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Abstract� Recent research has shown the presence of self�similarity in
TCP tra�c which is una	ected by the application level and human fac�
tors
 This suggests the presence of protocol level contributions to network
tra�c self�similarity� at least in certain time scales where the e	ect of
protocol behavior is most prominent
 In this paper we show how TCP�s
retransmission and congestion control mechanism contributes to the self�
similarity of aggregate TCP �ows
 We develop a mathematical formu�
lation which shows that TCP�s retransmission and congestion control
mechanism results in packet dynamics of a TCP �ow being analogous
to a number of ON
OFF sources with OFF periods taken from a heavy
tailed distribution
 Using well known limit theorems� we then show that
this contributes to the self�similar nature of TCP tra�c
 Our model
shows a direct correlation of the loss rates to the degree of self�similarity

Measurements on traces collected by us also exhibit this relationship
predicted by our model


� Introduction

Research on the causes of self�similarity in network tra�c have primarily focused
on the application level characteristics of high�speed networks and the human
factors involved� In ����	 the causes of the self�similarity are investigated at the
source level� In ��� the authors cite the distribution of 
le sizes	 the e�ects of
caching and human factors like response time and preference as possible causes
for the self�similarity in WWW tra�c� On the other hand	 protocol level causes
of self�similarity in network tra�c has been investigated in ��� and ���� which
showed that closed loop protocols like TCP lead to much richer scaling behavior
than open loop protocols like UDP�
In this paper we show that TCP can contribute to the self�similarity of net�

work tra�c and its contribution is visible in the time scales ranging from mil�
liseconds to tens of seconds� Thus though TCP may not be able to contribute at
higher time scales	 the observed self�similarity in these scales can be attributed
to application and human level causes which inherently operate at time scales of
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minutes and hours� Also	 though in the pure mathematical sense a self�similar
process should exhibit the same statistical characteristics over all possible time
scales	 this is not possible in real systems due to physical limitations� We show
that TCP is capable of causing scaling in � to 
 time scales �few milliseconds to
��s of seconds� and it is in this sense that we call TCP tra�c is self�similar� This
range of timescales is generally su�cient for tra�c modeling purposes as shown
in citeGrBo��	 since the range of relevant timescales is determined by the 
nite
bu�er sizes of real systems�
In ����	 the authors attribute the self�similarity of TCP tra�c to the chaotic

nature of TCP�s congestion control mechanism� The adaptive nature of TCP�s
congestion control is suggested as the cause for the propagation of self�similarity
in the Internet in ����� The main aim of our paper is to understand the e�ects of
TCP�s retransmission and congestion control mechanism on the observed self�
similarity of TCP tra�c� Our results show that the timeout and exponential
backo� mechanisms in TCP play a crucial in inducing self�similarity� We also
show that the degree of self�similarity has a direct relationship with the losses
experienced by a �ow with the tra�c no longer self�similar	 i�e� H � ��� for very
low loss rates� While similar phenomena have been reported recently �after this
paper was completed�	 their models to explain the self�similarity either require
unrealistic loss rates to induce self�similarity ��� or are able to show long�range
dependence over very small time scales ���� In this paper	 we present a model
of TCP based on ON�OFF processes which explains the self�similarity of TCP
tra�c and validate it using TCP traces collected from the Internet� We also
give a mathematical formulation of how TCP�s congestion control mechanism
leads to self�similarity in the tra�c it generates and account for the e�ects of
the network in terms of the loss probabilities and the presence of other �ows�
The rest of the paper is organized as follows� In Section � we 
rst present the

results of tests on tra�c traces generated by individual TCP transfers over the
Internet showing proof of self�similarity� We then present a model which explains
this self�similarity and experimentally validate our model using the same TCP
traces� In Section � we provide a mathematical foundation for our model and
investigate the mechanisms of TCP which contribute to self�similarity in greater
detail� Finally	 Section 
 presents the discussions and concluding remarks�

� Self�similarity of TCP Flows

In this section we provide experimental evidence of the self�similarity of individ�
ual TCP �ows which motivates the investigation of TCP dynamics for causes of
self�similarity� In ���� the authors showed that the data sent by an isolated TCP
�ow from the superposition of a number of TCP �ows shows evidence of self�
similarity and attribute it to the chaotic nature of TCP�s congestion avoidance
mechanism� All previous reports of self�similarity in network tra�c concentrated
on the self�similar characteristics of the aggregated tra�c� However	 the results
in ���� were generated by carrying out experiments using the simulator ns which
is not an exact re�ection of the actual scenarios in the Internet� Hence to dis�
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Fig� �� Tests for self�similarity for the various traces to Columbus	 Ohio� For
each trace	 the 
gures show the results from the absolute value method �left�	
R�S statistics method �middle� and the Periodogram method �right��

pel any doubts about the self�similar nature of single TCP micro�ows	 we 
rst
present the results from tests for long�range dependence on traces collected from
real life TCP connections over the Internet�

We 
rst give a brief description of the datasets� We collected traces for data
transfers originating from a machine running Solaris ��� at RPI	 Troy	 NY�
The destinations for the transfers were in Ohio State University	 Columbus	
OH �HP�UX�	 University of California	 Los Angeles	 CA �FreeBSD Cairn�����	
Massachusetts Institute of Technology	 Boston	 MA �Linux ������� and Univer�
sity of Pisa	 Pisa	 Italy �FreeBSD ����� Due to space restrictions	 we show results
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Fig� �� Tests for self�similarity for the various traces to Pisa	 Italy� For each
trace	 the 
gures show the results from the absolute value method �left�	 R�S
statistics method �middle� and the Periodogram method �right��

for only the transfers to Ohio and Italy� The results for the others are similar�
Each trace is ���� seconds or around �� minutes long and was collected using
tcpdump which did not lose any packets� The transfers were done over periods in
���� and ���� at various times of the day and week� Depending on the prevalent
network conditions	 the loss rates experienced by each �ow is di�erent and we
use this to classify transfers between a source�destination pair�

Figure � shows the results of the tests for long�range dependence on three
traces to Ohio which had loss rates of �����	 ����� and ������ Figure � shows
the results of similar tests on the traces collected from transfers to Pisa which
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Fig� �� Tests for heavy�tailed nature of the OFF times for the various traces to
Columbus	 Ohio� For each trace	 the 
gures show the ccdf plots �top� and the
corresponding Hill�s estimates �bottom� for various values of w�

had loss rates of �����	 ����� and ������ We tested for long�range dependence
using three of the widely used methods ����� the absolute value method	 R�S
statistics method and the periodogram method� The results clearly show the
long�range dependence in the individual TCP �ows� Also the degree of long�range
dependence	 as indicated by the Hurst parameter	 is clearly dependent on the
loss rate experienced by the �ow	 with higher loss rates leading to larger values
of H � Also note that for extremely low probabilities �less than ������ the tra�c
is no longer self�similar as indicated by the Hurst parameter of approximately
��� as shown in section �a� of Fig� �� We describe this in detail in the following
subsection and in Section 
�
This poses the following questions� What are the underlying mechanisms

which are responsible for the direct in�uence of the loss probabilities on the self�
similarity of TCP tra�c� What role does TCP�s fast�retransmit and timeout
mechanisms play in all this� In this paper we address these issues and show how
TCP�s retransmission and congestion avoidance mechanisms contribute to the
self�similar nature of network tra�c�

��� ON�OFF Model Based Explanation and its Validation

TCP follows a window based �ow control mechanism and transmits a certain
number of packets in each �round�� We de
ne a round as in ����� A round begins
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Fig� �� Tests for heavy�tailed nature of the OFF times for the various traces
to Pisa	 Italy� For each trace	 the 
gures show the ccdf plots �top� and the
corresponding Hill�s estimates �bottom� for various values of w�

with the back to back transmission of a window of packets� After these packets
are transmitted	 no other packet is transmitted till an ACK is received for one
of these packets� The receipt of an ACK marks the end of the round�

To give an explanation for TCP�s e�ect on the self�similarity of network
tra�c	 we consider a TCP �ow to be composed of the superposition of Wmax

ON�OFF processes� Each process corresponds to each of the possible values that
the cwnd of the �ow might have sinceWmax is the receiver�s advertised maximum
bu�er size and is the upper limit on cwnd� A cwnd of w	 corresponding to the
wth ON�OFF process	 � � w � Wmax	 implies a deterministic ON time which
is equal to the time to transmit the w packets with the packets generated at a
constant rate in during this period� We note that though in practice there might
be a small variation in the time between two successive packets in a round	
these are generally very small and with high speed networks these variations are
negligible when compared to the RTTs� Also	 as described after a few paragraphs	
the way we demarcate the end of ON periods ensures that the spacing between
the packets in the ON period is almost constant�

The OFF period for the wth process	 � � w �Wmax	 corresponds to the time
interval between two successive instants where cwnd has the value w� Now	 if
the distribution of these times has a heavy tail	 their complementary cumulative



distribution function �ccdf� Fc�x� behaves like

Fcx � lx��L�x� with � � � � � ���

where l � � is a constant	 L�x� is a slowly varying function at in
nity	 i�e�	
limx��L�tx��L�x� � ��� t � � and the relation f�x� � g�x� implies limx��

f�x��g�x� � �� We can now use the following Theorem from ���� which says
that the superposition of a number of these processes converges in the limit to
fractional Brownian motion �fBm� and thus exhibit self�similarity�

Consider M independent ON�OFF processes� Let F
�r�
�c �F

�r�
�c �	 �

�r�
� ��

�r�
� �

and 	
��r�
� �	

��r�
� � be the ccdf	 the mean duration and the variance of the ON

�OFF� period of the ON�OFF process of type r� Now	 if WM �T t� represents the
aggregated packet count in the interval ��� T t� due to the contribution from all
the M sources then

Theorem �� �Taqqu	 Willinger and Sherman� As M �r� � �� r � �� � � � � R
and T � �� the aggregated cumulative packet tra�c fWM �T t�� t 	 �g behaves
statistically like

T t

RX
r��

M �r��
�r�
�

�
�r�
� � �

�r�
�

�

RX
r��

TH
�r�
q
L�r��T �M �r�	

�r�

lim
BH�r� �t�

where the BH�r� �t� are independent fractional Brownian motions and H�r� and

	
�r�

lim
are as de�ned in ����	

In our case	 R corresponds to the maximum window size allowed for any
of the �ows in the network and the limiting conditions are reached when we
have a large number of �ows in the network each contributing its ON�OFF
processes to the superposition� Now we just need to show that the distribution
of the OFF times indeed corresponds to the form of Eqn� �� In Figs� � and 

we plot the ccdf of the OFF times for various window sizes for the traces for
Ohio and Italy and the heavy tailed nature of each is clearly evident� While
the ccdf plots often provide solid evidence for or against the presence of heavy
tails	 an eyeballing method is statistically unsatisfactory and the rough estimates
of � obtained from these plots may be unreliable� A statistically more rigorous
method for estimating the slope of the tails and thus � is the Hill
s estimator ����
The presence of heavy tails is indicated by a straight line behavior of the Hill�s
estimate ��n as the number of samples used in the calculation of the estimate
increases while a steadily decreasing pattern is a strong indication of the data
being not from a heavy�tailed distribution� Figs� � and 
 also plot the Hill�s
estimates for the OFF time distribution for various window sizes for the Ohio
and Italy traces respectively and clearly they are consistent with the form of
Eqn� �� Thus we can conclude that the superposition of such ON�OFF process
from a number of TCP �ows will converge in the limit to fBm and thus exhibit
self�similarity�
It is interesting to note the ccdf and Hill estimate plots for the Italy trace

with p � ������ From Figure � the Hurst parameter for this trace can be seen to
be around ���	 i�e� the trace does not exhibit self�similarity� We note from Figure




 that the Hill estimates for all the ON�OFF process corresponding to this trace
are decaying constantly and thus do not have a heavy tailed nature� Thus the
ON�OFF processes corresponding to this trace do not satisfy the conditions of
Theorem � and as a result the trace is not self�similar� In Section ��� from our
derivation of a lower bound of the ccdf it will be clear why low loss rates fail to
give rise to heavy tails�
An important assumption here is the independence of the window sizes of

di�erent �ows	 which need not be the case for all the �ows in a link� Simulation
studies have indicated that the window sizes of TCP �ows sharing a common
bottleneck link may get synchronized though such synchronization is hard to
observe in the Internet ����� Also	 most of the simulation studies focus on very
heavily congested bottleneck links while link loads in practice tend to be com�
paratively much lower� Also	 note that the independence requirements fail to be
satis
ed only when nearly all the �ows in a link are correlated� To prove that
the independence assumptions of Theorem � of ���� are satis
ed	 we analyzed
some of the traces reported in ��
�� The results of our statistical tests on these
traces to see if the individual TCP �ows are indeed independent indicate that
amongst the longer �ows in the traces	 roughly �����  of the �ows are mutually
independent	 providing enough independent �ows in the superposition�
An important part in the calculation of the OFF times is what criterion

we use to de
ne a OFF period� We de
ne an ON period to be over whenever
the distance between two successive packets in the trace exceeds a length 

dependent on the packet transmission time on the link� By keeping 
 su�ciently
small we can ensure that the spacing between the packets in the ON period is
almost constant thus satisfying the requirement of Theorem �� Also	 as in ����	
the exact numerical choice of 
 does not a�ect the results and the heavy tailed
nature of the ccdf remains an invariant independent of the choice of 
�

� Investigating the Role of TCP

Having presented a model explaining the self�similarity of TCP tra�c we now
pinpoint the sources in TCP�s retransmission and congestion avoidance mecha�
nism which are responsible for this phenomena� We then derive a lower bound
on the tail of the OFF time distribution and show that it decays according to a
power law providing a 
rm mathematical foundation to our model� In this paper
we concentrate on TCP Reno as it the most widely deployed variant of TCP�
The e�ect of the other versions of TCP is discussed in Section 
� We assume
that the reader is familiar with the basic concepts of TCP like the congestion
window cwnd	 slow start	 delayed acknowledgments etc and refer the reader to
���� for details on TCP�s algorithms�

��� The Impact of Timeouts

From the explanation for the observed self�similarity in TCP tra�c given in
Section � it is obvious that the central aspect of the phenomenon lies in the



in
nite variance or the heavy tailed nature of the OFF time distributions� Let
us now consider the features of TCP which lead to such a behavior�
In the following we assume an in
nite or steady state �ow currently in the

congestion avoidance mode to make the visualization easier� Consider a TCP
�ow with a current window size of w	 w � Wmax� In every round that follows	
the window now increases linearly until it reaches Wmax and we need a loss for
the window to drop back so that we get a window of size w again� Note that
if the window reaches a value greater than �w before a loss indication and it
results in a fast retransmit	 the subsequent congestion avoidance mode will start
with a window greater than w leading to even longer times before a window of
w is reached� However the occurrence of heavy tails is mainly due to the loss
indications which lead to timeouts� This is due to the following reasons� A time�
out represents a signi
cant duration when no packets are transmitted and acts
as a boundary between ON and OFF periods of the �ow as a whole leading to a
bursty nature of TCP tra�c� The durations of timeouts are generally an order
of magnitude greater than the RTT ���� and with coarse TCP timer granulari�
ties and variations in the RTT measurements can be quite large� Again	 if the
retransmitted packet following a timeout is also lost	 the silent period is doubled
and from the traces reported in ���� the occurrence of multiple consecutive time�
outs is frequent� Also	 a majority of the losses experienced by TCP �ows lead
to timeouts which can be attributed to the fact loss that most routers in the
Internet deploy droptail queues� Correlated loss models	 where all the packets
following the 
rst dropped packet in a round are also dropped are an appropriate
models for the losses arising from these queues ����� This coupled with the fact
that a single loss in a window less than 
	 two or more losses in a window less
than � and three or more losses for higher windows in TCP Reno will lead to
a timeout contributes to the large proportion of timeouts in the observed loss
indications� Before moving on to the derivation of the lower bound on the tail of
the ccdf	 we 
rst derive the probability that a loss in a window of size w leads
to a timeout�

��� Probability of Timeouts

Consider a round with window w and let the probability that a loss of any packet
in this round will lead to a timeout be denoted by Q�w�� We assume that the
receiver sends one ACK for every two packets it receives� We assume that all
losses are due to packet drops at intermediate queues and that losses due to data
corruption are negligible� We also assume droptail queues and the correlated loss
model of the previous subsection� Packet losses in a round are assumed to be
independent of losses in other rounds and the packet loss probability is denoted
by p�
For window sizes less than 
	 any packet loss leads to a timeout and thus

Q�w� � � for � � w � �� For windows with 
 � w � � �or K � � to ��K � ���
two or more packet losses in a round leads to a timeout� If only one packet
is lost in the current round	 if we lose any packet in the following round	 the
�ow will eventually timeout� In addition the retransmitted packet must also be



transmitted successfully to avoid a timeout� Thus the probability that a packet
loss does not lead to a timeout for this range of window values is given by

�
Q�w� �
p��
 p�w��

�
 ��
 p�w
��
 p�w����
 p� ���

The 
rst term corresponds to the probability of exactly one packet loss in a
window of w� The second last two terms correspond to the probability that
all the w 
 � packets in the following round and the retransmitted packet are
received correctly� Thus

Q�w� � �
 p��
 p��w��

�
 ��
 p�w
for 
 � w � � ���

For window sizes greater than �	 three or more losses in a round will lead to
a timeout� Also we have to ensure that the retransmitted packet is received
successfully along with the fact that none of the packets in the succeeding round
are lost� Neglecting the extremely few possibilities in which it is possible to
recover a single loss in the succeeding round without going into a timeout	 we
thus have

Q�w� � �
 p��
 p���
 p��w��

�
 ��
 p�w
for � � w �Wmax

��� A Lower Bound on the OFF Time Distribution

We now derive a lower bound on the ccdf by identifying the possible ways in
which the time between two successive windows of the same size can exceed a
given value� We concentrate on the most likely paths that the cwnd is likely to
follow while not accounting for the others as their contribution to the ccdf is
negligible� In this derivation	 we measure time in units of the round trip time�
Let us assume that the current window size is w and we want to 
nd the

probability that the time until the next instant where cndw � w is greater than
���� The most obvious possibility is that the �ow does not experience any loss for
the next ��� rounds so that after some round the cwnd stays atWmax� However	
with higher loss probabilities this event is unlikely and the probability tail based
on just this mechanism has an exponential decay� Another possibility could be
that after i rounds �when cwnd � �w� the �ow experiences a loss which results
in a fast retransmit� The �ow then transmits the next ���
i rounds without any
loss� As a variation of this we could have a number of successive fast retransmits
without reaching a window of w� Note that each of these possibilities are mutually
independent and their individual contribution the tail of the distribution has an
exponential decay	 each having its own rate� Yet another line of possibilities is
timeouts� Let us denote the average duration of a timeout �in terms of RTTs�
by E�TO�� As the 
rst possibility we could have that there are no losses in the

rst ��� 
 E�TO� followed by a timeout� We could also have i initial rounds
without loss and then n timeouts �with n su�ciently large� before the window



gets a chance to increase to w� Other possibilities include cases where we have
timeout periods of length �E�TO�	 
E�TO� and so on� Again	 each of these cases
represent independent possibilities whose individual contribution to the tail of
the OFF time distribution has an exponential decay	 the rate of which depends
on the corresponding probability of the loss indications and their e�ects�
The tail of the OFF time distribution for each window size and the cor�

responding ON�OFF process can thus be seen as the superposition of a large
number independent exponential tails each with its own rate of decay� The mix
of these independent exponentials leads to a composite distribution which has
a heavy tail over the region of our interest� The following theorem by Bern�
stein �
� provides the link between the mixture of exponentials and a completely
monotone probability density function �pdf��

Theorem �� �Bernstein� Every completely monotone pdf f is a mixture of
exponential pdfs� i	e	�

f�t� �

Z
�

�

�e��tdG���� t 	 � �
�

for some proper cdf G	
It can be shown that the commonly used heavy tailed distributions like Pareto

and Weibull are completely monotonous� Also	 in ��� it is shown that the super�
position of a number of properly chosen exponentials can be used to model
heavy tailed distributions in the region of primary interest� Having shown the
basic construction of how the mix of exponentials lead to heavy tails in the OFF
time distribution	 we now obtain the probabilities corresponding to each of the
possible paths that we described�

Case �� The no loss case� Let us begin with the simplest case where there
are no losses� Consider the wth ON�OFF process which corresponds to a cwnd
of w	 � � w � Wmax excluding the special cases with cwnds of � and Wmax�
Assume that the current round has a window of size w� The probability that the
next window of size w occurs after t units of time �i�e� t RTTs� assuming there
are no losses in between is given by

PfT � tg � ��
 p�N�t� ���

where N�i� represents that number of packets that are transmitted in the i
rounds following the round with size w and is given by

N�i� �

�
iw � d i�e

�
i
 d i�e

�
if i � j

jw � d j�e
�
j 
 d j�e

�
� �i
 j�Wmax else

���

where j � ��Wmax 
 w� 
 � and represents the time it takes for the cwnd to
reach Wmax	 assuming no losses�

Case �� Fast retransmission losses� We now consider the more likely
cases where a �ow experiences n losses between two successive windows of the
same size which are far apart in time� Consider again the wth ON�OFF process	
� � w � Wmax� We can have a OFF time greater than t if we have loss indications
at windows greater than �w which result in fast retransmits� For simplicity	 we



consider only those cases where the loss occurs in a window of size Wmax� The
�ow 
rst transmits packets without loss for the 
rst i rounds during which its
window reaches Wmax� It then experiences a loss which is recovered by a fast
retransmit� Since w � dWmax��e the desired window size is not achieved at the
beginning of the congestion avoidance mode� Also	 following each loss there are
��Wmax 
m� 
 � rounds with Wmax�Wmax 
 ��
m�m� �� packets till cwnd
reachesWmax again withm � dWmax��e� Thus there are t
n
n���Wmax
m�

��
��Wmax
w��� rounds with successfully transmitted windows ofWmax� The
total number of correctly transmitted packets	 after algebraic simpli
cations	 is
thus

Nc�w� t� �Wmax�t
 �n� ��Wmax � �w � �nm
 
n�

w�w � ��
 nm�m
 �� ���

Now	 since there are M � t
 �nWmax��w���n
 ��m
 �n�� rounds with a
cwnd of Wmax with n of them having losses	 the probability that the OFF time
is greater than t is given by

PfT � tg �
�
M
n

�
��
 ��
 p�Wmax�n��
Q�Wmax��

n��
 p�Nc�w�t� ���

Also	 since each loss is associated with ��Wmax
m�
� rounds where the window
is notWmax	 the maximum possible losses in t rounds can be shown to be limited
by

nmax �

�
t
 ��Wmax 
 w� � �

�Wmax 
 �m
 �
�

���

Case �� Loss indication resulting in a timeout� Let us now consider
the case when the TCP �ow experiences a single loss indication which results in
a timeout� Consider the case when the loss occurs after i rounds from the round
with a window of w� The number of packets transmitted in these i rounds	 N�i�

is given in Eqn� � and the value of the cwnd in the ith round wi is given by

wi � min fWmax� w � di��eg ����

To 
nd the number of packets transmitted in the slow start phase which follows a
timeout	 we use the model of ���� which models the window increase pattern more
accurately than the commonly used approximation where the window always
increases ��� times every RTT� From ����	 the number of rounds spent in the
slow start phase is given by

tss�wi� �

�
� log�

�
�m

� �
p
�

��

 � ����

where m � dwi� e and the number of packets transmitted in the slow start phase
can be expressed as

Nss�wi� �

	
�
tss�wi���

� � � � � �tss�wi���� 
 �
 �
p
�

�



����



If w � m we also have a linear phase where the window increases linearly fromm
to w� The total time required by the �ow to reach a window of w again following
the timeout is thus

Dnl�w�wi� �

�
tss�w� �E�TO� � � if w � m
tss�wi� �E�TO� � ��w 
m� else

����

Now	 the probability that we have a loss in a round of size u following the
timeout	 before the window reaches w	 PTO�u�wi�	 � � u � w	 is given by

PTO�u�wi� �

���

���
��
 p�Nss��u���
 ��
 p�u� if u � m
Q�u�

��
 p�Nss�wi���
 ��
 p��u� else

Q�u���
 p�u�u����m�m���

��
�

Note that the �
 ��
 p��u term in the second case has an exponent �u because
in the linear phase we have two consecutive rounds with the same window size�
Then	 the probability that there is another timeout before the window reaches
a window of w is given by

Ps�w�wi� �

w��X
u��

PTO�u�wi� ����

Note that in the summation above some of the values of PTO�u�wi� are zero if
u � m and cwnd skips these values of u due to the exponential increase pattern�
After the ith round	 on an average � more round of packets are sent �where the

rst couple of losses may be recovered� before the timeout period begins� Thus
if i 	 t 
 Dnl�w�wi� 
 E�TO� 
 �	 the probability that the o� time is greater
than t is given by

PfT � tg �
�
��
 p�N�i���
 �p�wi�Q�wi� if i 	 Il
��
 p�N�i���
 �p�wi�Q�wi���
 Ps�Il 
 i�� else

����

where Il � t 
 E�TO� 
 �� The factor �� 
 Ps�Il 
 i�� in the second case gives
the probability that we do not have another loss before the window reaches w�
It is absent in 
rst case since i�E�TO� � � 	 t and we do not have to consider
whether the packets following the timeout period are transmitted correctly or
not�

Case �� When the retransmitted packet is lost�When the 
rst retrans�
mitted packet following a timeout is also lost	 the retransmission timer backs o�
exponentially with a factor of � and can thus lead to very large silent periods�
The duration of a sequence of n consecutive losses in lengths of E�TO� is given
by

Ln �

�
�n 
 � for n � �
�� � �
�n
 �� else ����

Each of the losses following the initial loss indication occur with probability p�
Also	 the linear phase of the cwnd following the second loss begins after cwnd



reaches �� Now consider the case when the �ow experiences n loss indications	
n
� of them being losses of retransmitted packets and that the 
rst loss occurred
after i rounds� Then	 if i � t
LnE�TO�
 ��w
 ��
 � the probability that the
o� time for window w is greater than t is given by

PfT � tg �
�
��
 p�N�i���
 ��
 p�wi�Q�wi�p

n�� if i 	 Il
��
 p�N�i���
 ��
 p�wi�Q�wi�p

n����
 Ps�Il 
 i�� else
����

where Il � t
LnE�TO�
 �� The presence of ��
 Ps�Il 
 i�� in the second case
can be explained as before�

Case 	� n isolated timeouts� Let us now consider the case where there
are n isolated timeouts each of length E�TO�� After the 
rst loss after i rounds	
the slow start phase lasts till cwnd reaches m � dwi� e� The second loss occurs
before cwnd reaches a values of w� The expected duration between the 
rst and
the second loss indications is given by

Dl�wi� �

����

����
E�TO� � � � �

��Ps�w���

�Pw��
u�� uPTO�u�

�
if w � m

E�TO� � � � �
��Ps�w���

�Pm��
u�� uPTO�u� else

�
Pw��

u�m���u� ��u
m�
 ����PTO�u�
� ����

In the above expression	 the second summation in the second case corresponds to
the linear increase phase where we have two consecutive windows with the same
size� After the initial loss indication	 each of the succeeding loss indications can
occur at a window between � and w
�� For each of these	 we model the average
duration between two successive losses byDl�w�� Also	 the probability that there
is another loss following 
rst loss �before the window reaches w� leading to a
timeout is given by Ps�w�wi�� Correspondingly	 we model the same probability
for all losses after the second loss by Ps�w�w�� Also	 after the last loss	 it takes
tss�w
 ��� ��w
dw��� e�
 � rounds for the window to reach a size of w� Since
t 
Dl�wi� 
 i rounds comprise the duration for the rest of the losses following
the 
rst loss indication	 we need at least

n �

�
t
Dl�wi�
 i

Dl�w�

�
� � ����

losses for the o� time to exceed t� Then if n � � �the case n � � had already
been considered� the probability that the o� time is greater than t is given by

PfT � tg �

���

���
��
 p�N�i���
 ��
 p�wi�Q�wi� if i 	 Il
Ps�w�wi��Ps�w�w��

n��

��
 p�N�i���
 ��
 p�wi�Q�wi� else
Ps�w�wi��Ps�w�w��

n����
 Ps�Il 
 i��

����

where Il � t
Dl�wi�
 �n
 ��Dl�w� 
E�TO�
 ��
Case 
� Multiple consecutive losses� We now consider the cases where

there are n losses which are successfully recovered using a single timeout and l
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Fig� 	� The lower bound on the tails of the ccdf for the Ohio and Italy traces
for various values of w� The time t is in seconds�

losses in which the retransmitted packet is also lost resulting in silent periods
which are multiples of E�TO�� Let the l periods of consecutive timeouts be all due
to j consecutive losses� The probability of each of these n periods is Ps�w�w�p

j��

and the probability of the single loss indications is Ps�w�wi� and Ps�w�w� for the

rst and the rest of the n
� losses respectively� For a given n and l we can have
a sequence corresponding of n� l losses in t rounds only if t
Dl�wi�
 �n� l

��Dl�w�
l��j
��E�TO� � i � t
Dl�wi�
�n�l
��Dl�w�
�l
����j
��E�TO��
For the values of i falling in this range	 the probability that the o� time is greater
than t is given by

PfT � tg �

���

���
��
 p�N�i���
 ��
 p�wi�Q�wi�Ps�w�wi� if i 	 Il
�Ps�w�w��

n�l��pl�j���

��
 p�N�i���
 ��
 p�wi�Q�wi�Ps�w�wi� else
�Ps�w�w��

n�l��pl�j�����
 Ps�Il 
 i��

����

where Il � t
Dl�wi�
 �n� l 
 ��Dl�w� 
 l��j 
 ��E�TO�
E�TO�
 ��

��� Numerical Results

We now present the numerical evaluation for the lower bounds for the parameters
from all the Ohio and the Pisa traces considered in Section �� In Fig� � we show
the ccdf for the various window sizes for both destinations� The heavy tailed



Type of p � ����� p � �����
Loss prob ccdf prob ccdf

Case � �
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���� �
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����

Case � �
���� �
���� �
���� �
����

Case � �
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���� �
����

Case � �
��E�� �
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��E�� �
����
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����

Case � �
���� �
���� �
��E�� �
����

Table �� Contribution of various losses to the ccdf
 t � ���RTTs� w � ��� Wmax � ��


nature of the tails is evident and as expected	 the rate of decay reduces with
increasing loss probabilities� Also	 to see the impact of timeouts on the tails of
the ccdf	 in Table � we show the contribution to the tails by the various cases
involving timeouts that we considered in the previous subsection� As expected	
the contribution from the timeouts have a large contribution to the tails	 specially
higher loss probabilities� For very low loss rates	 the contribution due to multiple
losses is negligible and the tail is made of just ��
 exponentials� For higher losses	
the probability of multiple timeouts increases and we have a large number of
exponentials with di�erent rates the superposition of which leads to a heavy
tailed distribution�

� Conclusions and Discussions

In this paper we provided an explanation of how TCP can cause self�similarity
in network tra�c� Using traces of actual TCP transfers over the Internet	 we
showed that individual TCP �ows	 isolated from the aggregate �ow on the link
also have a self�similar nature� Our results also showed that the degree of self�
similarity is dependent on the loss rates experienced by the �ow and increases
with increasing loss rates with the tra�c no longer self�similar at very low loss
rates� We then proposed a model explaining the contribution of TCP to tra�c
self�similarity� The model is based on considering each TCP �ow as the super�
position of a number of ON�OFF processes where the OFF times have a heavy
tailed distribution� We veri
ed the model empirically and then provided a 
rm
mathematical basis to the empirical observations of heavy�tailed distributions in
the OFF times by deriving a heavy tailed lower bound on the ccdf�
The loss rate experienced by a TCP �ow is an important indicator of the

degree of self�similarity in the network tra�c� A natural construction of the
extremely bursty nature of TCP tra�c comes from timeouts which represent
�silent� periods and separate periods of activity� Since a majority of loss in�
dications under current Internet scenarios lead to timeouts	 losses increase the
burstiness and the heavy tails in the OFF times� The degree of self�similarity or
H being dominated by the heaviest tail in the superposition	 higher loss rates



thus lead to higher values of H � In contrast when the loss rate is extremely low	
TCP transmits Wmax packets in every round and behaves like a CBR source�
Thus the bursty nature is absent at low loss rates and consequently the OFF
times have an exponential tail with the tra�c no longer being self�similar� This
explains the observations in Section � where �ows with loss rates less than �����
had a Hurst parameter of approximately ���� Our 
ndings show that the loss
probability is a faithful indicator of the �network�s e�ect� on TCP tra�c in
terms of both the e�ects of superposition with other �ows and the degree of
self�similarity of the tra�c�
While TCP Reno is the most widely implemented version of TCP	 other ver�

sions of TCP are currently under research	 the most notable amongst them being
TCP SACK� TCP SACK provides robustness against multiple packet losses in a
single window and recovers them without resorting to timeouts� However	 it does
not completely eliminate timeouts since it requires the receipt of K �usually ��
duplicate ACKs before the retransmission mechanism kicks in� Thus timeouts
are inevitable for small windows and will be present even for larger windows for
correlated losses� Consequently we expect self�similarity to be present in TCP
SACK traces also	 though the loss rates at which H � ��� will be greater than
those for TCP Reno�
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