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Abstract

A key emerging and popular communication
paradigm, primarily employed for information dissem-
ination, is peer-to-peer (P2P) networking. In this pa-
per, we model the spread of malware in decentralized,
Gnutella type of peer-to-peer networks. Our study re-
veals that the existing bound on the spectral radius gov-
erning the possibility of an epidemic outbreak needs to
be revised in the context of a P2P network. We formu-
late an analytical model that emulates the mechanics of
a decentralized Gnutella type of peer network and study
the spread of malware on such networks. We show an-
alytically, that a framework which does not incorporate
the behavioral characteristics of peers ends up over esti-
mating the epidemic threshold metric, R0. This in turn
results in false positives, an undesirable feature.We also
characterize the conditions under which the network
may reach a malware free equilibrium and validate our
theoretical results with numerical simulations.

1. Introduction

Peer to peer networks provide a paradigm shift from
the traditional client server model of most network-
ing applications by allowing all users to act as both
clients and servers. The primary use of such networks
so far, has been to swap media files within a local net-
work or over the Internet as a whole [2, 3, 4, 5]. These
networks have grown in their popularity in the recent
past and the fraction of network traffic originating from
these networks has consistently increased . The grow-
ing popularity and high penetration of P2P clients such
as KaZaa, Gnutella and BitTorrent have provided virus
writers with a potent means of compromising hosts on
a large scale.
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Figure 1. Infection radius when TTL = 2.

The use of P2P networks as a vehicle to spread mal-
ware enjoys some important advantages over worms
that spread by scanning for vulnerable hosts. This
is primarily due to the methodology employed by the
peers to search for content. For instance, in decentral-
ized P2P architectures such as Gnutella, where search
is done by flooding the network, a peer forwards the
query to it’s immediate neighbors and the process is re-
peated until a specified threshold TTL is reached. Here
TTL is the threshold representing the number of over-
lay links that a search query travels. A sample scenario
of the above description is depicted in Fig. (1), wherein
the malicious host, labeled I, can potentially infect all
peers that are within a distance of TTL = 2 hops from
it. A relevant example here is the Mandragore worm
[16], that affected Gnutella users. Having infected a
host in the network, the worm cloaks itself for other
Gnutella users, leading them also to believe that it is
actually an MP3 music file or an image file. Every time
a Gnutella user searches for media files in the infected
computer, the virus always appears as an answer to the
request. The design of the search technique has the fol-
lowing implications: first, the worms can spread much
faster, since they do not have to probe for susceptible



hosts and second, the rate of failed connections is less.
Thus, rapid proliferation of malware can pose a serious
security threat to the functioning of P2P networks.

Understanding the factors affecting the malware
spread can help facilitate network designs that are re-
silient to such attacks, thereby ensuring proper protec-
tion of the networking infrastructure. In this paper,
we address this issue and develop an analytic frame-
work for modeling the spread of malware in a peer-
to-peer environment while accounting for the architec-
tural, topological and user related factors.

Having motivated our work, we proceed to explore
various facets of the problem. The rest of the paper is
organized as follows: Section 2 differentiates the work
presented in this paper from existing literature; in Sec-
tion 3, we lay the grounds for our modeling work and
present the analytic framework in Section 4. We an-
alyze the model in detail and Section 5 and present
the numerical results validating our theory in Section
6. Finally, Section 7 presents the concluding remarks.

2. Relationship to prior work

In this section, we provide a brief overview of mod-
eling literature in P2P networks, not necessarily in the
realm of malware spread, and differentiate the current
work from existing ones. Though the initial thrust in
P2P research was measurement oriented, recent works,
[13, 12, 15], have proposed analytical models for the
temporal evolution of information in the network. In
[13], a branching process approximation characteriz-
ing the file transfer was presented, while in [12], a
stochastic fluid model for BitTorrent-like networks is
formulated and the steady state properties of the sys-
tem are analyzed. A limitation of the above works is
that they are specialized to Bit-torrent like networks
and the framework cannot be extended to analyze P2P
networks such as Gnutella or KaZaa. Although, the au-
thors in [15] do not model the offline/online transition,
their framework is more representative of a Bit-torrent
network than existing ones. Again, the model’s appli-
cability is limited and cannot be extended to a Gnutella
like network.

The issue of worms in peer-to-peer networks is ad-
dressed in [8] wherein the authors perform a simulation
study of the dangers posed by P2P worms and proceed
to outline possible mitigation mechanisms. Modeling
studies addressing malware spread in P2P networks ap-
pear in [17, 18], wherein the authors formulate a de-
terministic model having it’s basis in the field of epi-
demiology. In formulating the equations for the various
classes of peers, the authors assume that a vulnerable
peer can be infected by any of the infected ones in the

network. This assumption is certainly not true since
the likely candidates for an infected peers are limited
to those present TTL hops away from it and not the
entire P2P network. Incorporating this detail in the
model is imperative since it figures in the expression
for the basic reproduction number, a metric that deter-
mines the presence/absence of an epidemic. Another
important omission is the incorporation of user behav-
ior in the analytic framework. Typically, users in a P2P
network, alternate between two states: the on state,
where they are connected to other peers and partake in
network activities such as query forwarding/response,
query initiation etc. and the off state wherein they are
disconnected from the network.

In the current work, we formulate a comprehensive
model for malware spread in Gnutella type P2P net-
works that addresses the above shortcomings. We de-
velop the model in two stages: first, we quantify the
average number of peers within TTL hops from any
give peer and in the second stage incorporate the neigh-
borhood information into the final model for malware
spread. While determining the average number of peers
that are within k hops away is not feasible for arbitrary
networks, the fact that the degree distribution of peers
in Gnutella follows a power law distribution [4], makes
the task realizable for such networks. In the next sec-
tion, we report our simulation result that questions the
validity of the bound on the spectral radius of the P2P
adjacency matrix, that is widely accepted to hold true
in the presence/absence of a large scale infection. This
finding, further substantiates the need to incorporate
the limited view of a peer in a P2P network into the
analytic model.

3. Virus propagation in P2P graphs

Hypercubes have often been chosen as a graph model
for P2P networks and in [9, 10], the authors derive a
limiting condition on for a virus/worm to be prevalent
in the network without incorporating the underlying
communication framework. Specifically, the threshold
condition is derived to be: β

δ
< 1

ρ(A) , where β denotes

the rate at which the infection spreads, 1/δ, the aver-
age lifetime of an infectious node and ρ(A) represents
the spectral radius of the original network adjacency
matrix. As we shall demonstrate, this can result in an
erroneous estimation of an epidemic presence since the
authors do not consider the fact that once a peer is in-
fected, any susceptible peer within a TTL hop radius
becomes a likely candidate for a virus attack.

In order to arrive at the threshold estimate for the
virus spread, one needs to look at the spectral ra-
dius of the modified adjacency matrix, M. Specifi-



cally, this is a graph constructed from the original ad-
jacency matrix, wherein an edge exists between two
peers as long as there are within TTL hops from each
other. Mathematically, this is computed as follows:
Aeff = A + A2 + . . . + ATTL, where, A represents the
P2P adjacency matrix, and

M(i, j) =

{

1 if Aeff (i, j) > 0 and i 6= j
0 otherwise

(1)

Claim:Virus spread in a P2P network reaches en-
demic proportions if β/δ < 1/ρ(M).

The proof of the claim is exactly along the lines of
that presented in [10], and due to want of space, we
only provide the outline here. The only difference in
our proof stems from the definition of a neighbor in a
peer-to-peer network. Since the authors in [10] derive
the expression from a structural point of view, they
assume that a peer can be infected only by those one
hop away in the overlay graph. This is clearly not
true, since the communication paradigm is such that
a node within TTL overlay hops is visible to a peer
when querying for content. Substantiating our anal-
ysis with simulations carried out lend credence to our
claim. We simulated a simple SIR epidemic on a 10000
node power law graph for both scenarios; one where the
neighbors are limited to nodes directly connected in the
graph (TTL = 1) and the second where the communi-
cation paradigm of P2P networks is incorporated. That
is, a peer at given time is in one of the three states: vul-
nerable to a virus attack (S), infected with the virus
(I) or virus free and immune to further attacks (R). A
power law graph was chosen since it is representative of
a Gnutella type P2P network [4] and the initial num-
ber of infective hosts was set at 50. The hop threshold
for search queries, TTL, in the communication graph
was set at 3, i.e. , each search query travels 3 overlay
hops before being discarded. The spectral radius of the
structural overlay graph was 15.3497 while that of the
communication graph 1361.9. The other parameters,
β and δ were chosen such that β

δ
< 1

ρ(A) . Specifically,

δ = 1 and β = .0551. It was observed that, even with
the inequality holding true, and taking into account the
communication neighborhood, the malware infects the
entire network. This scenario is depicted in Figure 2.
The curve where the number of infecthives decreases
corresponds to the case where the communication pat-
tern is not considered and one might falsely conclude
that an epidemic does not exist. Although user behav-
ior such as offline-online transition are not accounted
for, the derivation of the threshold with all nodes online
is useful as an upper bound when determining either
the presence or absence of an epidemic.
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Figure 2. Virus propagation on a 10000 node
sample P2P graph

4. P2P Model

In this section, we present our analytic framework
for modeling the spread of information, in our case in
the form of malware, in peer-to-peer networks. While
the framework we develop is robust and is applica-
ble across varied architectures such as Bit-torrent net-
works, we confine ourselves to the analysis of Gnutella
like networks. We first describe the search process
and the likelihood of file transfer and then present the
model for the spread of files based on a compartmental
model.

4.1. Search Mechanism

The transfer of information in a P2P network is ini-
tiated with a search request for it. There exist several
search mechanisms, popular among which are flood-
ing and the random walk. In this section, we derive
an expression for the search neighborhood, zav, under
the assumption that the search mechanism employed is
flooding, as is the case in Gnutella networks. In this
scenario, a peer searching for a file forwards a query to
all it’s neighbors. A peer receiving such a request first
responds affirmatively if in possession of the file and
then checks the hop count of the query. If this value
is greater than zero, it forwards the query outwards to
it’s neighbors, else, the query is discarded.

Measurement studies have shown that Gnutella net-
works follow a power-law degree distribution [4]. We
now use the generating function approach as in [11] to
quantify the number of peers reachable while search-
ing for the file. Define the generating function for
the vertex degree probability distribution as: G0(x) =
∑∞

k=0 pkxk, where pk is the probability that a ran-
domly chosen vertex on the graph has degree k. Since,
the Gnutella network has a power law degree distribu-
tion, this probability is given by: pk = Pr(N = k) =
Ck−τ , where C and τ are constants. We first proceed



to quantify the distribution of the degree of the ver-
tex that one arrives at by following a randomly chosen
edge. This information is then used to arrive at a recur-
sive definition for the k-hop neighbors of a node in the
network. Note, that when an edge is chosen at random,
it is more likely that it leads to a node with a higher
degree. The generating function for the probability
distribution of reaching a k degree node by travers-
ing a randomly chosen edge can then be obtained as:
P

k kpkxk

P

k kpk
=

xG′

0
(x)

G′

0
(1) . Now, the distribution of the out-

going edges from the vertex chosen has one power of x
lesser than the above expression and thus can be ex-

pressed as: G1(x) =
G′

0
(x)

G′

0
(1) . In a similar fashion, the

generating function for the number of two-hop neigh-
bors is:

∑

k pk[G1(x)]
k

= G0(G1(x)). Thus the recur-
sive formulation for the distribution of the mth nearest
neighbors is given by G0(G1(. . . G1(x) . . .)), with m−1
iterations of the function G1 acting on itself. We define
the above recursive convolution, yielding the generat-
ing function for the mth hop neighbors as

G(m)(x) =

{

G0(x) for m = 1
G(m−1)(G1(x)) for m ≥ 2

(2)

Differentiating the generating function and substi-
tuting x = 1 yields the average number of mth hop
neighbors. For example, the average number of one
and two hop neighbors of a peer are given by z1 =
G′

0(1) =
∑

k kpk and z2 = G′′
0(1) respectively. Equiva-

lently, simple algebraic manipulation enables us to ex-
press the average number of mth hop neighbors, zm

as: zm =
[

z2

z1

]m−1

z1. Thus, since the search neigh-

borhood of a peer extends up to TTL hops, we have
the expression for the average neighborhood size as:
zav =

∑TTL
i=1 zi.

4.2. Compartmental Model

We formulate our model for the P2P network as
a compartmental model, with the peers divided into
compartments, each signifying it’s state at that time
instant, and with assumptions about the nature and
time rate of transfer from one compartment to another.
The network is partitioned into four broad classes:

PS Number of peers wishing to download a particular file

PE Number of peers currently in the process of downloading

the file

PI Number of peers with a copy of the file

PR Number of peers who either have deleted the file or are

no longer interested in the file

1/λon, 1/λoff average peer on and off time durations

1/λ rate at which a peer generates queries

1/µ average download time for a particular file

r1 rate at which peers terminate ongoing

downloads

r2 rate at which peers renew interest in

downloading a file after having deleted it

1/δ average time for which a peer stores a file

Table 1. Notation and P2P model parameters

Further, each class has two components; one com-
prising of peers of that class that are currently online,
while the second represents the offline peers. For in-
stance, PIon

denotes the peers hosting the file which
are currently online and PIoff

, the offline peers with a
copy of the file. Our formulation is based on the prin-
ciple of mass action, wherein the behavior of each class
is approximated by the mean number in the class at
that instant of time. By employing the mean-field ap-
proach to characterize each compartment, we assume
that the constituent compartments are well represented
by their respective average numbers and that this rep-
resentation is a differentiable funtion of time. The large
size of the P2P network renders these assumptions rea-
sonable. Another assumption is that the size of the
P2P network does not vary over the time period dur-
ing which the spread of information is modeled.

The dynamics of the spread of information can then
be represented in terms of the constituent classes by
the following deterministic system of equations

dPSon

dt
= −λzavPSon

PIon
/NP + r1PEon

+ r2PRon

−λoffPSon
+ λonPSoff

(3)

dPEon

dt
= λzavPSon

PIon
/NP − r1PEon

− µPEon

−λoffPEon
+ λonPEoff

(4)

dPIon

dt
= µPEon

− δPIon
− λoffPIon

+ λonPIoff
(5)

dPRon

dt
= δPIon

− r2PRon
− λoffPRon

+ λonPRoff
(6)

dPSoff

dt
= λoffPSon

− λonPSoff
(7)

dPEoff

dt
= λoffPEon

− λonPEoff
(8)

dPIoff

dt
= λoffPIon

− λonPIoff
(9)

dPRoff

dt
= λoffPRon

− λonPRoff
(10)



Note that we have strived to arrive at a generic for-
mulation of the problem encompassing all possible sce-
narios. Different flavors of the model can be obtained
by appropriately choosing the parameter values. For
instance, µ = ∞, PEoff

(t) = 0 ∀t results in an SIR
epidemic model. Other variants of the problem can be
similarly derived. Also, the offline rates for the vari-
ous classes have been kept same in order to reduce the
number of variable and ease of analysis an. Different
rates for each class can easily be accommodated in the
model.

We now elaborate on the rationale behind the con-
stituent equations of the model above. A transition out
of class PSon

occurs if either a peers goes offline or ini-
tiates a search query that is successful. The former oc-
curs at a rate λoff while the latter is contingent on the
size of the search neighborhood and number of peers in
the neighborhood that are currently online and hosting
the file. If requests for a particular file are generated
at rate λ, the average number of queries generated per
nit time is given by λPSon

. Further, each request on an
average reaches zav peers of which a fraction PIon

/NP

have the file being searched for. Here, NP represents
the total number of peers in the network, both on-line
and off-line. The mean number of replicas present in
the neighborhood of a peer is then zavPIon

/NP . Thus,
the rate at which the transition from PSon

into PEon
oc-

curs is given by λPSon
zavPIon

/NP . The peers per unit
time exiting class PSon

total (λoff +λzavPIon
/NP )PSon

and those entering number r1PEon
+r2PRon

+λonPSoff
.

Combining the two gives the rate of change of member-
ship of class PSon

as given in Equation (3). Equations
characterizing the rates of change for the remaining
compartmental classes can be derived in a similar fash-
ion. It must be noted that the transition rates among
the various compartments are assumed to be known
entities.

5. Model Analysis

In this section, we analyze the model presented in
the previous section , in totality and specific illustra-
tive cases, and obtain the neccessary conditions for the
global stability of the malware free equilibrium.

5.1. Malware Free Equilibrium

We now proceed with the derivation of the basic
reproduction number, R0, a metric that governs the
global stability of the malware free equilibrium (hence-
forth termed MFE). Here, R0 quantifies the number
of vulnerable peers whose security is compromised by

an infected host during it’s lifetime. It is an estab-
lished result in epidemiology [1], that R0 < 1 ensures
that the epidemic dies out fast and does not attain
an endemic state. Stability information of the MFE is
important since this guarantees that the system con-
tinues to be malware free even if newly infected peers
are introduced.

We follow the methodology presented in [6, 7], where
“next generation matrices” have been proposed to de-
rive the basic reproduction number. In this method,
the flow of individuals (cell phones in our case) be-
tween the states are written in the form of two vectors
F and V which describe the inflow of new infected indi-
viduals and all other flows in the system, respectively.
These vectors are then differentiated with respect to
the state variables, evaluated at the disease (malware)
free equilibrium, and only the part corresponding to
the infected classes are then kept to form the matrices
F and V , i.e.,

F =

[

∂Fi

∂xj

(x0)

]

and V =

[

∂Vi

∂xj

(x0)

]

with 1 ≤ i, j ≤ m

(11)

where Fi and Vi are the ith entries of F and V, xi is
the ith system state variable with ẋi = Fi(x) − Vi(x),
(x0) is the disease free equilibrium and m is the num-
ber of infectious states. In our model, we have m = 4
corresponding to PEon

, PEoff
, PIon

and PIoff
. Order-

ing the infectious states accordingly, from Equations
(3)-(10) we have

F =









λzavPSon
PIon

/NP

0
0
0









(12)

and

V =









r1PEon
+ µPEon

+ λoffPEon
− λonPEoff

λonPEoff
− λoffPEon

δPIon
+ λoffPIon

− λonPIoff
− µPEon

λonPIoff
− λoffPIon









(13)

Now, at the malware free equilibrium (MFE), we
have:

•
dPSon

dt
=

dPSoff

dt
=

dPEon

dt
=

dPEoff

dt
=

dPIon

dt
=

dPIoff

dt
=

dPRon

dt
=

dPRoff

dt
= 0

• PIon
= PIoff

= PEon
= PEoff

= 0

Substituting the above values in Eqns. (3) and (7),
we get: r2PRon

= 0 ⇒ PRon
= 0. Again, using this

result in Eqn (10) yields PRoff
= 0. Note that the total



number of peers, given by NP = PSon
+PSoff

+PIon
+

PIoff
+PEon

+PEoff
+PRon

+PRoff
, is a constant. Thus,

at the MFE we have NP = PSon
+PSoff

, and using the
relation from Eqn. (7), the peer distribution evaluates
to the vector: {P̂Son

, P̂Soff
, 0, 0, 0, 0, 0, 0}, where

P̂Son
= λonNP

λon+λoff
P̂Soff

=
λoff NP

λon+λoff

Differentiating F and V with respect to
E1, E2, · · · , EP , I1, I2, · · · , IP and evaluating at the
malware free equilibrium {P̂Son

, P̂Soff
, 0, 0, 0, 0, 0, 0},

we have

F =

[

0 G
0 0

]

V =

[

A 0

−C B

]

with 0 representing a 2 × 2 zero matrix and

G =

[ λzavλon

(λon+λoff ) 0

0 0

]

A =

[

r1 + µ + λoff 0
0 λon

]

− M̃

B =

[

δ + λoff 0
0 λon

]

− M̃

C =

[

µ 0
0 0

]

and M̃ =

[

0 λon

λoff 0

]

The basic reproduction number, R0, is then the
largest absolute eigen value (spectral radius), of the
matrix: FV −1. That is: R0 = ρ(FV −1), where ρ()
denotes the spectral radius. Using elementary matrix
algebra and rearranging the terms, it can be easily ver-
ified that the product FV −1 can be broken down into
GB−1CA−1, with the constituent matrices as enumer-
ated above. Thus,

R0 = ρ(GB−1CA−1) (14)

5.2. Illustrative Example

The dependency of the basic reproduction ratio on
the model parameters is not immediately seen from
Eqn. (14). The nature of the equation makes is dif-
ficult to decide if increasing or decreasing the value
of a parameter affects R0 without actually simulating
the model. Specifically, the intuition behind the need
for modeling user behavior such as online-offline tran-
sitions is not obvious. We now illustrate, with the aid
of a simple example, the impact of user behavior on
the basic reproduction ratio. Peers going offline help
to check the proliferation rate of the malware since the
virus now has a smaller pool of vulnerable hosts whose

security can be compromised. Thus P2P networks have
an inherent quarantine mechanism built into their de-
sign and this feature can be exploited to curb the rate
of infection. As we shall further demonstrate, a model
without a provision for incorporating the user behavior
often ends up overestimating R0, resulting in unneces-
sary and false alarms. In the simplified model we as-
sume that peers do not spend time in the exposed state
and that only the susceptible peers go offline. This es-
sentially reduces to a SIR epidemic, the equations for
which are

dPSon

dt
=−λzavPSon

PI/NP + r2PR

−λoffPSon
+ λonPSoff

(15)

dPI

dt
= λzavPSon

PI/NP − δPI (16)

dPR

dt
= δPI − r2PR (17)

dPSoff

dt
= λoffPSon

− λonPSoff
(18)

Using the methodology described above, the basic
reproduction number can be calculated as:

R0 =
λzavλon

δ(λon + λoff )
(19)

Now, consider the basic reproduction number (say
R′

0) for a model without the offline behavior, i.e., a peer
is always on and in one of the following three states:
susceptible, infected or immune. It can be seen that in

this case: R′
0 = λzav

δ
. Thus, we get

R
′

0

R0

=
(λon+λoff )

λon
.

Indeed, if one assumes that a peer strictly alternates
between on-line and off-line behavior, the probability
that a peer is on-line at any given time can be derived
as: pon = λon

(λon+λoff ) . Thus, if we assume pon = 0.5,

then a model not incorporating peer behavior ends up
overestimating the epidemic threshold metric by a fac-
tor of two.

6. Results

In this section, we demonstrate the essence of our
analysis presented thus far through numerical simula-
tions. We first present our numerical results for the
simple SIR epidemic described in the latter part of
the previous section. The reason behind this is that
the qualitative behavior of the model in Eqns. (3) -
(10) is similar to that presented in Eqns. (15) - (18).
Further, since the simplified model has a closed form
expression for R0, it is easy to see it’s dependence on
various model parameters and this relationship can be



extended to the more detailed model. The experiments
were carried out using parameters emulating a 20000
node power-law graph with τ = 3.4. The initial num-
ber of infectives was set at 50. From Eqn. (19), we see
that R0 is directly proportional to λon. The essence
of this equation is that , nodes staying on-line for long
periods as compared to their off-line durations result in
a higher intensity of malware presence in the network.
Numerical simulations concurred with the above ob-
servation and are presented in Figure 3(a). A similar
trend was observed for the detailed model as shown in
Figure 3(b). The curve at the bottom corresponds to
λon = 0.1 and the intensity of the epidemic increases
monotonically with an increase in λon.

Again, Figure 4(a) substantiates our analytical re-
sult that requires the basic reproduction number to be
greater than 1 for an epidemic to prevail. We see that
if R0 < 1, the number of infected peers drops down to
zero, else it reaches endemic proportions.

Finally, our argument in Section 5.2 for incorporat-
ing the user offline-online behavior in the system model
is validated graphically in Figure 4(b). A system model
without provision for the user behavior calculates R0

to be 1.0714 and predicts the presence of an epidemic
while in reality, the true value happens to be .1531. In
other words, a false alarm of an epidemic is generated.
This is further confirmed by the numerical simulation
which shows that the malware indeed dies out.

7. Conclusion

In the current work, we motivated the need to un-
derstand the dynamics of malware spread, especially in
the context of interacting heterogeneous environments
such as peer-to-peer networks. The need for an ana-
lytic framework incorporating user characteristics (e.g.
off-line to on-line transitional behavior) and communi-
cation patterns (e.g. the average neighborhood size)
was put forth by quantifying their influence on the ba-
sic reproduction ratio. It was proved analytically that
a model that does not incorporate the above features
runs the risk of grossly overestimating R0 and thereby
falsely reporting the presence of an epidemic. Further,
our simulations show that the bound on the spectral
radius for the spread of malware needs to take into
account, the underlying communication pattern, espe-
cially in a P2P kind of setting so as arrive at an accu-
rate estimate. The model was also extended to charac-
terize the dynamics of malware spread in networks of
smart cell phones.
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Figure 3. Influence of off-line duration on infection intensity
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