
A Multiplicative Multifractal Model for TCP Traffic �
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Abstract

Recent studies have shown that TCP traffic displays
strong multifractal scaling. However, a physical explana-
tion of why such a behavior occurs is still eluding. In this
paper, we propose a cascade model that is based on the
retransmission and congestion avoidance mechanisms of
TCP. At the same time, it relates to the physical, tree-like
organization of networks. This model allows to relate the
most salient multifractal features with basic traffic param-
eters as the RTT and the loss probability. Numerical ex-
periments confirm that such a parsimonious model is able
to give a satisfactory explanation for a number of features
pertaining to multifractality, including the range of scales
where it is observed. We believe these results open the way
to a more profound understanding of the small time scale
properties of TCP traffic.

1. Introduction

Self-similarity of network traffic [8] has been investi-
gated and its presence proved in traffic originating from
various network environments and associated applications.
More recent research, beginning with [13], has in addition
shown the multifractal nature of network traffic [6, 9].

These two fractal aspects of traffic (self similarity and
multifractality) are not contradictory. They may coexist, as
the example of the binomial cascade shows [9]. While long
range dependence studies the ”large” time scale properties,
more recent work has focused on ”high” frequency aspects
as investigated by multifractal analysis. In this paper, we
investigate the underlying causes which result in the multi-
fractal nature of TCP traffic. We develop a cascade struc-
ture based on TCP’s retransmission and congestion control
mechanism and use it to explain the multifractality in TCP
traffic. Past research on the causes for multifractality have
suggested the protocol hierarchy of IP data networks and
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the multiplicative nature of data passing through a number
of queues in succession [5, 9]. In [5] simulations with ns
were used to examine the effect of user or session behav-
ior and network configuration on the scaling behavior of IP
traffic. However, the impact of the adaptive nature of TCP
and the traffic dynamics introduced by its loss recovery and
congestion control mechanisms remained unexplained.

Through our cascade construction, we analytically show
the impact of the loss rates experienced by a TCP flow, the
round trip time (RTT) and the expected duration of the time-
outs on the scaling behavior of traffic. Our analysis shows
the high sensitivity of the shape and peak of the multifractal
(Legendre) spectrum on these parameters. We also report
on the results of multifractal analysis on TCP traces which
show the dependence of the scaling behavior on the loss
rates experienced by the flows. Thus we are able to make
similar observations on TCP traces collected from the Inter-
net and on our model.

The rest of the paper is organized as follows. In Section
2 we give a brief introduction to multifractal analysis. We
present the cascade construction of the traffic generated by a
TCP flow and its analysis in Section 3. In Section 4 we val-
idate our model using tests on TCP traces from the Internet.
Finally, Section 5 presents the concluding remarks.

2. Multifractal Analysis

Multifractal analysis deals with the description of the
singularity structure of “signals” (which can be measures [1,
11], functions [7] or capacities [10]), both in a local and a
global way. The local information is given by the Hölder
exponent at each point, while the global information is cap-
tured through a characterization of the geometrical or statis-
tical distribution of the occurring Hölder exponents, called
multifractal spectrum. The way to measure local irregular-
ity mainly depends on if one is dealing with functions or
measures. For a nowhere differentiable signal X on ��� ��
one usually defines the coarse Hölder exponents through

�kn � �
�

n
log
���X��k � ��	�n��X�k	�n�

���



where all logarithms are taken to the base 	 and where
log � 
� ��. For a fixed t in [0,1] let �kn� be such that
In�t� 
� Iknn contains t. The limiting exponent at t

��t� 
� lim inf
n��

�knn (1)

is called the local Hölder exponent of X at t. For a measure
�1 one sets:

�kn �
log��Ikn�

�n

where Ikn � �k 	�n� �k � ��	�n�� k � � � � � 	n � �. Again,
for any fixed t in [0,1], ��t� is defined as in Eqn. 1.

Multifractal analysis consists in giving a compact rep-
resentation of the local singularity structure ��t� of a sig-
nal. In that view, two approaches arise naturally: a geo-
metrical description, or a statistical one. The former leads
to the Hausdorff spectrum fh which we will not consider
here, while the latter leads to the large deviation spectrum
fg. A third spectrum is also usually considered, the Leg-
endre spectrum, the interest of which is to provide a simple
way to compute fg when the conditions of the Gärtner-Ellis
theorem [1, 9] are met. In this paper we use the Legen-
dre spectrum as it is easier to compute. Define for any real
number q

Sn�q� �

�n��X
k��

��Ikn�
q (2)

with the convention �q 
� � for all q. Next, define the
‘structure function’

��q� � lim inf
n��

logSn�q�

�n

and the so-called Legendre spectrum

fl��� � ����� 
� inf
q
��q � ��q���

3. Cascade Construction of TCP Flows

For traffic models in the multifractal frame, two direc-
tions have been explored. The first one uses a general-
ization of fractional Brownian motion known as multifrac-
tional Brownian motion [2]. The second class of models
relies on multinomial cascades [6, 13] which are very ap-
pealing from a multifractal point of view. However, to be
plausible, such a model must be supported by physical ev-
idence that real traffic behaves as a cascading process. To
our knowledge, such a justification is still lacking. In this
section we take a few steps in this direction.

1For our purpose, a measure will be a function � � B ������
(where B is the set of Borel subsets of [0,1]) which is �-additive, i.e.
���n��An� �

P
n��

��Ai� for all countable collections �An�n��

of elements of B with Ai � Aj � � � i �� j.

Developing a cascade model amounts to modeling the
distribution of the traffic load on the different nodes of
the network with an equivalent cascade. We thus have
the following intuitive interpretation for our multiplica-
tive process: at a given fixed time, the whole network N
has a load L. Dividing the network into P sub-networks
N�

� � N
�
� � � � �N

�
P we assume thatN�

� supports the loadM �
�L,

. . .N�
P supports M�

PL. Now each sub-network N �
l can it-

self be divided into sub-sub-networks N �
l��� � � �N

�
l�P which

support M �
l��M

�
l L� � � �M

�
l�pM

�
l L, and so on.

A plausible explanation for the occurrence of a multi-
plicative process is then that the global network is indeed
composed of several such layers, and that the topology dis-
tributes itself along these layers in a random way but with
approximately the same law at each stage. Reports in [3]
and [4] have shown that the Internet topology can be closely
modeled using graph theoretical approaches and that there
are indeed power laws which can be used to describe the
various graph properties. This adds credibility to our pro-
posed explanation.

3.1. A Cascade Construction

In general, when looking for multifractal scaling, it is al-
ways is important to identify which range of scale is phys-
ically relevant. For TCP traffic, we now identify three dis-
tinct regions in scale. At the lowest scale we consider peri-
ods lower than the RTT where the scaling is controlled by
by variations queueing delays, ACK compression etc. At
the highest level we have times ranging from the order of
a few seconds and above. This region corresponds to the
“steady-state” behavior of TCP flows. Finally, the middle
time scale corresponds to the times between the lower and
upper region where packet dynamics are dependent on the
variations in window size in each RTT.

In this paper, we concentrate exclusively on the highest
scale. For this region, we propose a cascade construction for
the number of packets transmitted by TCP in a given unit of
time. In this paper we use TCP Reno as our model for TCP
as it is the most widely implemented flavor of TCP. We as-
sume that the reader is familiar with the basic concepts of
TCP like the congestion window cwnd, slow start, delayed
acknowledgments etc and is referred to [14] for further de-
tails.

We assume that the receiver sends one ACK for every b
packets it receives. In the following, we assume an infinite
TCP flow to make the illustrations clearer. Now, TCP re-
sponds to loss indication with either a fast retransmit or a
timeout. Thus the flow can be seen as a sequence of linear
and silent periods corresponding to the congestion avoid-
ance and timeout periods respectively. We break up each
flow in pieces which are marked by two successive time-
out periods. The two successive timeouts are separated by



a sequence of loss indications each of which is recovered
using a fast retransmit. We take the expected duration of
the time between two successive timeouts as our basic unit
of time and the multiplicative nature of cascade comes into
effect for larger time scales. This expected time is directly
proportional to the packet loss probability and the RTT.

We denote the packet loss probability by p. The expected
duration of a timeout is denoted by E�TO� and from [12]

E�TO� � TO
� � p� 	p� � �p� � �p� � �p� � �	p�

�� p
(3)

where TO is the period of time a sender waits before re-
transmitting an unacknowledged packet. Also, the proba-
bility that an arbitrary loss indication leads to a timeout is
denoted by Q, the expected duration of a congestion avoid-
ance phase by E�A� and the expected number of packets
transmitted in the timeout and the congestion avoidance pe-
riods by E�R� and E�Y � respectively (see Fig. 1). Finally,
we denote by E�Wu� the expected value of the cwnd with-
out the effects of window limitation. From [12]

E�Wu� �
	 � b

�b
�

s
���� p�

�bp
�

�
	 � b

�b

��

(4)

Accounting for the effect of window limitation,
the expected window size E�W � is now equal to
min�Wmax� E�Wu��. Following the derivation in [12]

Q � min

�
��

�� � ��� p����� ��� p�E	W 
����

��� ��� p�������� ��� p�E	W 
�

�
(5)

E�A� �

� �
b
�E�Wu� � �

�
RTT if E�Wu� � Wmax�

b
�Wmax � ��p

pWmax

� 	
�
RTT otherwise

(6)

E�Y � �

�
��p
p

�E�W � if E�Wu� � Wmax
��p
p

�Wmax otherwise
(7)

E�R� �
�

�� p
(8)

The expected throughput of the TCP connection as a func-
tion of the loss probability p can be calculated as

B�p� �
E�X �E�Y � �E�R�

E�X �E�A� �E�TO�
(9)

where X is a geometric random variable with parameter Q
and denotes the number of congestion avoidance phases be-
tween two successive timeout periods.

We now propose a dyadic cascade. The interval I on
which the cascade develops is made of a large number of
sequences of congestion avoidance and timeout periods. By
convention, we take I � ��� ��. We denote the number of
sequences in I by 	m. At the ith level, each subinterval

A1 A2 A4 To 2To

E[X]E[A] E[TO]

A3

E[Y] E[R]
Step m

Step 0

. 
 .
  
.

Figure 1. The timeout and congestion avoid-
ance phases in a TCP flow and their relation
to the cascade construction.

is composed of 	m�i such sequences. The cascade has a
mass 	m�E�Q�E�Y � � E�R��. In a dyadic cascade, each
subinterval of the previous stage is divided into two to form
the next stage. Denote the kth subinterval at stage p by

Ikp � �akp � b
k
p � (10)

Then the endpoints of the subintervals resulting from the
splitting of this interval in the next stage, I�kj�� and I�k��

j��

are given by

I�kp�� � �akp � a
k
p � rkp �b

k
p � akp��

I�k��
p�� � �akp � rkp �b

k
p � akp�� b

k
p � (11)

where rkp is a random number in ��� �� drawn according to
a law described below.

rkp �
X�E�A� �E�TO�

�X� �X��E�A� � 	E�TO�
(12)

where X� and X� are i.i.d. geometric random variables
with parameter Q. For mathematical convenience, we in
fact draw X� and X� from a truncated geometric distri-
bution i.e. PfX � kg � �� � Q���� � QN��� � Qk��

for k � �� � � � � N , where N is some large number. This
truncation has little practical impact. Similarly, the mass of
the kth subinterval at stage p, Ck

p , is split into two parts in

the p� �th stage. The subinterval I�kp�� gets a mass mk
pC

k
p

while the subinterval I�k��
p�� gets the mass ���mk

p�C
k
p . The

random variable mk
p takes values in (0,1) and is given by

mk
p �

X�E�Y � �E�R�

�X� �X��E�Y � � 	E�R�
(13)

where X� and X� are the same geometric random variables
used for the time process.



3.2. Computation of the multifractal spectrum

Our cascade model has the following features:

� At each step, the ratio between the size of the intervals
Ikp and I�kp�� is rkp , and between Ikp and I�k��

p�� is rk��
p ,

with rkp � rk��
p � �.

� The ratios between the masses in the same intervals are
mk
p and mk��

p , with again mk
p �mk��

p � �.

� For all k� pwe have: � � rmin � rkp � �� � � mmin �

mk
p � � with probability one.

� rkp and mk
p have the same distribution for each p.

� For all k� p the interiors of Ikp and Ip��
k do not overlap.

We can then make use of results in [1], which yield the
multifractal spectrum of the cascade. In our case where
in particular r�� and r�� (resp. m�

� and m�
�) are identically

distributed, these take the following form: for any real q,
there exists a unique 	�q� such that E�mq�E�r�q�� � �

�
where m (resp. r) is distributed as m�

� (resp. r��). Let
�min � ess inf logm

log r � �max � ess sup logm
log r . It is easy to

see that, in our case,

�min �
E�A� �E�TO�

E�A�N logN
��max �

E�Y �N logN

E�Y � �E�R�
�

Then, almost surely

fg��� � �� if � �� ��min� �max�
fg��� � q��q� � 	�q� otherwise,

where ��q� � �	��q�

Note also that fl��� � q��q� � 	�q� is equal to fg��� in-
side ��min� �max�, but assumes non trivial negative values
outside this interval. The usual interpretation of the nega-
tive value is that an � with fl��� � � does not occur in
any given trace with probability one, but might be observed
in one of a set of exp��n log�	�fl���� independent traces
[11]. Finally, the mode �� of fg���, which corresponds to
the almost sure behavior in any given trace is given by the
following formula, which readily follows from the law of
large numbers:

�� �
E�log�m��

E�log�r��

An easy computation yields (for j� k � �� � � � � N )

P �m � x� � � if x �� mj�k 
�
aj � b

a�j � k� � 	b

P �m � mjk� � P �X� � j�P �X� � k�

So that

�� �

PN
j�k�� log�mj�k�Q

j�k��PN
j�k�� log�rj�k�Q

j�k��

with rj�k � E	A
j�E	TO

E	A
j�k���E	TO
 . It is interesting to in-

vestigate how �min� �� and �max, which are the three
most important parameters in fg , vary with our parameters
E�A�� E�TO�� E�Y �� E�R�� Q and N . It is easy to see that
�� will be an increasing or decreasing function Q depend-
ing on whether

NX
j�k�l�m��

log�mj�k� log�rj�k��Q�j�k�l�m���j�k� l�m�

is positive or negative. Note that while �min, which corre-
spond to the highest degree of burstiness only depends on
E�A�� E�TO� and N , �max depends on E�Y �� E�R�� N .

4. Numerical Results

We now carry out analysis for presence of multifractality
in traces of TCP flows. Each trace shows multifractal be-
havior and as predicted by our model, the scaling exponents
have a strong dependence on the loss rates, the RTTs and
the average timeout durations. The traces were collected for
TCP transfers originating from Troy, NY to Columbus OH,
Los Angeles CA, Boston MA, and Pisa Italy. Due to space
restrictions, we show results for only Ohio and Italy. The
results for the others are similar. Each trace is 33 minutes
long and was collected using tcpdump and have microsec-
ond resolution.

In Fig. 2 we show the scaling behavior of the traces for
Ohio corresponding to loss rates of 0.002, 0.010 and 0.135
and for the Italy traces with loss probabilities of 0.000,
0.006 and 0.099. We see that the partition function becomes
almost linear after a scale of roughly 5. Also the scaling ex-
ponents depend on the loss rates and higher loss rates lead
to greater multifractal behavior. In Fig. 3 we plot the theo-
retical Legendre spectrum from our model with parameters
estimated from the traces. The results on the traces qualita-
tively match the ones on the cascade model. The fact that
the empirical spectra do not reach the x-axis is due to finite
size effects i.e., the number of available scales is limited and
has no physical significance. Also, the figure for the traces
corresponding to the Italy has only two curves as for a loss
probability of 0, the traffic is no longer multifractal. This
is validated by the top right plot of Fig. 2 which shows the
absence of any linear regions in the partition function. As
a consequence, the computed multifractal spectrum is not
relevant. To sum up, for both the estimated and theoretical
spectra, we have: (1) As p increases, the width of the spec-
trum decreases, and (2) The general appearance, with a fast
increase for � � �� and a slower decrease for � 
 �� is the
same. Also, we get in both cases more asymmetry for low
loss probability. Finally, the the lower cutoff scale where
we have multifractal scaling is around 	� which is roughly
equal to the basic unit interval of our model.
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Figure 2. Partition function, Legendre spectrum and ��q� for the traces corresponding to Ohio (left)
and Italy (right).
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Figure 3. Legendre spectrum computed from
our model for the parameters of the Ohio (top)
and Italy (bottom) traces.

5. Conclusions

In this paper, we have shown that it is possible to propose
a valid cascade model for TCP traffic. This model is based
on the retransmission and congestion control algorithms of
TCP and allows a parsimonious explanation of the multi-
fractal properties observed in real traces in a physically rel-
evant way. We also identified three different regions in scale
in TCP traffic which arise from various factors like the na-
ture of TCP’s response to loss indications, to random delays
introduced in the paths of individual packets and phenom-
ena like ACK compression.

Our cascade model for TCP traffic shows the important
relationship between the scaling behavior and the loss rates
experienced by a TCP flow. The model also allows the di-
rect interpretation of the higher and lower cutoff points of
the multifractal spectrum in terms of TCP related parame-
ters like the evolution of the congestion window, duration
of timeouts etc. From the analysis of our cascade model, it
can be concluded that higher loss rates will lead to a more
multifractal behavior. Intuitively, this can be explained by
considering the fact that with increasing loss rates, the in-
cidence of timeouts increases which in turn increases the
burstiness of the traffic. The model also illustrates the de-
pendence of the scaling regions on the physical aspects of

the network like the round trip time.
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