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Abstract—The continuous increase in demand for electric
power has resulted in extremely complex power grids. The
correct operation of these grids depends on the computerized
control and monitoring using a communication network. These
modern power grids are equipped with phasor measurement
units which play a key role in providing crucial data for the state
estimator of an energy management system. The integration of a
communication network with the power grid makes it vulnerable
to cyber attacks in the form of data tampering. These attacks
can disrupt the operation of the state estimator resulting in
significant financial as well as infrastructure damage. To solve
this issue, this paper proposes a technique to detect tampered
data in synchrophasors using the system entropy of a power
network. The results show that the proposed technique can be
used as an effective tool to detect attacks on synchrophasors.

I. INTRODUCTION

Power grids have experienced continuous expansion over
the decades due to the increased demand of consumers and
growth if industries. They are spread over large geographical
areas and involve multiple operations that need to be mon-
itored and controlled. To maintain generation and facilitate
the uninterrupted supply of power to users, modern power
systems rely on computer and communication networks. Sens-
ing, control, scheduling, dispatch and billing need a tightly
integrated cyber infrastructure. One of the most versatile
measurement devices is the Phasor Measurement Unit (PMU)
that plays a pivotal role in monitoring and consequent control
of a power grid. A synchrophasor is the representation of
the complex phasor of an alternating current (AC) power
system at the nominal system frequency synchronized to
UTC (coordinated universal time) [1]. PMUs measure highly
accurate synchrophasors for voltage and current at different
buses of the electric power grid. The sampling rates of PMUs
are usually sub-multiples of the power-line frequency such as
10, 25 or 50 samples per second for 50Hz systems. Real time
monitoring of power grids is a critical process, and creates
a mathematical representation of the current conditions of
an interconnected power system using PMU measurements.
This key process to build the real-time model for the network
in energy management systems (EMS) is known as state
estimation.
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The main functions of a state estimator include observabil-
ity analysis, state estimation and bad data processing. The
estimator communicates the performance and status of the
system to the control center where decisions are taken on the
basis of different situations that the network undergoes. The
integration of power systems with communication networks
make them an attractive target for malicious data injection
attacks. As a result, cyber security of the current power grids
has become a major concern for the operators. State estimation
is a well-established research area, and multiple techniques
have been introduced to tackle bad measurements. Most of
the conventional approaches are based on residual tests that
detect gross errors or noises. However, they are unable to
respond if multiple bad measurements are interacting or if the
data is intentionally manipulated. Malicious data tampering
in synchrophasors can result in significant financial damage
as well as damage to civil infrastructure. The authors of
[2], [3] discuss the consequences of cyber attacks on power
grids. These include increased robustness/resiliency losses,
sub-optimal economic dispatch, and blackouts resulting from
cascading failures, among others. To solve this issue, in this
paper we propose a method based on entropy of the power
system measurements.

The concept of entropy was introduced by Rudolf Clausius
in 1865 as a measure of the amount of energy in a thermo-
dynamic system [4]. However, later in 1948, it was given
a new meaning by Claude Shannon [5]. He defined it as a
measure of uncertainty in the context of the communication
theory. Since information can reduce uncertainty, the entropy
can also be adopted as a measurement of information provided
by the discrete probability distributions [4]. Building upon
this concept of entropy, this paper describes a method for the
detection of malicious data attacks on synchrophasor networks.

The rest of the paper is organized as follows. In Section II
we discuss the related work. We present the network model,
assumptions, and threat model in Section III. Section IV
presents the proposed model for detecting data tampering
in synchrophasor networks. while Section V presents the
simulation results of the proposed technique. Finally Section
VI concludes the paper.



II. RELATED WORK

The advent of smart grids has made the power system more
vulnerable to various cyber-attacks such as data tampering.
Smart grids form an attractive target for malicious attacks
because of the involvement of critical infrastructure. In the
context of data tampering attacks, different research works
have proposed multiple techniques for bad data detection.
Early power system researchers realized and observed that a
bad measurement usually led to a large normalized measure-
ment residual. After the presence of bad measurements is de-
tected, they mark the measurement with the largest normalized
residual as the suspect and remove it. Later on, it was found
that this largest normalized residual criterion could detect
only independent data called non-interacting measurements.
Recently, the focus has been on the improvement of robustness
using PMUs [6]-[8]. For example, the authors of [8] used
PMUs to transform critical measurements into redundant ones
so that the presence of bad data can be detected by residual
testing. The approaches targeting arbitrary interacting bad
data seem to be better at detecting data tampering attacks
since such measurements can also be considered arbitrary [9]-
[11]. However, despite variations in these approaches, all of
them use the same basic method of residual testing. Although
researchers have realized the vulnerability of conventional
approaches, the study of false data injection attacks is fairly
recent. The authors of [12] addressed cyber-attacks on power
system state estimation for the first time and showed that
by exploiting the knowledge of power system topology, an
adversary can introduce arbitrary errors into the state of the
system by deceiving a bad data detector. The minimum number
of meters required to launch an unobservable attack was first
introduced by the authors of [13] as a security index. In [14],
the authors proposed a technique based on the security index
for categorizing observable and unobservable attacks.

In another work by [15], the problem of defending against
data tampering attacks from the perspective of an operator
has been investigated. The authors show a minimum set of
measurements that needs to be protected in order to ensure
observability of the system. Similarly, the authors of [16]
propose a greedy algorithm to select a subset of measurements
to be protected. Many approaches and applications also use
PMUs in order to make the system completely observable.
The authors of [17] conducted the analysis of power system
observability with PMUs. Placing the PMUs optimally can
help maximize the redundancy of measurements thus making
the system observable. This placement of PMUs in the power
system was further explored in [18] and [19] to enhance power
system state estimation, which in turn improves the ability to
defend against bad data injection.

In the domain of cyber security, entropy has been used to
detect distributed denial of service (DDOS) attacks or to detect
anomalies in the Internet traffic [20], [21]. Entropy-based
approaches provide the advantage of fine-grained insights for
anomaly detection as compared to traditional traffic volume
analysis [22]. Similarly, another work by [23] uses the entropy

Fig. 1. Network model.

of power measurements to detect theft for the advanced
metering infrastructure in smart grids. Common to all these
entropy based techniques is that they compare the entropy
of two multidimensional data sets to detect attacks. However,
given the large size of traffic or power data and the number of
variables involved, these techniques result in long convergence
times. In this paper we employ power flow entropy which uses
a graph representation of the power network to calculate the
entropy at every node. The proposed solution uses entropy of
one dimensional measurements, i.e., power flow, resulting in
a light weight mechanism to detect data tampering attacks on
a power grid.

Currently, most of the proposed techniques for detecting
data manipulation attacks are based on residual testing or
strategic placement of PMUs to protect the system from cyber-
attacks. However, this assumption of securing PMUs is not
enough in power systems that are spread over a wide area.
Therefore, the proposed technique in this paper addresses the
problem without making such strong assumptions.

III. NETWORK MODEL, ASSUMPTIONS, AND THREAT
MODEL

A. Network Model

Figure 1 describes our network model. In this model PMUs
are connected to the PDC through border routers relaying
data over the Internet. The PMUs obtain synchronized clock
information through GPS satellites.

B. Assumptions

We make the following assumptions regarding the network
model and proposed protocol:
a. The IEEE C37.118.2 [1] packet format is assumed. Table I

shows the various fields and their sizes for a typical PMU
packet.

b. PMUs unicast their data to a single PDC using the
UDP-only method for communication. The encapsula-
tion/decapsulation is done using the normal TCP/IP pro-
tocol suite.

c. The adversary can eavesdrop on all the traffic, maliciously
modify/inject packets, replay previous packets, and imitate



TABLE I
DATA PACKET FORMAT FOR A PMU [1]

No. Field Size (bytes)
1 SYNC 2
2 FRAMESIZE 2
3 IDCODE 2
4 SOC 4
5 FRASEC 4
6 STAT 2
7 PHASORS 4/8 per phasor
8 FREQ 2/4
9 DFREQ 2/4

10 ANALOG 2/4 per value
11 DIGITAL 2 per value
12 CHK 2

other nodes in the network. The PMUs and other network
entities including routers and communication links may be
compromised. However, the PDC is considered the secure
and trusted party.

d. The PMUs connected to the generator buses are assumed
to be secure and cannot be tampered with by an adversary.

e. The adversary is capable of breaking the encryption of
PMU packets.

C. Threat Model

As a power network is distributed over a large area, multiple
buses are present that contribute to the data collected at the
PDC. The attacker may manipulate the data of these buses in
order to change the state of power system so that false data is
communicated to the control center. The PMU data generated
traverses through a multi-hop network and reaches the control
center through different routes. The attacker is assumed to
have introduced an attack vector in the measurements of
state estimators installed on buses. He/she aims to cause
the maximum possible damage to the system without being
detected. Large deviation from the true state can lead to
erroneous actions of greater consequence. The objective of
this paper is to detect tampered data accurately in order to
secure the power grid from damage.

IV. PROPOSED TECHNIQUE TO DETECT DATA TAMPERING
USING ENTROPY

In this section we describe the proposed mechanism for
detecting data tampering in synchrophasor networks.

Consider the AC power flow equations for a power system,
given as follows [24]:

Pk =

NB∑
j=1

|Vk||Vj | (Gkjcos(θk − θj) +Bkjsin(θk − θj)) (1)

Qk =

NB∑
j=1

|Vk||Vj | (Gkjsin(θk − θj)−Bkjcos(θk − θj)) (2)

where Pk and Qk are the real and reactive powers of bus k,
NB is the total number of buses, Vk and Vj are the voltage
magnitudes at buses k and j, respectively, Gkj and Bkj are

Fig. 2. IEEE 14-bus test system.

the real and imaginary parts of the kj-th element in the bus
admittance matrix, and θk and θj denote the voltage phase at
bus k and j, respectively.

In this paper, we model a power grid as a complex network
of interconnected generation, transmission, and distribution el-
ements. Figure 2 shows the single-line diagram while Figure 3
shows the graph representation of the IEEE 14 bus test system.
The buses are labeled with the corresponding bus number,
the generators and synchronous condensers are symbolized
as G and C (encircled), and the arrow heads represent loads
connected to different buses. Generators provide power for
the grid while a synchronous condenser is used to generate
or absorb reactive power through a voltage regulator needed
to adjust the grids voltage or improve the power factor.
Unlike capacitor banks, the reactive power from the syn-
chronous condenser can be adjusted continuously. In the graph
representation the substations, transformers, and generation,
transmission, and distributions buses are represented by nodes.
Similarly, the transmission lines make up the links or arcs
connecting the nodes. We observe that the AC power flow
Equations (1) and (2) are non-linear equations used to model
both the active and reactive powers. However, AC power flow
analysis introduces long convergence times due to the inherent
complexity [26]. Therefore, we use DC power flow analysis
and introduce the following assumptions [24]

1) The resistance of transmission circuits is significantly less
that the reactance, i.e., we can neglect the Gkj terms in
Equations (1) and (2).

2) Angular separation across any transmission circuit is very
small, i.e., sin(θk − θj) ≈ (θk − θj).

3) Voltage magnitudes in a per-unit system are very close
to 1.0, i.e., |Vk| ≈ |Vj | ≈ 1.0.

4) It is reasonable to neglect reactive power flows when
assessing circuit overload.

Applying these assumptions we get the simplified equation for



Fig. 3. Graph representation of the IEEE 14-bus test system.

active power flow as follows:

Pk =

NB∑
j=1

Bkj(θk − θj). (3)

We can re-write Equation (3) in the form of matrices as
follows:

P = Bθ (4)

where P represents the vector of real power injections, θ
represents the vector of voltage angles at each node, and
B is the bus susceptance matrix with Bkj = − 1

xkj
and

Bkk =
∑Lk

j=1−Bkj (xkj is the reactance of the transmission
line lkj and Lk is the out degree of node k). Thus, we can use
DC power flow analysis to calculate the nodal voltage angles
as follows:

θ = B−1P . (5)

The entropy of a system is defined as follows [4]:

H = −
N∑
i=1

pi log pi (6)

where pi is the distribution value or probability of occupying
a state i out of a total of N states. Translating Equation (6)
to the entropy of a node in an electrical power system we get
[27]:

Ek = −
Lk∑
i=1

pki log pki (7)

where pki is the normalized active power flow injected into
the transmission line lki connecting node k to node i and is
given by:

pki =
fki∑Lk

j=1 fkj
(8)

where fkj is the active power flow injected into line j from
node k. For example, Figure 4 shows a node A with an
outdegree of 3. In this case, pAB = 30

100 = 0.3, similarly,

Fig. 4. Example of a node with outdegree 3.

pAC = 0.45 and pAD = 0.25. Therefore, the entropy for node
A is given by:

EA = −pAB log pAB − pAC log pAC − pAD log pAD(9)
= −0.3 log 0.3− 0.45 log 0.45− 0.25 log 0.25

= 0.4634.

Note that the power flow values fkj through each line can be
calculated using the right hand side of Equation (3), i.e.,

fkj = Bkj(θk − θj). (10)

Thus, after solving Equation (5) for voltage angles at all
the nodes, we can find the power flows, i.e., fkj for all the
lines. Thus, we can obtain the entropy for the entire system
as follows:

H = −
NB∑
k=1

Lk∑
i=1

pki log pki. (11)

Let us assume that the attacker attacks the power flow
measurements on a subset of the lines denoted by Sa. Then
Equation (8) can be re-written for a system under attack as
follows:

pki =
fki(1− 11Sa

(i)) + fki11Sa
(i)LA∑nBi

j=1 fkj(1− 11Sa
(j)) + fkj11Sa

(j)LA

(12)

where LA denotes the attack vector and 11Sa
denotes the

indicator function given as follows:

11Sa(i) =

{
1 if i ∈ Sa

0 otherwise
. (13)

When a fault occurs, the load of the failing line is distributed
among the rest of the system. This is equivalent to multiplying
the power flow value of each of the remaining functioning lines
with a loading factor. Thus, during a fault in the absence of
an attack, plki

is given as follows:

pki =
LF × fki

LF ×
∑nBi

j=1 fkj
(14)

≈ fki∑nBi
j=1 fkj



where LF represents the loading factor during a fault. Com-
paring Equations (12) and (14) shows that the system entropy
in Equation (11) may change negligibly during normal or fault
conditions. However, if at least one bus is kept safe from
the attacker, H will change when the system is under an
attack. This shows that the proposed data tampering detection
technique will work as long as one of the system buses is
protected. Therefore, the entropy is monitored for a given
system, and any change in the entropy results in sounding
an alarm and alerting the operator for suspicious activity.

Algorithm 1 shows the proposed data tampering detection
mechanism. In this algorithm z1, z2, · · · , znB

are the active
power injections obtained through the system state estimator
[25], Hn is the most recent value of system entropy, and
nBi is a vector containing the information of the number of
lines connected to each node. This algorithm uses a threshold
of 0.3% to check if the system is under attack, i.e., if the
system entropy changes by more than 0.3% as compared to
the previous value recorded then the system will raise an alarm
indicating a possible attack. The value of 0.3% was selected
after simulating the system under different attack scenarios.
We observed that if a fault occurs, then the entropy value
usually changes by less than 0.1%. However, under an attack
the entropy value changes by at least 0.3%.

Input : z1, z2, · · · , znB
,Hn, nBi

Output: Sound Alarm if Attack Detected
while Session Active do

// Apply DC power flow to compute
power flow values through each
line

f = DC Power Flow(z1, z2, · · · , znB
)

// Calculate System Entropy using
Equation (11)

Hi = Entropy(f ,nBi )
if |Hn−Hi|

Hn
× 100 > 0.3 then

Sound Alarm
else

// Update the current entropy
value

Hn = Hi
end

end
end

Algorithm 1: Proposed Data Tampering Detection Algo-
rithm

V. SIMULATION RESULTS

In this section we present the results after simulating the
proposed data tampering mechanism in MATLAB using the
matpower toolbox [29].

The proposed mechanism was simulated on the IEEE 14 bus
system shown in Figure 2. The data required for the calculation
and analysis of system entropy includes the information of
power flows of each individual bus. We consider three scenar-
ios for our analysis. In the first scenario we study the entropy

Fig. 5. System entropy.

of the system under normal load conditions, and in the second
scenario we consider a system under stress, i.e., we assume
a fault has occurred causing the system to be overloaded.
This scenario is created by applying different loading factors
ranging from 1.2 to 1.6 to our test system. Finally, in the third
scenario we consider the case when the attacker is introducing
various attack vectors into the system.

Figure 5 shows the entropy values under the three scenarios.
When a fault occurs the power system enters a contingency
condition, i.e., the system is stressed and overloaded. To get
the same effect in our simulations, we simulated the test
system for different values of the loading factor ranging from
1.2 to 1.6. Figure 5 shows the value of entropy corresponding
to each loading factor. As expected the entropy value during
normal operation and fault remains approximately the same.
However, Figure 5 shows that when the attacker introduces an
attack vector to the state vector of bus 2 or bus 8, the system
entropy is significantly increased as compared to the normal
condition or the contingency conditions.

Different schemes for detection of data modification attacks
have been introduced in existing literature with multiple as-
sumptions. In order to analyze the effectiveness of the pro-
posed scheme, a comparison is done with a recent technique
that is based on calculation of line impedance. The authors of
[28] use the ratio of impedance magnitudes of transmission
lines in order to identify an attack. The attack on the system
is modeled by changing voltage or current magnitudes and
phase angles from both the ends of a transmission line. Under
normal system conditions, the ratio remains 1 while if there is
a sudden or sustained change in the ratio, it is considered as
attack. The same scheme was applied to our attack scenario
where bus 2 is considered to be under attack and accordingly
overloaded with a loading factor of 1.2. The simulation results
for the impedance ratio of bus 2 are shown in Figure 6.
Figure 6 shows that the impedance ratio of bus 2 remains
unchanged during this type of attacks. This shows that the
technique proposed in this paper is effective in detecting data
tampering attacking in synchrophasor networks and can even
detect attacks on a single bus.



Fig. 6. Impedence Ratio of Bus 2 [28].

VI. CONCLUSIONS

This paper presented a technique to detect data tampering
in synchrophasor networks. The proposed technique uses the
graph representation of a power network and calculates the
system entropy. An attack can be detected by monitoring any
change in the system entropy value. The results show that the
proposed technique can successfully identify attacks on the
IEEE 14 bus test system.
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