 0.0
FQuThresh2 the factor for the second queue threshold 0.8
FSlowDown the factor in increasing the observation time in continuous layer releasing 1.5
FBackOff the factor in increasing the observation time upon congestion 4.0

RBlock the rate difference ratio used in blocking a layer 0.2
IChekQu the interval in checking queue state (seconds) 0.02
Tobserve the initial observation time for releasing a layer (seconds) 1.0

is much higher than the average session rate of TCP sessions
(RMctAvg � RTcpAvg). This situation does not happen
either if TCP sessions are not limited in their rate increase
by their receiver’s advertised window. With large enough
receiver’s advertised window, TCP sessions increase their rates
continuously until the queue overflows. After the queue enters
phase 3 in this process, multicast sessions will block some
layers because their average session rate is significantly higher
than the average session rate of TCP sessions. In this way, the
average session rate of multicast sessions will finally decrease
to become close to the average session rate of TCP sessions. In
summary, when the queue is in balance, the average session
rate of multicast sessions stays close to the average session
rate of TCP sessions.

2) Proof of the fairness: In this section we analytically
prove that the proposed scheme shares bandwidth fairly with
competing TCP flows. An intuitive interpretation of fairness is
that irrespective of the initial window values of the flows (i.e.
their transmission rates) all flows sharing the bottleneck link
must eventually end with identical window sizes or transmis-
sion rates when the flows reach steady state. Mathematically,
we use Jain’s fairness index [10] to quantify a notion of
fairness. Consider a set of n flows where the window (or
equivalently the rate) of the ith flow is given by xi. The Jain’s
fairness index F is then given by

F =
(
∑n

i=1
xi)

2

n
∑n

i=1
x2

i

(1)

which attains the value of 1 when the allocation is totally fair
(x1 = x2 = · · · = xn). For ease of illustration, we consider a
two flow case where a TCP session shares a bottleneck with a
multicast session and note that the proof can be easily extended
for multiple flow cases. The action of both these protocols can
be described in terms of their response to congestion or the
absence thereof, as dictated by their increase (I) and decrease
(D) policies. Let each application of the increase or decrease
policy be separated by R time units (we assume that these are
the same for both TCP and the multicast session for ease of
analysis). The behavior of the multicast flow with rate x1(t)
at time t, with the corresponding rate of the TCP flow being
x2(t) is then given by

I : x1(t + R)←−

{

x1(t) + g if x1(t) < x2(t)
x1(t) otherwise

(2)

D : x1(t + R)←−

{

x1(t) if x1(t) < x2(t)
x1(t)− g otherwise

(3)

where g is the size of a layer. Similarly, the behavior of the
TCP flow can be modeled as

I : x2(t + R)←− x2(t) + α (4)

D : x2(t + R)←− x2(t)− βx2(t) (5)

with standard values of α and β being 1 and 1/2 respectively.
To prove the fairness of our scheme, we use the following

theorem from [11] which provides a general framework for
proving the fairness of a class of congestion control protocols:
Two flows with window sizes (or equivalently rates) x1 and x2,
x1 < x2, sharing a bottleneck link will eventually converge
to and maintain a totally fair allocation of bottleneck link
bandwidth if the following condition is satisfied after each ap-
plication of an increase or decrease policy over a reasonable
amount of time:

∆x1

x1

≥
∆x2

x2

(6)

where ∆x1 and ∆x2 represent the changes in the window or
rate at the application of the increase and decrease policy
for flow 1 and 2 respectively. An intuitive interpretation of
the proof is that when the above condition is satisfied, the
change in F corresponding to changes in x1 and x2 is positive
regardless of its initial value and the system moves to a fair
allocation.

We first consider the case when the rate of the multicast
flow is less than that of the TCP flow, i.e., x1 < x2. Under
these conditions, the application of the increase policy, we
have ∆x1 = g and ∆x2 = 1. Thus Equation 6 is satisfied
since g/x1 > 1/x2 where inequality results from the fact
that g ≥ 1 and x1 < x2. For the decrease policy, ∆x1 = 0
while ∆x2 = −x2/2. Thus Equation 6 is satisfied since 0 >
−1/2. The conditions for fairness are thus satisfied for both
the increase and the decrease policy when x1 < x2.

We now consider the case where the rate of the multicast
flow is greater than that of the TCP flow (x1 > x2). On the
application of the increase policy, ∆x1 = 0 while ∆x2 = 1.
Equation 6 is then satisfied since we now need ∆x1/x1 ≤
∆x2/x2 which in this case corresponds to 0 < 1/x2. The
case with the application of the decrease policy is a bit more
involved since an isolated application of the decrease policy
worsens the fairness. Since each application of the decrease
policy is followed by at least one increase policy (which, as
we have already shown, increase the fairness), it suffices to
show that over the subsequence of events between the two
applications of the decrease policy, the fairness increases. In
the general case, two applications of the decrease policy are

8

spaced by a number of increase instances. Let the rates of the
multicast and the TCP flows at the instant of the first of the two
decrease instants be x1 and x2 and at the instant immediately
following it be x′

1
and x′

2
respectively. Thus

x′

1
= x1 − g (7)

x′

2
=

x2

2
(8)

It is easy to verify that x′

1
≥ x′

2
(where we do not allow the

case x′

1
= 0 to happen) and thus till the next application of

the decrease policy, there is no change in x′

1
(from Equation

2) resulting in ∆x1 = −g. However, the rate of the TCP flows
increases so that it claims the freed rate g from the multicast
session as well as the x2/2 which was freed as a result of its
own decrease policy. At this point, when the next decrease in
rate occurs, the current rate is given by x′

2
+g+x2/2 = x2+g.

Thus, ∆x2 is given by

∆x2 = (x2 + g)− x2 = g (9)

Intuitively, the above expression means that between each
step taken towards fairness in this case, the multicast session
reduces its rate by g while the TCP flow increases its rate by
g thereby moving towards fairness. Thus we have ∆x1/x1 =
−g/x1 and ∆x2 = g/x2 and we again have ∆x1/x1 ≤
∆x2/x2 as required. This proves the fairness of the proposed
multicast congestion control scheme. •

In the above analysis of fairness, we generally assumed
that TCP sessions are not limited in their rate increase by
their receiver’s advertised window. Our conclusion is that
the average session rate of multicast sessions is close to the
average session rate of TCP sessions when the queue is in
balance. What happens if TCP sessions have small receiver’s
advertised window or have poor throughput because of various
reasons such as high link error rate? In this case, the average
session rate of multicast sessions may be significantly greater
than the average session rate of TCP sessions. In other words,
each multicast session may use more bandwidth than each TCP
session on average. This happens because the restriction of rate
increase on TCP sessions causes them unable to use up their
share of bandwidth. Consequently, the link is sparsely utilized
and the queue stays in phase 1 before multicast sessions claim
the free bandwidth. Each time when the queue stays in phase
1 for a period of time larger than Tobserve, multicast sessions
release a layer to use some of the free bandwidth. Eventually
the free bandwidth will be utilized.

One thing we need to mention is that TCP is also in
evolution. Many efforts have been made in improving the
performance of TCP in different environments. Highly variable
delays, link errors and hand-offs in satellite environments may
decrease the performance of TCP significantly. Some work
has been done to deal with these problems [12] [13] [14] [15]
[16]. The TCP issue in satellite environments is beyond the
scope of this paper; in this paper we only concentrate on the
possible impacts of satellite environments on existing multicast
congestion control schemes and our efforts in dealing with
related problems. As shown above, with our scheme, multicast
sessions will claim the free bandwidth spared by TCP sessions
if TCP sessions can not use up their share of bandwidth on

a bottleneck. Therefore, the performance of TCP in satellite
environments, in general, will not affect the performance of
our scheme.

B. Effectiveness in Satellite Environments

The effectiveness of our scheme in satellite environments
stems from its following features. First, instead of depending
on receivers in detecting congestion and adjusting their receiv-
ing rates, our scheme adjusts multicast traffic rate (i.e., blocks
or releases multicast layers) right on the link where congestion
occurs. Therefore, our scheme is not affected adversely by
either the long link delays in satellite environments or the
long pruning delay of the IGMP protocol. Second, our scheme
uses the queue state on a bottleneck instead of the loss
information at receivers in adjusting the number of multicast
layers passing through the bottleneck. Therefore, link errors in
satellite environments also can not decrease the performance
of our scheme. Third, our scheme only has very limited control
traffic overhead. In existing schemes, either poor coordination
among receivers or the design of the scheme itself results in
frequent grafting and pruning. Frequent grafting and pruning
may produce a significant amount of control traffic overhead.
In our scheme, although the receivers need to adjust the
number of empty layers (i.e., to maintain a single empty layer),
the adjustment is few because our scheme does not have
frequent layer adjustment on a bottleneck. Furthermore, all
receivers downstream from a bottleneck are well coordinated
in our scheme by the multicast traffic, which is effectively
controlled on the bottleneck. No layer-drop delay, limited
control traffic overhead, and no penalty from link errors enable
our scheme to work effectively and efficiently in satellite
environments.

Another feature of our scheme is that a misbehaving receiver
can neither benefit itself nor hurt other receivers, since the
number of layers a receiver can receive with income data is
solely decided by the bottleneck along the path from the mul-
ticast source to the receiver. In fact, if a receiver intentionally
or accidently subscribes to too many layers, the number of
layers that have data flowing into the receiver will not change;
the bottleneck will block the excessive layers automatically.
Furthermore, other receivers downstream from the bottleneck
are not affected. The only consequence is that some limited
bandwidth above the bottleneck is possibly wasted (see the
next subsection for details).

C. Scheme Cost

In this subsection we analyze the cost of our scheme.
The main cost of our scheme comes from retrieving some
information from the passing-through traffic on a bottleneck.
Specifically, the number of TCP sessions (NTcpSes), the
number of multicast sessions (NMctSes), the number of layers
of each multicast session (N i

LiveLayer, 0 < i ≤ NMctSes),
the average session rate of TCP sessions (RTcpAvg) and
the average session rate of multicast sessions (RMctAvg) are
the information our scheme needs in its operation. All the
information can be obtained by analyzing the addresses of
passing-through packets. Since addresses have to be analyzed

9

anyway in packet forwarding, the overhead introduced by
our scheme in retrieving the above information is arguably
not high. In fact, the forwarding process only needs to put
the retrieved addresses of packets into a buffer and another
separate process can analyze them to retrieve the needed
information. One thing we need to mention is that in retrieving
the information, some additional states are maintained in the
router just above the bottleneck. These additional states are
mainly the session addresses and counting variables. Among
them, only the number of session addresses increases with
the increase of the number of sessions passing through the
bottleneck. Furthermore, these additional states only need to
be maintained in the router just above the bottleneck.

Another type of cost for a network-assisted scheme may
come from the interaction between network elements or be-
tween a network element and a host. With our scheme, there
is no explicit interaction between network elements except
those required for standard multicast routing. When a router
blocks or releases a multicast layer, it does not notify any
other router or any receiver explicitly. Instead, the receivers
downstream from the bottleneck will detect the changes of
the incoming traffic (i.e., layers being blocked or released)
and drops or adds layers appropriately. Also because of this
mechanism of coordination by traffic change, receivers do not
interact with each other or with routers explicitly. All receivers
downstream from a bottleneck are implicitly coordinated by
the traffic coming from the bottleneck, while the traffic is
effectively controlled by the router just above the bottleneck.
Receivers use standard pruning and grafting to cooperate with
routers, while routers block or release layers to adjust multicast
traffic rate and to signal receivers for proper actions. Although
this mechanism of coordination by traffic change eliminates
the explicit interactions among routers and receivers, some
overhead may be introduced by the empty layer maintained by
a multicast session. We discuss this kind of overhead below.

When a receiver maintains an empty layer, some bandwidth
above the bottleneck along the path reaching the receiver may
be wasted if no other receiver above the bottleneck needs that
layer. The waste of bandwidth can be significant if the sizes of
the layers are exponentially spaced. Existing multi-layer mul-
ticast congestion control schemes usually use exponentially
increasing sizes. This size planning gives a scheme the ability
to cut the traffic rate multiplicatively by dropping a single
layer. This is a conservative strategy adopted by end-to-end
schemes to facilitate a quick alleviation of congestion without
detailed knowledge of the severity of congestion and queue
lengths at the bottleneck. However, our scheme facilitates the
use of equal-sized layers instead of exponentially increasing
size layers (which also allows for finer granularity of control
on data rates) which reduces the penalty incurred from a
blocked layer. This is possible because our scheme can detect
congestion promptly and can also block several layers timely,
since it deals with congestion right on each bottleneck of a
multicast tree.

Although with its possible overhead, maintaining an empty
layer is necessary and has its advantages. First, the bottleneck
needs empty layers to increase the multicast traffic rate when
free bandwidth is available. Second, grafting above the bot-

tleneck is not required when an empty layer is released, so
the delay in increasing multicast traffic rate is significantly
reduced with maintained empty layers. Third, pruning and
grafting overhead is reduced because of the reduced frequency
of pruning and grafting. If the distribution of receivers is even
and dense in a multicast tree, the bandwidth used by the empty
layer of the multicast session above a bottleneck is, in general,
efficiently utilized.

Another important point is that the amount of bandwidth
that may be wasted by a multicast session is usually very
limited on a link. With our scheme, a multicast session can
not use an amount of bandwidth beyond its share on a link
(assuming no free bandwidth on the link). Therefore, only
the unused bandwidth inside the share of bandwidth for a
session on a link can be wasted by the session. Specifically,
the maximum bandwidth that may be wasted by session m at
link i is limited to:

Max(BW m
WastedLinki

) ≤ Min{(BWlinki
/NSesLinki

−
AvgLayerSize×Nm

LiveLayer) , Sizem
EmptyLayer}

where:
BWlinki

: the bandwidth of link i
NSeslinki

: the number of sessions passing through link i
AvgLayerSize: the average layer size of session m
Nm

LiveLayer: the number of living layers of session m at
the bottleneck

Sizem
EmptyLayer: the size of the empty layer of session m

at the bottleneck

Furthermore, even if a small amount of bandwidth is
wasted above the bottleneck along the path reaching the
receiver, the receivers downstream from the bottleneck are
not affected. The situation is much different in other existing
schemes. The amount of bandwidth that can be wasted by
their control traffic has no theoretical limit. Furthermore,
their control traffic directly reduces the bandwidth available
to receivers downstream from the corresponding bottleneck.

The last thing is that all the operations of our scheme
in retrieving session information, in general, do not affect
the queuing, scheduling, or forwarding policy of existing
networks, so our scheme will not affect the structure of
existing networks and the applications on them if our scheme
is deployed. One possible exception is for identifying a TCP
session. Since port numbers together with addresses identify
a TCP session, the TCP header has to be checked if the real
number of TCP sessions passing through a link is wanted.
However, there is a possible alternative: only using address
information in identifying a TCP session. In this way, all TCP
sessions with the same source address and the same destination
address will be regarded as one “big” TCP session. It needs
further investigation to ascertain if this kind of aggregation is
better for fairness from a global point of view, but one thing is
worth mentioning: this kind of aggregation can prevent a pair
of hosts from stealing bandwidth from multicast sessions on
a bottleneck by initializing a large number of TCP sessions.

10

IV. SIMULATION RESULTS

In this section we present our simulation results. The topol-
ogy for our simulations is shown in Fig. 4. One of the example
satellite systems given in NS2 is used in our simulations. It
is a broadband LEO constellation with orbital configuration
similar to that of Iridium.

 SAT

 SAT

 SAT

 R

 R

 R

 S

 S

 S

 Wireline Network

Fig. 4. The Simulation Topology

We chose this wireline-cum-satellite topology because it is
rare that all links of a computer network are purely satellite
links in reality. In addition, this topology enables us to let
all traffic of test sessions go through a common satellite link.
Therefore, the behavior of our scheme can be easily observed.
In the topology, each link in the wireline network is configured
to have a bandwidth of 5Mb/s. For test traffic, there are 5
test sessions: 2 multicast sessions and 3 TCP sessions. The
source of each session is in the wireline network, while the
destination of each session is in the purely satellite-connected
network. Each multicast session has 15 layers and each layer
has a rate of 50Kb/s. With these configurations, the bottleneck
in our simulations is the upstream satellite link between the
wireline network and the satellite-connected network.

We considered 3 scenarios in testing our scheme. In the first
scenario, all sessions start and stop at the same time. In the
second scenario, two TCP sessions start later than the other
sessions. In the third scenario, two multicast sessions start
later than the TCP sessions. In addition, we also provide a
reference scenario in which a well-known multi-layer multicast
congestion control scheme, RLM [1], is adopted for multicast
congestion control. Finally, we give some sample queue trend
patterns for our scheme. The values used in our experiments
for the parameters of our scheme are shown in Table I.

A. Scenario 1: All Sessions Starting and Stopping at the Same
Time

In this scenario, all sessions start at the beginning of the
simulation and stop at the 1500th second, so all of them
compete for bandwidth all the time. The simulation results
are shown in Fig. 5 and Fig. 6. The former shows the number
of layers and the throughput of each multicast session, while

0 500 1000 1500
0

20

40

60

80

100

120

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT1_Throughput

0 500 1000 1500
0

20

40

60

80

100

120

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT2_Throughput

0 500 1000 1500
0

5

10

15

20

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT1_Layers

0 500 1000 1500
0

5

10

15

20

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT2_Layers

Fig. 5. Throughput and Number of Layers of Multicast Sessions

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP2_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP3_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP_Average_Throughput

Fig. 6. Average Session Throughput and Individual Session Throughput of
TCP

the latter gives the throughput of each individual TCP session
and the average session throughput of TCP sessions.

As shown in these figures, both the average session through-
put of TCP sessions and the average session throughput of
multicast sessions are close to 40 KBytes/s all the time, so
fairness among competing sessions, in general, is achieved. If
we take a closer look at these figures, we can find two things.
First, the average session throughput of TCP sessions is a
little lower than the average session throughput of multicast
sessions. This is because of the scheme design. For the con-
sideration of stabilizing multicast traffic, our scheme blocks
multicast layers only if the average session rate of multicast
sessions is higher than the average session rate of TCP sessions
by a ratio threshold. The second observation is that there is a
small difference between the throughput of the two multicast
sessions. A difference of a layer between the throughput of
multicast sessions sharing a bottleneck is possible with multi-
layer multicast congestion control schemes, since their unit in
adjusting multicast traffic rate is a layer. For simplicity, we

11

will not mention these two phenomena again in the following
scenarios.

Therefore, fairness among competing sessions, in general, is
achieved in this scenario. Another point we can note in Fig. 5
is that the number of layers for each multicast session is fairly
stable after the initial adjustment. This indicates that the queue
enters balance quickly and stays there for the rest of the time.

B. Scenario 2: TCP Sessions Joining Existing Multicast and
TCP Sessions

In this scenario, we test if late TCP sessions can get a
fair share of bandwidth with our scheme. One TCP session
joins two multicast sessions and one TCP session at the 500th
second, and then another TCP session joins them at the 1000th
second. The simulation results are shown in Fig. 7 and Fig. 8.

0 500 1000 1500
0

20

40

60

80

100

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT2_Throughput

0 500 1000 1500
0

5

10

15

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT1_Layers

0 500 1000 1500
0

5

10

15

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT2_Layers

Fig. 7. Throughput and Number of Layers of Multicast Sessions

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP2_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP3_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP_Average_Throughput

Fig. 8. Average Session Throughput and Individual Session Throughput of
TCP

As shown in these figures, in the first 500 seconds there
are 3 sessions and each session gets a throughput close to

60 KBytes/s. When a TCP session starts at the 500th second,
each existing session releases a right share of bandwidth for
the new session. Each session then gets a new throughput close
to 45 KBytes/s. This bandwidth sharing pattern persists until
another TCP session starts at the 1000th second. When the
second TCP session becomes alive, all existing sessions release
a right share of bandwidth again. So fairness is still kept: each
session has a throughput close to 35 KBytes/s now.

Therefore, late TCP sessions can grab a fair share of band-
width from existing sessions with our scheme. Furthermore,
the number of layers for each multicast session is still fairly
stable, although with a little more small adjustments than in
the previous scenario. For other existing multi-layer multicast
congestion control schemes, most of them are not able to
release a right share of bandwidth for late arriving TCP or
multicast sessions.

C. Scenario 3: Multicast Sessions Joining Existing TCP Ses-
sions

Lastly, we check if late multicast sessions can get and only
get a fair share of bandwidth from existing sessions. In our
simulations, one multicast session starts at the 500th second,
while the other multicast session starts at the 1000th second.
Fig. 9 and Fig. 10 show the simulation results.

As these figures show, before the multicast sessions start,
each TCP session has a throughput close to 60 KBytes/s. After
the first multicast session starts at the 500th second, it gets
a throughput close to 45 KBytes/s. At the same time, the
average session throughput of TCP sessions falls to be close
to 45 KBytes/s. Then, at the 1000th second the other multicast
session starts. The same situation happens: the new multicast
session gets a right share of bandwidth and then each session
has a throughput close to 35 KBytes/s.

Therefore, late multicast sessions get and only get a fair
share of bandwidth with our scheme. In addition, the number
of layers for each multicast session is still fairly stable in this
scenario.

D. Comparison with existing schemes

For reference, in this section we show the simulation results
of RLM [1], which is one of the most well-known multi-
layer multicast congestion control schemes in the literature.
For multiplicatively reducing traffic rate in congestion, RLM
usually uses exponentially increasing sizes for layers. In our
simulations, RLM uses 5 layers and the size of each layer is
32, 64, 128, 256 and 1024 kb/s, respectively, from layer 1
to layer 5. In addition, the three TCP sessions and the two
multicast sessions start at the beginning of the simulation and
stop at the 1500th second. The simulation results are shown
in Fig. 11 and Fig. 12.

By comparing Fig. 11 and Fig. 12 with Fig. 5 and Fig. 6,
respectively, we can find that the proposed scheme achieves
much higher stability in both number of layers for multicast
sessions and throughput for all sessions. This demonstrates
that the congestion on the bottleneck is more appropriately
controlled with our scheme. So our scheme uses the bandwidth
of the bottleneck more efficiently than RLM. In addition, these

12

figures show that our scheme achieves much better fairness
among the competing sessions than RLM. With our scheme,
each session gets a throughput close to 40 KBytes/s all the
time. With RLM, the throughput of the two multicast sessions
changes severely in the simulation period. Furthermore, the
throughput of the two multicast sessions is either much lower
or much higher than the throughput of the three TCP sessions.

0 500 1000 1500
0

20

40

60

80

100

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT2_Throughput

0 500 1000 1500
0

5

10

15

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT1_Layers

0 500 1000 1500
0

5

10

15

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT2_Layers

Fig. 9. Throughput and Number of Layers of Multicast Sessions

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP2_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP3_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP_Average_Throughput

Fig. 10. Average Session Throughput and Individual Session Throughput of
TCP

E. Queue Trend Patterns

This subsection presents some queue trend patterns to fur-
ther support the fairness analysis in Section III. Fig. 13 shows
some samples of the queue phases in scenario 1. The upper
part of Fig. 13 shows the long-term queue trend patterns, while
the lower part gives more details. As shown in this figure, the
queue stays in phase 2 most of the time and visits phase 3
and phase 1 from time to time. The reason that the queue can
stay in phase 3 for a short time is that our scheme does not

0 500 1000 1500
0

20

40

60

80

100

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (seconds)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) MCT2_Throughput

0 500 1000 1500
0

1

2

3

4

5

6

7

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT1_Layers

0 500 1000 1500
0

1

2

3

4

5

6

7

Time (seconds)

N
um

be
r

of
 L

ay
er

s

MCT2_Layers

Fig. 11. Throughput and Number of Layers of Multicast Sessions

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP1_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP2_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP3_Throughput

0 500 1000 1500
0

20

40

60

80

100

Time (second)

T
hr

ou
gh

pu
t (

K
B

yt
es

/s
) TCP_Average_Throughput

Fig. 12. Average Session Throughput and Individual Session Throughput of
TCP

block layers in phase 3 if the average session rate of multicast
sessions is not higher than the average session rate of TCP
sessions by a ratio threshold (for stabilizing multicast traffic).
However, a TCP session needs at least a round trip time to
respond to congestion. Therefore, after the queue overflows
from the increasing rates of TCP sessions, it takes some time
for the TCP sessions to cut their rates and bring the queue
back to phase 2.

V. CONCLUSIONS

This paper presents a multi-layer multicast congestion con-
trol scheme that is suitable for satellite environments and over-
comes most of the disadvantages of existing schemes. Link
errors in satellite environments can cause existing schemes to
wrongly drop some layers, which causes problems in traffic
stability, fairness among competing sessions, and bandwidth
utilization. While the layer-drop delay problem is already
serious in wireline networks, the long delays of satellite links
will further increase the delay in dropping a layer for existing

13

0 20 40 60 80 100
0

1

2

3

4

Time (seconds)

Q
ue

ue
 P

ha
se

0 2 4 6 8 10
0

1

2

3

4

Time (seconds)

Q
ue

ue
 P

ha
se

Fig. 13. The Demonstration of Queue Trend Patterns

schemes. Our scheme does not have these two problems. The
way in which our scheme overcomes these problems is to
deal with congestion right at the site where the congestion
occurs. This new mechanism also saves considerable control
traffic overhead caused by frequent grafting and pruning in
existing multi-layer schemes. Meanwhile, for avoiding the
explicit interaction among routers and receivers as in a general
network-assisted scheme, the proposed scheme may introduce
the overhead of an empty layer for a multicast session. Another
feature of our scheme is the good fairness among competing
sessions, including TCP sessions while most existing schemes
still have problems in fairly sharing bandwidth with TCP
sessions. Although some existing schemes have made some
progress in this aspect, they may not be suitable for some
applications where the scheduling for data transmission is
restricted. Along with all of its advantages, our scheme, in
general, does not impose any significant change on the queu-
ing, scheduling, or forwarding policy of existing networks.

REFERENCES

[1] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc of ACM SIGCOMM., Aug 1996, pp. 117–130.

[2] L. Vicisano, L. Rizzo, and J. Crowcrof, “Tcp-like congestion control
for layered multicast data transfer,” in Proc of IEEE INFOCOM., San
Franciso, March 1998, pp. 996–1003 Vol. 3.

[3] J. Byers, M. Luby, M. Mitzenmacher, and Rege, “A digital fountain ap-
proach to reliable distribution of bulk data,” in Proc of ACM SIGCOMM.,
Sept 1998, pp. 56–67.

[4] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter,
and W. Shaver, “Flid-dl: Congestion control for layered multicast,” in
Proceedings of NGC 2000, November 2000, pp. 71–81.

[5] W. Tan and A. Zakhor, “Video multicast using layered fec and scalable
compression,” IEEE Trans. on Circuits and Systems for Video Technol-
ogy, pp. no. 3, Vol. 11, February 2001.

[6] M. Luby and V. Goyal, “Wave and equation based rate control using
multicast round trip time,” in Proc of ACM SIGCOMM., Pittsburgh,
Pennsylvania, USA., Aug. 2002, pp. 191–204.

[7] R. Gopalakrishnan, J. Griffioen, G. Hjalmtysson, and C. Sreenan,
“Stability and fairness issues in layered multicast,” in Proceedings of
the NOSSDAV, June 1999, pp. 31–44.

[8] A. Legout and E. W. Biersack, “Pathological behaviors for rlm and rlc,”
in Proceedings of the NOSSDAV, North Carolina, USA, June 2000, pp.
164–172.

[9] J. Peng and B. Sikdar, “Routing based video multicast congestion
control,” in Proceedings of IFIP/IEEE MMNS, Santa Barbara, CA, Oct.
2002, pp. 328–340.

[10] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems,” in
DEC Research Report TR-301, Hudson, MA, September 1984.

[11] N. Sastry and S. Lam, “A theory of window-based unicast congestion
control,” in Proceedings of IEEE ICNP, Paris, France, November 2002,
pp. 144–154.

[12] M. Allman, S. Floyd, and C. Patridge, “Increasing tcp’s initial window,”
in Tech. Rep. RFC 2414 (Experimental), Sep. 1998.

[13] M. Allman and D. Glover, “Enhancing tap over satellite channels using
standard mechanisms,” in tech. rep., TapsAT Working Group, Internet
Engineering Task Force, Sep. 1998.

[14] R. Durst, a. Miller, and E. Travis, “Tcp extensions for space communi-
cations,” in in Proceedings of MOBICOM, Nov. 1996, pp. 15–26.

[15] K. Scott and S. Czetty, “Improving tcp performance over mobile satellite
chennels: The ackprime approach,” in in Proc. of Workshop on Satellite
Networks: Architecture, Applications, and Technologies, June 1998, pp.
509–516.

[16] T.R.Henderson and R. Katz, “Satellite transport protocol (stp): An sscop-
based transport protocol for datagram satellite networks,” in 2nd Inter-
national Workshop on Satellite-based Information Services (WOSBIS),
Oct. 1997, pp. 23–34.

