
DRL-Enabled Computation Offloading for AIGC
Services in IoIT-assisted Edge Computing Networks

Xingxing Zhang, Shaobo Li, Jianhang Tang, Keyu Zhu, Yang Zhang, Biplab Sikdar, Senior Member, IEEE

Abstract—The widespread application of AIGC services has
driven demand for efficient computational resources, making
effective task scheduling and computation offloading in edge
computing environments a critical research topic. However, the
high computational requirements and low latency demands of
AIGC services, combined with the limitations of edge computing,
present challenges for existing offloading methods, such as
unstable decision-making in dynamic task environments and
resource overloading. Here, we propose a decentralized AIGC
task offloading architecture within an IoT-assisted edge com-
puting network to optimize the quality of AIGC services. In
this architecture, we define a multi-objective joint optimization
problem for AIGC task offloading, aiming to simultaneously
optimize key performance metrics such as task latency, energy
efficiency, and load balancing. To address this problem, we
introduce an improved Proximal Policy Optimization (PPO)-
based deep reinforcement learning (DRL) algorithm, named
TOPPO. By incorporating a policy update step size constraint
and a clipping mechanism, TOPPO significantly enhances the
stability of the training process and reduces fluctuations during
policy updates. Additionally, the algorithm integrates an LSTM
model to improve its ability to handle temporal dependencies.
Through continuous interaction between the model and the
environment, the offloading strategy is iteratively updated to
ensure that diverse AIGC tasks are efficiently executed on IoT
devices or edge servers. Extensive simulations and performance
evaluations demonstrate that the proposed method achieves
significant improvements in task latency, energy consumption,
and load management during AIGC task processing.

Index Terms—AIGC services, computation offloading, DRL,
IoIT, edge computing network

I. INTRODUCTION

A I-GENERATED Content (AIGC) is a specific category
of artificial intelligence that is trained on large datasets

to learn patterns in data distributions, enabling it to gen-
erate new and unique content that resembles the training
data [1]. With the rapid development of AIGC technolo-
gies, applications of AIGC are showing tremendous potential
across multiple domains [2], [3]. However, AIGC tasks are
typically computationally intensive, requiring significant data

Xingxing Zhang is with State Key Laboratory of Public Big Data, Guizhou
University, Guiyang, China; and the Department of Electrical and Computer
Engineering, National University of Singpore, Singpore.

Shaobo Li is with State Key Laboratory of Public Big Data, Guizhou
University and Guizhou Institute of Technology, Guiyang, China, e-mail:
(lishaobo@gzu.edu.cn).

Jianhang Tang and Keyu Zhu are with State Key Laboratory of Public Big
Data, Guizhou University, Guiyang, China.

Yang Zhang is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China.

Biplab Sikdar is with the Department of Electrical and Computer Engineer-
ing, National University of Singpore, Singpore 119077.

Manuscript received October 16, 2024; revised December 26, 2024.

processing and complex model inference to generate content.
Meanwhile, AIGC services typically require real-time respon-
siveness to support instant user interactions, which imposes
strict demands on real-time performance and low latency [4].
However, traditional cloud-based solutions often fail to meet
these demands, especially in scenarios that involve real-time
processing and data-driven decision-making, where issues like
high communication latency and scalability limitations of
cloud computing become particularly pronounced [5], [6]. In
typical Intelligent Internet of Things (IoIT) scenarios—such
as smart homes, smart factory, and smart transportation—edge
computing offers the advantage of offloading computing tasks
to edge nodes near users [7]. This approach can significantly
reduce latency and alleviate computational pressure on central
cloud servers [8]. By designing a task offloading framework to
address the unique demands of AIGC tasks in edge computing
environments, we aim to enhance AIGC service performance
and improve user experience.

However, the heterogeneity of edge devices, their limited
computational capacity, and the high computational and real-
time requirements of AIGC tasks make efficient offloading
in an edge computing environment a complex problem [9].
In recent years, Deep Reinforcement Learning (DRL) has
shown significant potential in optimizing decision-making
processes within dynamic environments [10]–[12]. DRL is
capable of learning and adapting to the complex changes in
edge computing environments, offering intelligent strategies
for task offloading and resource management. Nevertheless,
most existing research focuses on general computing tasks and
has not fully addressed the specific demands of AIGC services,
such as real-time performance and computational intensity. As
a result, while AIGC has made remarkable advancements in
text and image generation, its application in IoIT-assisted edge
computing is still in its early stages.

Moreover, existing research predominantly focuses on opti-
mizing a single objective or striking a balance between energy
consumption and latency, often overlooking the need for joint
optimization of energy consumption, latency, and load bal-
ancing [13]–[16]. The nature of AIGC tasks highlights a close
interdependence and trade-off between these three factors. For
instance, reducing energy consumption may lead to increased
latency, while prioritizing latency optimization can place a
heavier load on certain nodes, thereby compromising overall
system stability. Consequently, strategies that address only
a single optimization objective often fall short of meeting
the complex requirements of real-world applications. Thus,
achieving joint optimization of energy consumption, latency,
and load balancing through DRL methods, to ensure the

efficient execution of AIGC tasks in edge computing environ-
ments, has emerged as a critical research direction—one that
still lacks sufficient i nvestigation and systematic exploration.

We propose a decentralized cloud framework for AIGC task
offloading i n I oIT-assisted e dge c omputing n etworks (ECN),
aimed at optimizing AIGC service quality by minimizing the
long-distance transmission delays between intelligent devices
(InDes) and the central cloud. Within this framework, we intro-
duce a DRL-based AIGC task offloading method to address the
challenges of efficient task scheduling and resource allocation
in IoT-assisted ECN. The proposed method leverages DRL
techniques to dynamically manage computational resources
across heterogeneous edge nodes, optimizing the AIGC task
offloading process while considering real-time processing, en-
ergy efficiency, and load balancing constraints. This approach
effectively enhances the performance and efficiency of AIGC
services. The study not only provides a robust solution for
integrating AIGC services in IoIT environments but also makes
significant contributions to the broader field of intelligent task
scheduling and resource management. The main contributions
of this research are as follows:

1) We propose a novel cloud-free computational offloading
framework tailored for AI-generated content (AIGC)
tasks in IoT-assisted ECN. By eliminating the need
for long-distance data transmission between smart de-
vices and central clouds, our framework significantly
reduces transmission latency, thereby enhancing the
overall quality of AIGC services. In this approach, both
AIGC models and offloading decision algorithms are
trained directly on high-performance edge servers(ESs),
avoiding the inefficiencies of transferring data to remote
cloud infrastructures. The inference of AIGC models
can be flexibly executed either on InDes or at the ESs,
depending on the specific task or network conditions.
This strategy effectively minimizes transmission delays
and optimizes the performance and quality of AIGC task
execution.

2) We propose a DRL-based optimization method for
AIGC task offloading (TOPPO). To begin with, we
define an AIGC task offloading optimization problem,
which, unlike other approaches, considers not only en-
ergy consumption and latency but also load balancing.
In the reward function design of the Markov Decision
Process(MDP) for DRL, we introduce a load balancing
metric, which adds complexity to the optimization prob-
lem and places higher demands on the stability of the
algorithm. To address this challenge, the TOPPO algo-
rithm adopts a clipping mechanism that limits the ampli-
tude of policy updates, thereby preventing instability due
to the high dimensionality introduced by load balanc-
ing optimization. Furthermore, in the policy and value
networks of TOPPO, we introduce an LSTM layer to
capture the temporal features of task offloading, enabling
the model to better adapt to dynamic edge environments.
Through the combination of multi-dimensional reward
function design, clipping mechanism, and temporal neu-
ral network, our method not only outperforms traditional

DRL offloading algorithms in complex AIGC task en-
vironments but also provides superior handling of load
fluctuations and dynamic resource changes, ultimately
achieving higher AIGC service quality.

3) Extensive simulation experiments demonstrate that the
proposed TOPPO offloading algorithm significantly im-
proves performance during AIGC computing offloading.
Specifically, it reduces energy consumption by 74.57%
compared to traditional round-robin methods and de-
creases delay by approximately 66%, while boosting
CPU utilization by around 85%. This increased CPU
utilization enables more efficient handling of AIGC
tasks in multi-task scenarios, significantly enhancing
processing capacity. Additionally, compared to six rep-
resentative DRL algorithms, TOPPO shows an average
reward improvement of 8.36% to 19.97%, indicating
its superior adaptability and efficiency in meeting the
unique demands of AIGC tasks. These improvements
underscore TOPPO’s effectiveness in optimizing energy
consumption, latency, and load balancing, ultimately
providing a more robust solution for AIGC service
quality in dynamic environments.

The remainder of this research is organized as follows:
Section II reviews the related works. Section III presents
the system framework and problem formulation. Section IV
details the proposed method and algorithm, along with the
corresponding theoretical performance analysis. Section V
evaluates the effectiveness of our approach, and Section VI
concludes the study.

II. RELATED WORK

A. AIGC Service Offloading Framework

In recent years, many scholars in related fields have explored
how to optimize offloading strategies to reduce task execution
delays and enhance the performance of edge computing sys-
tems [17]. Yuan et al. [18] proposed a task offloading method
based on Deep Q-Networks (DQN) to optimize offloading
decisions in edge computing. Chao Fang et al. [19] intro-
duced a novel Deep Reinforcement Learning (DRL)-assisted
task offloading and resource allocation scheme, TORA-DRL,
aimed at minimizing power consumption in cloud-edge col-
laborative environments. Chao Li et al. [20] developed a
dynamic offloading scheme based on the Markov Decision
Process (MDP) to efficiently manage computational tasks
among heterogeneous devices. Lihua Ai et al. [21] introduced
a Reinforcement Learning (RL) algorithm that predicts cur-
rent Channel State Information (CSI) from historical CSI to
derive the optimal task offloading strategy. However, most of
these methods primarily focus on general computational tasks
and do not address the unique requirements of AI-generated
content (AIGC) services, such as real-time processing and
computation-intensive tasks.

Despite the significant advancements AIGC has made in
generating text, images, and videos, its application in IoIT-
assisted edge computing remains in its early stages. Many
AIGC applications, such as virtual assistants and real-time
content generation, demand high computational resources and

low latency challenges that traditional cloud-based solutions
often struggle to meet. Edge computing(EC) plays a cru-
cial role in managing and processing AIGC tasks with high
computational requirements. In recent years, researchers have
proposed cloud-edge hybrid frameworks, where AIGC model
training is handled by the central cloud, while inference and
execution are performed on base stations (BS) equipped with
edge servers (ES) located near user devices, thereby reducing
latency for AIGC services [22]–[24]. For instance, Siyuan Li
et al. [22] proposed a generative model-driven industrial AIGC
collaborative edge learning framework and introduced an
AIGC computation offloading m odel t o e nsure t he execution
of heterogeneous AIGC tasks on edge servers. Weizhe Zeng
et al. [25] proposed a latency-aware parallel offloading AIGC
framework that partitions multi-modal content and offloads
certain diffusion tasks to multiple servers, thereby reducing la-
tency in edge environments. Jianan Zhang et al. [23] proposed
a cloud-edge hybrid architecture to support AIGC services.
While such hybrid frameworks utilize the powerful computing
capabilities of the central cloud to process complex tasks, they
still encounter challenges like high communication latency and
imbalanced resource utilization.

B. DRL based Computing Offloading

Deep Reinforcement Learning (DRL) has shown great po-
tential in decision-making problems within complex, dynamic
environments, particularly in task scheduling and computation
offloading in edge computing. Siyuan Li et al. [22] proposed a
computation offloading method based on a attention-enhanced
multi-agent reinforcement learning (AMARL) algorithm, aim-
ing to optimize the total system latency for edge-based AIGC
task completion, thereby supporting generative model-driven
edge learning. Shahidani, FR et al. [26] proposed a RL-based
fog scheduling algorithm that improves load balancing and
reduces response time. Jialin Lu et al. [13] introduced an A2C-
DRL real-time task scheduling technique tailored for stochas-
tic edge environments, incorporating a load-balancing factor
to evaluate the model’s capability in maintaining balanced
loads. Changfu Xu [27] formulated the AIGC computation
offloading problem in edge computing as an online integer
linear programming problem and then proposed a novel AIGC
task scheduling algorithm based on diffusion DRL (DDRL),
termed DDRL-ATS, to solve this problem, aiming to minimize
task offloading latency. Weijun Cheng et al. [28] proposed a
task offloading method based on Deep Q-Networks (DQN),
which dynamically selects edge nodes to minimize latency
and energy consumption. Similarly, Haiyuan Li et al. [29]
developed a task offloading strategy aimed at maximizing
long-term benefits in terms of both delay and energy efficiency.

Moreover, several studies have integrated DRL with multi-
objective optimization, proposing adaptive task offloading
schemes for edge computing [30]–[32]. As summarized in
Table 1, most of the existing approaches focus on optimizing
individual objectives, such as energy consumption, latency,
or load balancing. While some attempt to jointly optimize
energy consumption and latency, they often overlook the joint
optimization of all three factors. Given the interdependencies

and trade-offs between energy consumption, latency, and load
balancing in AIGC task offloading, this study will focus on
the simultaneous optimization of these three aspects.

TABLE I: A Comparison of Related Studies

Reference Objectives Environment
Latency Energy Loading Completion Rate

[18] ✓ ✓ ✗ ✗ Edge-Enabled IoMT
[26] ✓ ✗ ✓ ✗ FC
[13] ✗ ✗ ✓ ✓ Edge-cloud
[31] ✗ ✗ ✓ ✓ EN
[29] ✓ ✓ ✗ ✗ EC
[32] ✓ ✓ ✗ ✓ EC
[14] ✓ ✓ ✗ ✗ MEC
[30] ✓ ✓ ✗ ✓ MEC

Our work ✓ ✓ ✓ ✓ IoIT-assisted ECN

In summary, while existing research has made progress
in computation offloading, the application of DRL, and re-
source management in EC, there remains a gap in addressing
the unique requirements of AIGC services in IoT-assisted
ECN, particularly in the joint optimization of latency, energy
consumption, and load balancing. This study aims to fill
that gap by proposing a DRL-based computation offloading
framework that intelligently optimizes task offloading and re-
source allocation. The framework is designed to meet the real-
time processing and high-efficiency computational demands
of AIGC tasks, thereby improving the performance of AIGC
services in IoT-assisted edge computing networks.

III. SYSTEM FRAMEWORK FOR AIGC SERVICES IN
IOIT-ASSISTED ECN AND AIGC COMPUTING

OFFLOADING OPTIMIZATION MODEL

A. System Framework for AIGC Services in IoIT-assisted ECN

We focus on the offloading of AIGC tasks in IoIT-assisted
ECN and propose a novel cloud-free offloading framework
(AIECOF), as illustrated in Figure 1. By leveraging IoIT’s
self-learning and autonomous decision-making capabilities,
this framework enhances the intelligence and collaborative
optimization of ECN. It also optimizes the quality of AIGC
services by reducing the long-distance transmission latency
between InDes and central cloud servers.

In current framework, AIGC models are typically trained
in the central cloud, while inference is carried out at the
edge and terminal layers. Although this hybrid scheduling
framework utilizes the central cloud’s powerful computational
resources to handle complex tasks, transmitting data from the
edge to the central cloud can introduce additional latency
and higher bandwidth consumption. This becomes especially
problematic when dealing with sensitive data, as it poses
increased security risks. For AIGC applications that require
real-time responsiveness, such latency can degrade the quality
of service. AIGC tasks, such as real-time image generation
and intelligent voice interaction, often demand real-time inter-
activity and a high degree of data locality. These tasks rely on
fast and accurate data processing. Therefore, in IoIT-assisted
ECN environments, AIGC is well-suited to a decentralized
edge offloading framework. This approach enables faster data
processing near the point of data generation, significantly

AIGC Tasks

Intelligent Devices (InDes)

Edge servers

Smart home

Smart factory

Smart

transportation

AIGC Model

Training DRL

offloading Model

Training

Text
Generation

Image
Generation

Audio
Generation

Model Inference in Edge

I will tell you a mythical
story about dragon. A long

time ago...

I will tell you a mythical
story about dragon. A long

time ago...

Please write a new
mythology

Please write a new
mythology

I will tell you a mythical
story about dragon. A long

time ago...

Please write a new
mythology

End Layer

Edge Layer

Model Inference in Local

Fig. 1: A novel decentralized cloud offloading framework for optimizing AIGC services in IoIT-assisted ECN (AIECOF)

reducing latency, enhancing data security, and improving the
efficiency of AIGC task processing. Ultimately, this framework
optimizes the overall system performance and responsiveness.

As shown in Figure 1,the application scope of AIECOF
is extensive, spanning smart homes, smart manufacturing,
intelligent transportation, and many other fields. In these
scenarios, devices capable of autonomously processing AIGC
tasks are referred to as intelligent devices(InDes). In AIECOF,
we define a set of InDes as M = {1, 2, ...,M} and a set
of edge servers(ESs) as N = {1, 2, ..., N}. There are M
InDes and N ESs. We define the set of all time slots as
T = {T1, T2, ..., Tk}, where the time interval between adjacent
time slots is ∆t = Tk − Tk−1. A user may request an AIGC
task from any InDe at any time, and these task requests are
random. This means that any InDe can generate an AIGC task
at any given time. Therefore, we assume that AIGC tasks are
generated according to a uniform distribution and follow a
first-in, first-out (FIFO) principle for task processing.

The AIGC tasks we consider primarily include text gener-
ation tasks (e.g., chatbots) with task sizes of approximately
1 Mbits to 3 Mbits, image or visual content generation tasks
(e.g., AI painting) ranging from 5 Mbits to 10 Mbits, and
audio generation tasks (e.g., AI music or smart home voice
control) ranging from 3 Mbits to 10 Mbits. Once an AIGC
task is initiated, the InDe m must independently execute a
task offloading strategy based on its state within the AIECOF
framework—either processing the task locally or offloading it
to an ES n via a wireless channel.

Each InDe’s offloading strategy consists of two stages. The
first stage determines whether the AIGC task needs to be
offloaded. If offloading is necessary, the second stage selects
the most suitable ES for processing the task. The key symbols
used in this study are summarized in Table 2.

B. AIGC Services Computing Offloading System Model

In IoIT, IoT devices must have self-learning, self-adaptive,
and autonomous decision-making capabilities to effectively
meet the demands of delivering AIGC services to users. In
this study, we focus on the indivisible task offloading problem
during the inference process of AIGC services on InDes.
Unlike the approach of offloading an entire AIGC task to an
ES, we consider that tasks can either be processed locally on
the InDe or offloaded to a nearby ES within an IoIT-assisted
ECN for execution. Our goal is to address two key issues:

1) Should the AIGC task be offloaded to an ES?
2) Which ES should the task be offloaded to in order

to optimize overall performance in terms of energy
consumption, latency, and load balancing?

Based on these two considerations, we design the AIGC
task offloading decision-making process.

We describe the task generated by InDe m at timestamp t
as

Φm,t = {µm,t, xm,t, ρm,t, τmax} ,

where µm,t represents the unique index of the AIGC task,
with µm,t ∈ Z++. xm,t denotes the size of the AIGC task (in

TABLE II: Main Notations and Their Meanings

Symbol Meaning

M,N, T InDe, ES, Timestamp
f InDe
m Computational capability of InDe m at time t
fES
n Computational capability of ES n

µm,t Unique index of AIGC task at InDe m at time t
Lm,t AIGC task size
ηm,t Offloading decision at InDe m at timestamp t
ξm,n,t Whether the AIGC task is offloaded to the ES n
τmax Maximum allowable execution time for AIGC task

Dwait
m (t) Waiting delay of the computing queue in InDe m at

timestamp t
D

comp
m (t) Computing delay in InDe m at time t
Dm(t) The total delay of computing tasks: Lm,t/f InDe

m

Ewait
m (t) Static energy consumption during AIGC task waiting

in InDe
E

comp
m,t Dynamic energy consumption during AIGC task

execution in InDe
EInDe

m,t Energy consumed for executing the task generated
by InDe m at time t locally

Dtrans
m,n(t) Transmission delay

Etrans
m,n(t) Transmission energy consumption
rm,n Transmission rate

Dedge(t) The total delay of all tasks across all ESs at all
timestamps

Ewait
n (t) Static energy consumption during AIGC task waiting

in ES
E

comp
n,t Dynamic energy consumption for task execution by

ES at time t
EES

n,t Energy consumed for executing the task processed
by ES n at time t

L
edge
n,t The load of the ES at timestamp t
ρm Computing density of the InDe

λ1, λ2, λ3, λ4 Latency sensitivity weight, Energy consumption task
dropout weight, and loading weight

Mbits), ρm,t is the computational density (in cycles/bit), and
τmax is the maximum tolerable time for the AIGC task (in
seconds). If task Φm,t is not fully transmitted or executed by
the deadline at timestamp tend = t + τmax − 1, the task will
be dropped.

The AIGC tasks generated at each timestamp vary in
terms of data size, computational resource requirements, and
processing time.

We define a binary decision variable ηm,t = {0, 1} to
indicate whether the AIGC task is offloaded. If the AIGC task
is executed on the InDe, ηm,t = 1. If the task is offloaded to
an ES, then ηm,t = 0.

Next, we define the variable ξm,n,t = {0, 1} to decide which
ES the AIGC task is offloaded to for processing. When the
AIGC task from InDe m is offloaded to ES n, ξm,n,t = 1;
otherwise, ξm,n,t = 0. Let ξm,t = (ξm,n,t, n ∈ N) . The
offloading constraint is given by:∑

n∈N

ξm,n,t = 1(ηm,t = 0), (1)

where m ∈ M , n ∈ N , and t ∈ T .
1) Intelligent Device (InDes) Model In IoIT:

a) Delay model of local computing queue: When ηm,t =
1, the AIGC task µm,t is executed locally on the InDe. When
a task is generated, it is placed in the computational queue of
the InDe Qcomp

m = {Φm,1,Φm,2, · · · ,Φm,t} and is executed
in a first-in-first-out (FIFO) manner. Therefore, if the previous
task has not been completed, the next task will experience

a waiting delay before it can start execution. We define the
waiting delay as:

Dwait
m (t) = Dend

m (t− 1)− t+ 1, (2)

where Dwait
m (t) < τmax, meaning that the waiting delay must

be less than the maximum tolerable time for the AIGC task.
Additionally, when the task starts computing on the InDe,

it will experience a computational delay, which is the time
required to process the task on the device. The computational
delay is calculated by rounding up the required time to process
the task. We define this as:

Dcom
m (t) =

⌈
xm,tηm,t

f InDe
m · ∆t

ρm

⌉
, (3)

where xm,tηm,t represents the data size of the AIGC task in
the computational queue of InDe m. The term f InDe

m represents
the computational capability of the InDe, usually measured in
GHz (the amount of computation processed per second). ∆t
represents the time step, and ρm is the computational density
of the device.

The total delay for task µm,t is the sum of the waiting delay
and the computational delay. The timestamp at which the task
is either processed or discarded is defined as:

Dend
m (t) = min

{
t+Dwait

m (t) +Dcom
m (t), Dwait

m (t) < τmax

t+ τmax − 1, Dwait
m (t) ≥ τmax

(4)
In summary, the total delay is the sum of the delays across

different time steps and different InDes, as follows:

DInDe
total (t) =

T∑
t=1

M∑
m=1

(
Dwait

m (t) +Dcom
m (t)

)
. (5)

b) Energy Consumption model of computing queue:
When the AIGC task µm,t in the computational queue ex-
periences waiting time, it incurs static energy consumption,
denoted as Ewait

m,t. When the AIGC task is processed on the
InDe, dynamic energy consumption is generated, denoted
as Ecomp

m,t . Therefore, the total energy consumption for task
µm,t from request to completion at different timestamps is
calculated as follows:

EInDe
m,t = Ewait

m,t + Ecomp
m,t . (6)

In the InDe’s task queue, the static energy consumption
during the waiting period can be computed using the following
formula:

Ewait
m,t =

∫ Dend
m (t−1)

t

P InDe
wait dt = P InDe

wait ·Dwait
m,t, (7)

where P InDe
wait represents the static power, which is constant.

To further optimize the local execution energy consumption,
Dynamic Voltage and Frequency Scaling (DVFS) technology
is used. This technology flexibly adjusts the CPU operating
frequency, denoted as f i

ue, and the supply voltage Vcir. the dy-
namic power consumption P InDe

comp is given by the formula [33]:

P InDe
comp = V 2

cirf
InDe
m = c

(
f InDe
m

)3
. (8)

The equation shows that dynamic power consumption is
proportional to the square of the voltage Vcir, and that CPU
frequency is approximately linearly related to the supply
voltage [32]. The constant c = 10−26 reflects t he capacitance
switching characteristics of the chip architecture. Based on
these relationships, the dynamic computational energy con-
sumption of a task can be calculated using the following
equation:

Ecomp
m,t = c

(
f InDe
m

)2
xm,tρm,t, (9)

where f InDe
m represents the CPU frequency, xm,t is the task

size, and ρm,t is the computational density.

Ecomp
m,t = P InDe

comp ·DInDe
m,t = c

(
f InDe
m

)2
xm,tρm,t. (10)

Finally, the total energy consumption across all InDes can
be summarized as:

EInDe =
T∑

t=1

M∑
m=1

(
Ewait

m,t + Ecomp
m,t

)
. (11)

c) Loading model of computing queue in InDe: In IoIT-
assisted ECN, CPU utilization is an important metric for
measuring loading and resource usage efficiency. We define
the CPU utilization of an InDe as LInDe

n,t , which is calculated
as the ratio between the computational resource demand and
the available computational resources, using the following
formula:

LInDe
n,t = min

{
0.98,

ρm,t · xm,t

f InDe
n × (t− t′ + 1)

}
, (12)

where ρm,t ·xm,t represents the computational demand of the
AIGC task. The size and computational requirements of the
AIGC task are the key factors determining resource usage.
Here, f InDe

n denotes the computational capability of the InDe
(in CPU cycles per second), and (t − t′ + 1) represents the
time the AIGC task has been executing on the InDe, calculated
from the task’s start time to the current time step.

The execution of an AIGC task not only depends on its
computational demands and the computational capacity of
the InDe, but also on the length of time the task has been
executing. Thus, we incorporate the time dimension, denoted
by t− t′+1, to represent how long the task has been running
on this InDe. By calculating the task’s execution time in
conjunction with the server’s computational capacity, we can
determine whether the task’s computational demands can be
met within the given time frame.

Additionally, the computational capacity of the InDe is lim-
ited. Therefore, we must assess whether the node can complete
the task within the allotted time based on its computational
capability. If LInDe

n,t < 1.0, indicating that the task does not
fully utilize the InDe’s resources. However, the utilization is
capped at 1.0 (100%), indicating that the InDe is working at
full capacity. To prevent system overload due to the limited
computational capacity of InDes, the CPU utilization is capped
at 0.98, leaving a 0.02 buffer to provide fault tolerance and
safeguard against overload.

d) Delay and Energy Consumption model of transmission
queue: At the beginning of timestamp t, when the task Φm,t

of InDe m needs to be offloaded to ES n, i.e., the offloading
decision is ξm,n,t = 1, the AIGC task µm,t must first enter
the transmission queue Qtrans

m,n of InDe m to wait for ES n to
process it. The InDe sends the AIGC task in the transmission
queue to the ES through its wireless network interface. This
transmission process is carried out over orthogonal channels
to prevent interference.

The transmission rate rtrans
m,n (in bits per second) is calculated

using the following formula:

rtrans
m,n = Wm,nlog2

(
1 +

|hm,n|2Pm

σ2

)
, (13)

where Wm,n represents the bandwidth allocated to each com-
munication channel, |hm,n|2 is the channel gain between m
and n, Pm represents the transmission power of InDe m, and
σ2 is the noise power received at ES n.

We define the transmission delay of the task as follows:

Dtrans
m,n(t) =

xm,t(1− ηm,t)

rtrans
m,n

∆t, (14)

where xm,t(1−ηm,t) is the size of the AIGC task data arriving
at the transmission queue, and rtrans

m,n is the transmission rate
from InDe m to ES n. It is important to note that if the
transmission delay exceeds the maximum tolerable time of
the task during transmission, the task will be dropped.

The total transmission delay across all timestamps is given
by:

Dtrans
total (t) =

T∑
t=1

M∑
m=1

Dtrans
m,n. (15)

The energy consumption Etrans
m,t for offloading the AIGC

task from InDe m to ES n is calculated using the following
formula:

Etrans
m,t = P trans

m,n ·
(
xm,t(1− ηm,t)

rtrans
m,n∆t

)
, (16)

where P trans
m,n represents the transmission power, and xm,t(1−

ηm,t) is the task’s data size.
The total transmission energy consumption across different

timestamps and InDes for offloading AIGC tasks is calculated
by summing the energy consumption of all tasks in the
transmission queue, as follows:

Etrans
total =

T∑
t=1

M∑
m=1

Etrans
m,t . (17)

2) Edge Servers (ES) Model In ECN:
a) AIGC task computing queue delay model in ES:

When ηm,t = 0 and ξm,t = 1, the AIGC task µm,t will
be offloaded to ES n for computation. However, it first
passes through the transmission queue Qtrans

m,n to check if the
condition Dtrans

m,n(t) < τmax is satisfied. If this condition is
met, the task reaches the computation queue of the edge
server QEScomp

n = {Φm,1,Φm,2, . . . ,Φm,t}, where it waits to
be processed.

The delay for processing the AIGC task includes both the
waiting delay and the computation delay, and it is calculated
using the following formula:

Dedge
m,n(t) =

(
Dend

n (t− 1)− t+ 1
)
+

⌈
xm,t(1− ηm,t)

f edge
n

⌉
,

(18)
where f edge

n represents the computational capability of ES n
(in CPU cycles per second).

The total delay for all ESs across all time is given by:

Dedge
total (t) =

T∑
t=1

N∑
n=1

Dedge
m,n. (19)

b) Energy Consumption model in ES: When the AIGC
task µm,t in the ES’s computational queue is waiting, it incurs
static energy consumption, denoted as Ewait

n,t . When the AIGC
task is being processed on the ES, it incurs dynamic energy
consumption, denoted as Ecomp

n,t .
The static energy consumption of an AIGC task while

waiting in the ES’s computation queue can be calculated using
the following formula:

Ewait
n,t =

∫ Dend
n (t−1)

t

P edge
wait dt = P edge

wait ·Dwait
n,t , (20)

where P edge
wait represents the static power (which is constant).

According to references [33], the dynamic power consump-
tion P edge

comp is calculated as follows:

P edge
comp = V 2

cirf
edge
n = c

(
f edge
n

)3
, (21)

the dynamic computational energy consumption of a task can
be derived as:

Eedge
n,t = P edge

comp ·D
edge
n,t = c

(
f edge
n

)2
xm,tρm,t, (22)

Thus, the total energy consumption for task µm,t, from en-
tering the transmission queue to completing execution on the
ES, is calculated as follows:

Eedge
n,t = Ewait

n,t + Ecomp
n,t . (23)

Finally, the total energy consumption across all smart de-
vices can be summarized as:

EInDe =
T∑

t=1

N∑
n=1

Eedge
n,t . (24)

After the AIGC task is processed by the ES, the results
are sent back to the InDe. However, since the downlink
data transmission rate from the ES to the InDe is higher
than the uplink transmission rate, we ignore the time delay,
energy consumption, and load resulting from transmitting the
processed AIGC results back to the smart device.

C. Problem formulation

We focus on the task offloading problem for AIGC inference
in IoIT-assisted ECN. Our goal is to minimize task processing
delay, long-term system energy consumption, and load vari-
ance, while also reducing the number of failed task offloads,
all within the constraint of the maximum tolerable time. The
objective function is defined as:

We focus on the task offloading problem for AIGC inference
in IoIT-assisted ECN. Our goal is to minimize task processing
delay, long-term system energy consumption, and load vari-
ance, while also reducing the number of failed task offloads,
all within the constraint of the maximum tolerable time. The
objective function is defined as:

Fm,t =


λ1

(
Dwait

m (t) +Dcom
m (t)

)
+ λ2

(
EInDe

m,t

)
+λ3µ

dead
m,t + λ4L

InDe
n,t , if ηm,t = 1

λ1

(
Dtrans

m,n(t) +Dedge
m,n(t)

)
+ λ3µ

dead
m,t

+λ2

(
Etrans

m,t + Eedge
n,t

)
, otherwise

(25)

Where µdead
m,t represents the task failure rate, and λ =

{λ1, λ2, λ3, λ4}, λ ∈ (0, 1), represents the weights for average
delay, energy consumption, task drop rate, and load variance,
respectively, used to balance multiple metrics. The minimiza-
tion problem can be formulated as:

minE

[
1

T

1

M

T∑
t=1

M∑
m=1

Fm,t(ηm,t)

]
, (26)

Subject to constraints (1)-(4),and

c1: 1 ≤ m ≤ M, 1 ≤ n ≤ N, ∀t ∈ T

c2: ηm,t ∈ {0, 1} , ∀m ∈ M

c3: ξm,n,t ∈ {0, 1} , ∀m ∈ M, ∀n ∈ N

c4: Dwait
m (t) +Dcom

m (t) < τmax, if ηm,t = 1

c5: Dtrans
m,n(t) +Dedge

m,n(t) < τmax, if ξm,n,t = 1

c1 represents the constraints on task execution timestamps,
the number of smart devices, and the number of ESs. c2 and
c3 ensure that AIGC tasks must either be processed on the
smart device or offloaded to an ES. c4 and c5 specify that
task latency must not exceed the maximum tolerable time.

IV. TOPPO BASED OFFLOADING METHOD IN
IOIT ASSISED ECN

The objective function of the AIGC task offloading problem,
as described by equation (26), is highly complex, making it
difficult to find the optimal solution using traditional optimiza-
tion methods. We have designed the TOPPO algorithm based
on Deep Reinforcement Learning (DRL) to effectively address
this issue. In this section, we provide a detailed explanation of
the state, action, and reward functions within the Markov De-
cision Process (MDP) for the AIGC task offloading problem,
and introduce the proposed TOPPO-based AIGC computation
offloading algorithm.

A. Markov Decision Process

1) state: At timestamp t, the InDe m detects the current
state of the AIGC task, including the task characteristics,
the edge server (ES) features, and the load status of the
queue. The state of the AIGC task is represented by Φm,t =
{µm, xm,t, ρm,t, Tmax}, where µm is the task index, xm,t is

the task size, ρm,t is the computational requirement, and Tmax
is the maximum tolerable time. Dw

m
ait(t) represents the waiting

time for device m in the queue at time t, corresponding
to the task being processed. The characteristics of the edge
server ESn,t are denoted by {f edge

n |QES-comp
n (t − 1)}, where

f edge
n represents the computational power of the ES and
QES-comp

n (t − 1) represents the queue load from the previous
time slot. Therefore, for n ∈ N and m ∈ M , the state of the
InDe m at time t is expressed as:

sm,t = {µm, xm,t, ρm,t, Tmax, D
wait
m (t), f edge

n , QES-comp
n (t− 1)}

, this state incorporates the features of both the AIGC task and
the edge server (ES), as well as the load of the computation
queue.

2) Action: The AIGC task offloading strategy consists of
two levels: the first level requires the smart device to determine
whether the current task should be offloaded, while the second
level selects the most appropriate edge server to execute the
task if offloading is needed. Thus, the action can be described
as:

am,t = (ηm,t, ξm,t))

, where, ηm,t indicates whether the task is offloaded. A value
of 1 means the task is executed locally, while 0 means it is
offloaded to the edge node.ξm,t indicates whether to select
edge server n for task execution. A value of 1 means the edge
server is selected, while 0 means it is not selected.

3) Reward function: To optimize energy consumption, task
delay, task completion rate, and load balancing of factor in the
AIGC task offloading process, the reward function is designed
to comprehensively account for these four key metrics during
decision-making. First, at time slot Tk, the average task delay
ℓD and the average energy consumption ℓE for processing
AIGC tasks are calculated.

ℓD =

Tk∑
t=1

rDm(t)

Tk
, (27)

ℓE =

Tk∑
t=1

rEm(t)

Tk
, (28)

Where, rDm(t) and rEm(t) represent the sets of energy con-
sumption and delay, respectively, for InDe m at various time
stamps

The weighted penalty value, incorporating energy consump-
tion, delay, task offloading success rate, and load balancing
factor, is calculated using the following formula:



σE = −log2

(
rEm(t)
ℓE

+ 1× 10−10
)
,

σD = 1− ℓD
Dmax

,

σF = 1− g
G ,

σL = 1
M

M∑
m=1

(
LInDe
m,t − LInDe

m,t

)2

,

(29)

Where, g represents the total number of failed offloading
tasks, G is the total number of offloaded tasks, and Dmax

denotes the maximum tolerable delay. rEm(t) refers to the most
recent energy consumption data for device m.

Based on the penalty terms for different optimization
metrics, integrating energy consumption σE , delay σD, task
success rate σF , and load balancing factor σL, the final reward
function r(t) can be expressed as follows in Equation (30):

r(t) = λ1σE + λ2σD + λ3σF + λ4σL, (30)

where λ1, λ2, λ3, and λ4 are the weight coefficients for
energy consumption, delay, task success rate, and load bal-
ancing, respectively. The reward function for the edge device
Rm(t) is given by:

Rm(t) = r(sm,t, am,t). (31)

This function calculates the reward by observing the current
state and action at time t, considering energy consumption,
delay, and load balancing. The objective of the reward is to
maximize the overall reward r(t) for InDe.

Through this MDP model, the AIGC task offloading prob-
lem can be efficiently addressed in an IoT-based computing
environment. By factoring in the dynamic network environ-
ment and available resources, smart devices can adjust their
offloading decisions in real time to optimize performance,
including minimizing energy consumption, reducing latency,
improving task success rates, and maximizing CPU utilization.

B. TOPPO based AIGC task offloading algorithm

We propose an AIGC task offloading algorithm called
TOPPO, which combines the efficient policy optimization
of PPO algorithm with the temporal dependency processing
capabilities of LSTM networks.As illustrated in Figure 2, the
dynamic changes in the AIGC task offloading environment
directly impact the offloading decisions within the TOPPO
algorithm. By incorporating LSTM networks into the policy
network (ActorLSTM) and value network (CriticLSTM) of
TOPPO, the algorithm can capture and leverage the complex
temporal dependencies present during the task offloading pro-
cess. Additionally, we introduce a step size limit and clipping
mechanism for policy updates to enhance the stability of the
training process and reduce fluctuations during policy updates.
Through continuous interaction with the AIGC task offloading
environment, the algorithm continuously learns and optimizes
the offloading policy, resulting in higher task success rates,
reduced latency, energy savings, and improved load balancing.

Since LSTM can effectively capture both the short-term
and long-term dependencies of task states and environmental
changes, it enables TOPPO to more accurately predict task
demands and the load status of edge nodes in dynamic
environments, thereby enhancing the robustness of decision-
making. To leverage this capability, we integrate an LSTM
layer into the first layer of both the policy network and value
network in the original PPO structure, allowing it to process
time-series information obtained from the environment.

At each time step, the state sequence (a sequence of histor-
ical states) is fed into the LSTM, which outputs the features

Fig. 2: TOPPO Algorithm Overview for Efficient AIGC Task Offloading

corresponding to the last time step. The time-series features
produced by the LSTM are then concatenated with the current
state st observed from the environment. This combined feature
set is subsequently processed through two fully connected
layers in sequence.

As shown in Figure 2, the policy network first outputs the
current state st of the environment. The offloading action
am,t = (ηm,t, ξm,t)is sampled according to the probability
distribution πθ(at | st). This action am,t = (ηm,t, ξm,t)
determines the offloading decision for the AIGC task. The
environment then returns an immediate reward rt, which
is a function of the reward function, delay, and penalty
for offloading. Simultaneously, the state transition function
P (st+1 | st, at) returns a new state st+1, which is used as
the input state for the policy network in the next iteration.

For each task offloading, the system collects the four
elements (st, at, rt, st+1), which include the previous state st,
the action executed at, the immediate reward rt, and the next
state st+1. These data are used for subsequent policy updates
and value estimation.

The value network uses the immediate reward rt and the
estimated value of the next state st+1 to calculate the Temporal
Difference (TD) error, as shown below:

δt = rt + γVϕ(st+1)− Vϕ(st), (32)

The objective of the value network is to optimize the state
value function V (st) by minimizing the Temporal Difference

(TD) error. Therefore, the loss function for the value network
is typically defined as:

Lvalue(ϕ) = Et

[(
Vϕ(st)− V̂ (st)

)2
]
, (33)

where, Vϕ(st) is the current estimate of the value network
for state st. The target value V̂ (st) = rt + γVϕ(st+1) is
calculated using the immediate reward and the estimated value
of the next state. The loss function measures the mean squared
error between the current estimate of the value network and
the target value.

By computing the gradient of the loss function with respect
to the parameters and using gradient descent, the value net-
work parameters are updated as shown in Equation (34):

ϕnew = ϕold − β∇ϕL
value(ϕ), (34)

where β is the learning rate, controlling the step size of each
update. The value network gradually adjusts its parameters
by minimizing the squared TD error, allowing the network to
more accurately estimate the long-term value of each state.

After updating the value network, the advantage function
At is calculated based on the updated value network output
and serves as the basis for updating the policy network. The
advantage function At evaluates the advantage of the current
action in the context of the AIGC task offloading decision
relative to the expected policy. This value is crucial for policy
network optimization. The Generalized Advantage Estimation

(GAE) is an efficient method for capturing state-value changes
and is used in TOPPO to compute the advantage function At:

At =
T−t∑
l=0

(γλ)lδt+l, (35)

When the advantage function is computed, the policy net-
work is updated using the clipped objective function from
PPO:

LTOPPO(θ) = Et [min (rt(θ)At, clip (rt(θ), 1− ϵ, 1 + ϵ)At)] ,
(36)

where At is the advantage function calculated via GAE,
ensuring that the policy update captures multi-step advantages
during the offloading process; rt(θ) = πθ(at|st)

πθold (at|st) is the
probability ratio of the new and old policies for the given
state-action pair, used for policy step updates.

To control the update magnitude and prevent drastic changes
during a single policy update, ϵ is the clipping parameter
that restricts the update range, ensuring policy stability and
robustness.

Finally, the policy network weights are updated using the
following parameter update rule:

θnew = θold + α∇θL
TOPPO(θ), (37)

where α is the learning rate, which determines the step size
for each update.

The TOPPO algorithm, through stable policy updates and
efficient value evaluation, effectively adapts to dynamic envi-
ronmental changes in AIGC task offloading. By incorporating
the LSTM module, it efficiently captures temporal dependen-
cies in complex and dynamic task offloading environments,
optimizing offloading decisions. Through continuous interac-
tion with the environment, it learns improved policies and
value estimates, leading to significant improvements in task
offloading decisions in terms of latency, energy consumption,
and load balancing.

The pseudocode for the AIGC task offloading algorithm
TOPPO is shown in Algorithm 1.

C. Computational Complexity Analysis

To evaluate the operational efficiency and resource re-
quirements of the TOPPO algorithm at different scales, we
conducted a computational complexity analysis. In Algorithm
1, the complexity of initializing the parameters θ and ϕ of
the ActorLSTM and CriticLSTM networks is O(1). This is a
constant initialization operation and can be ignored.

During the episode loop, we iterate over each episode, from
e = 1 to emax, with a linear complexity of O(emax), which
depends on the number of episodes. In each episode, the
TOPPO algorithm resets the task offloading environment and
obtains the initial state s0. The computational complexity also
needs to consider the T time steps within each episode, so the
complexity of the time step loop is O(T).

Additionally, at each time step, actions are selected and
network updates are performed on M intelligent devices
(InDes), resulting in a device loop complexity of O(M). For
each intelligent device, the ActorLSTM forward pass, action

Algorithm 1 TOPPO Algorithm for AIGC Task Offloading

1: Initialize ActorLSTM parameters θ and CriticLSTM pa-
rameters ϕ

2: for each episode e = 1 to emax do
3: Reset the AIGC task offloading environment to obtain

initial state s0
4: Initialize actions for all Intelligent devices (InDes)
5: while not done do
6: for each InDe m in InDes do
7: Pass state sm,t to the ActorLSTM network
8: Compute action probability πθ(am,t|sm,t) and

sample action am,t

9: Execute action am,t, obtain reward rm,t, and
observe next state sm,t+1

10: Store current observation
⟨sm,t, am,t, rm,t, sm,t+1⟩

11: Pass the current state st to CriticLSTM
12: Compute state value Vϕ(st) and Vϕ(st+1)
13: Use in Eq.32 to compute temporal-difference

error
14: Update CriticLSTM using Eq.33
15: Update ϕ in Eq.34 using the gradient descent
16: Use Eq.35 to compute Generalized advantage

estimations At

17: Use the clipped objective function LTOPPO(θ)
in Eq.36 to update ActorLSTM

18: Update θ using the gradient descent method in
Eq.37.

19: end for
20: end while
21: end for

sampling, and execution have a complexity of O(1), advan-
tage function calculation, and network updates via backward
propagation are performed. We assume the complexity of the
ActorLSTM network update operation is O(D). Since both
the ActorLSTM network and CriticLSTM network contain
network update operations in the TOPPO algorithm, the com-
plexity is 2×O(D).

In summary, the total computational complexity of the
TOPPO algorithm is:

O(2emaxTMD),

where, O(D) = O(H2 + a1 × b1 + a2 × b2 + a3 × b3),
O(D) includes the complexity of one LSTM layer and three
fully connected layers. H represents the number of hidden
units in the LSTM, a is the input dimension of each fully
connected layer, and b is the output dimension of each fully
connected layer.

V. RESULT AND ANALYSIS

In this section, we first introduce the experimental setup,
followed by the evaluation and analysis of the performance
of the proposed TOPPO method. Finally, we compare and
analyze the proposed method against several benchmark al-
gorithms.

A. Experimental Setup and Application Scenario

We simulated an intelligent factory scenario to evaluate the
DRL-based AIGC task offloading s trategy. T he experimental
environment includes two types of smart devices: production
line controllers and high-resolution defect detection cameras.
These devices have computational capabilities ranging from
3 ∼ 5 GHz and can generate AIGC tasks based on production
demands. For example, production line controllers process
real-time operational data to generate detailed production pro-
cess reports, including critical data such as production speed,
temperature, and quality metrics, as well as predictive analysis
based on historical data. Defect detection cameras analyze
high-resolution product images to generate annotated defect
analysis reports, identifying potential defects (e.g., surface
scratches, misalignment) and providing recommendations for
equipment adjustments.

AIGC tasks generally have high computational density and
large data volume characteristics. Therefore, the computational
density ρm,t, m ∈ M, t ∈ T is set in the range of [2000, 3000]
Megacycles to address the computational needs of complex
content generated by AIGC. Meanwhile, the factory’s internal
network is connected via a high-speed industrial wireless
network with a transmission rate of 14 Mbps, efficiently
supporting task offloading. T he t ask d ata s ize x m,t ranges
from 2 ∼ 8 Mbits, covering the diverse output requirements of
generated text reports and annotated defect images. The main
parameter settings are summarized in Table 3.

TABLE III: Parameters settings of simulation experiments

Parameter Value
M {20, 30, 40, 50, 60}
N 8
∆t 0.1s

fInDe
m ,∀m ∈ M [3.0, 5.0] GHz
fedge
n , ∀n ∈ N [30, 41.8] GHz

rtrans
m,n ,∀m ∈ M, ∀n ∈ N 14 Mbps
xm,t, ∀m ∈ M,∀t ∈ T [2.0, 10.0] Mbits
ρm,t, ∀m ∈ M,∀t ∈ T [2000, 3000] Megacycles
P InDe
wait and P edge

wait 0.1 W [32]
P trans
m,n , ∀m ∈ M, ∀n ∈ N 2.3 W [32]

AIGC-Task arrival probability 0.6

The processing of each AIGC task is optimized by a
dynamic scheduling strategy driven by TOPPO. After task
generation, the device determines whether to execute the task
locally or offload it to an edge server based on the current com-
putational load, the number of tasks, and network conditions.
The TOPPO selects the optimal task processing strategy by
evaluating parameters such as device energy consumption and
edge server resource availability in real-time. Offloaded tasks
are transmitted to the most suitable edge server for processing,
and the results are promptly returned to the originating device.
For tasks executed locally, the device leverages its limited
computational resources to ensure timely completion, achiev-
ing a dynamic balance among latency, energy consumption,
and CPU utilization.

B. Performance and Convergence Analysis of The Proposed
Algorithm

Although the convergence of the PPO algorithm has already
been thoroughly demonstrated in theoretical terms in existing
work [34], our proposed TOPPO algorithm introduces an
LSTM network structure within both the policy and value net-
works. This addition brings extra state variables and increases
the number of parameters (e.g., hidden layer dimensions,
memory cell size), making gradient calculations more complex
and requiring careful hyperparameter tuning to ensure the
convergence of the proposed algorithm. Improper hyperpa-
rameter selection could lead to unstable convergence or even
failure to converge. Therefore, We conducted experiments
under a scenario involving 30 AIGC InDes (M = 30) and
8 ESs (N = 8) to validate the convergence of the proposed
algorithm. Additionally, we analyzed the impact of key hyper-
parameters—learning rate (lr), batch size, and discount factor
γ—on the convergence behavior, observing the stability and
speed of convergence across various configurations.

In the proposed TOPPO, the policy network determines
the optimal task offloading decisions, deciding whether to
offload AIGC tasks and to which edge server. Meanwhile, the
value network estimates the long-term rewards of offloading
decisions, ensuring efficient utilization of system resources.
For the TOPPO algorithm to converge effectively, certain
hyperparameters play a critical role in balancing convergence
speed and stability. One of these key hyperparameters is
the learning rate, which controls the update speed for the
policy and value networks. If the learning rate is set too
high, the offloading strategy may become unstable; if it is
too low, the optimization process could slow, risking pre-
mature convergence at suboptimal points. Similarly, Larger
batch sizes produce more stable updates, promoting smooth
convergence to an optimal offloading strategy, while smaller
batch sizes may accelerate convergence but with increased
risks of instability and oscillations in the learning process.
By analyzing these hyperparameters, we aim to refine the
TOPPO algorithm’s convergence, enabling it to reach a stable
and optimal solution effectively.

To determine the optimal learning rate (lr) and batch size for
the AIGC task offloading problem, we conducted a series of
experiments. The experimental results are shown in Figure 3.
lr1 represents the learning rate of the policy network, and
lr2 represents the learning rate of the value network. As
seen in figure 3(a), when lr1=1e-3 and lr2=1e-3, or lr1=1e-
3 and lr2=1e-4, TOPPO achieves higher rewards compared to
other configurations. However, in the early stages of training,
lr1=lr2=1e-3 demonstrates faster convergence. Therefore, we
set the learning rates for both the policy and value networks
to 1e-3 to balance rapid and stable convergence.

As show in figure 3(b), a batch size of 64 produces the high-
est reward, optimizing energy consumption, delay and load for
AIGC task offloading. This batch size also leads to smooth
convergence, avoiding the fluctuations seen with smaller batch
sizes and promoting efficient learning. As a result, we selected
a batch size of 64 for subsequent experiments.

The discount factor γ in deep reinforcement learning is

50 100 150 200
Episode

200

210

220

230
Av

er
ag

e
re

wa
rd

lr1=1e-1, lr2=1e-2
lr1=1e-2, lr2=1e-3
lr1=1e-3, lr2=1e-3
lr1=1e-3, lr2=1e-4

lr1=1e-4, lr2=1e-3
lr1=1e-4, lr2=1e-5
lr1=1e-5, lr2=1e-4
lr1=1e-5, lr2=1e-6

(a) Learning rate

50 75 100 125 150 175 200
Episode

200

210

220

230

Av
er

ag
e

re
wa

rd

Batch Size=8
Batch Size=16
Batch Size=32

Batch Size=64
Batch Size=128
Batch Size=256

(b) Batch size

0 50 100 150 200
Episode

160

180

200

220

Av
er

ag
e

re
wa

rd

= 0.0
= 0.5
= 0.8

= 0.95
= 0.99
= 0.9

(c) Discount Factor

Fig. 3: Convergence of the proposed algorithm under different key hyperparameters

crucial for balancing immediate rewards with long-term re-
turns. It determines the extent to which an agent considers
future rewards when making decisions. In the context of AIGC
task offloading, selecting an appropriate γ helps the agent
balance immediate computation delays with long-term system
performance in offloading decisions. Experiment results shown
in Figure 3(c) illustrate that when γ = 0, TOPPO focuses
solely on immediate rewards, entirely ignoring future returns,
leading to quicker, short-sighted convergence but lower overall
performance. At γ = 0.5, the agent prioritizes short-term
performance but shows signs of more balanced convergence.
At γ = 0.9, TOPPO achieves a balance between present
rewards and future returns, leading to optimal performance and
consistent convergence. Finally, at γ = 0.99, TOPPO focuses
almost entirely on long-term rewards, which promotes conver-
gence towards an optimal solution for long-term performance,
albeit with slower convergence in initial stages.

To explore the impact of the number of production process
report generation tasks and defect analysis report generation
tasks on the optimization metrics of TOPPO (average latency
and task failure rate), we conducted extensive experiments by
varying the number of tasks generated within 100 timestamps.
As shown in Figure 4, production process report generation
tasks are represented as type A AIGC tasks, with each task
size ranging from 2 to 4 Mbits, while defect analysis report
generation tasks are defined as type B AIGC tasks, with each
task size ranging from 5 to 8 Mbits. The average latency and
task failure rate for both production process report generation
tasks and defect analysis report generation tasks increased as
the number of tasks grew.

C. Compare Methods

To highlight the practicality and effectiveness of deep re-
inforcement learning-based methods for AIGC task offloading
optimization, we compared them with traditional methods such
as Round-Robin and Random. Additionally, to demonstrate
the superior optimization capability of the proposed TOPPO
algorithm, we conducted comparisons with other DRL-based
methods, including DQN [35], Double DQN [36], Dueling
DQN [37],D3QN [38], AC [39], and A2C [32]. Experimental
results show that the TOPPO algorithm exhibits strong repre-
sentativeness and comparability.

Fig. 4: Performance of Average Latency and Failure Rate for
AIGC Tasks (Type A and Type B)

0 25 50 75 100 125 150 175 200
Episode

0

50

100

150

200

Av
er

ag
e

re
wa

rd

Round-Robin
Random
DQN
DoubleDQN
DuelingDQN

D3QN
AC
A2C
TOPPO

Fig. 5: Comparison of Average Reward Across Different
Methods

Our evaluation metrics include energy consumption, delay,
load, and task failure rate. By considering these four key
metrics for AIGC services, we aim to derive the optimal AIGC
task offloading and scheduling solution.

The reward value is a comprehensive metric that integrates
four performance indicators: energy consumption, delay, load,
and task failure rate. As shown in Figure 5, the reward values
of our proposed TOPPO are better than those of the other
eight baseline algorithms. As shown in Table IV, our method

achieves approximately a 100% improvement compared to
traditional methods like Round-Robin and Random, demon-
strating significant e nhancements. W hen c ompared t o similar
deep reinforcement learning algorithms, TOPPO shows im-
provements of 8.36% over DQN, 12.08% over Double DQN,
8.43% over Dueling DQN, 19.97% over D3QN, 11.61% over
AC, and 8.82% over A2C. Additionally, TOPPO converges
faster, reaching a near-optimal solution when the episode count
reaches 40.

The rapid convergence of TOPPO highlights its efficiency
in adapting to the offloading environment and finding optimal
task allocations quickly. In contrast, the slower convergence of
AC and A2C indicates higher sensitivity to parameter tuning
and less stability in the early training stages, whereas TOPPO’s
structured learning approach enables stable convergence even
with relatively fewer episodes.

TABLE IV: Comparison of different algorithms on various
objectives and rewards

Algorithm Objective Reward
Delay Energy con-

sumption
Dropout Loading

Round-Robin 0.781 3869.83 0.160 0.1248 -0.29
Random 0.830 4118.00 0.163 0.1138 -5.77
DQN 0.337 1404.67 0.071 0.7370 193.73
DoubleDQN 0.297 1196.33 0.073 0.7459 189.39
DuelingDQN 0.285 1120.17 0.075 0.7375 192.12
D3QN 0.401 1744.00 0.083 0.6510 171.43
AC 0.279 1031.17 0.074 0.7400 182.08
A2C 0.276 1032.00 0.078 0.7230 189.05
TOPPO 0.265 984.17 0.063 0.7925 205.99

In the experimental evaluation of energy consumption for
AIGC task offloading, as illustrated in Figure 6(a), the pro-
posed TOPPO algorithm demonstrated clear advantages over
all baseline algorithms. Specifically, compared to the tradi-
tional Round-Robin and Random algorithms, TOPPO reduced
energy consumption by 74.57% and 76.10%, respectively.
When compared with reinforcement learning-based meth-
ods such as DQN, DoubleDQN, and DuelingDQN, TOPPO
achieved energy savings of 29.94%, 17.73%, and 12.14%,
respectively. Furthermore, TOPPO outperformed actor-critic-
based methods, offering a 4.56% reduction in energy con-
sumption compared to AC and a 4.64% reduction compared
to A2C. These results highlight the superior energy efficiency
of TOPPO, which consistently minimizes energy consumption
across both traditional and advanced baselines, making it a
highly effective solution for AIGC task offloading in energy-
constrained edge computing environments.

As illustrated in Figure 6(b), the proposed TOPPO algorithm
shows significant improvements in delay optimization for
AIGC task offloading, outperforming all baseline methods. In
particular, compared to traditional scheduling methods like
Round-Robin and Random, TOPPO achieves a remarkable
reduction in delay by 66.11% and 68.09%, respectively,
demonstrating its ability to substantially reduce latency in
task offloading scenarios. Among more advanced deep re-
inforcement learning-based methods, TOPPO also delivers
considerable delay savings, reducing delay by 21.48% com-

pared to DQN, 10.91% compared to DoubleDQN, and 7.09%
compared to DuelingDQN. These results highlight TOPPO’s
efficiency in managing the dynamic nature of task offloading
while maintaining low latency. Additionally, TOPPO surpasses
actor-critic-based methods such as AC and A2C. Although the
delay reduction compared to AC (4.84%) and A2C (3.96%)
is relatively smaller, TOPPO still optimizes performance,
demonstrating its robustness across different algorithm types.
In conclusion, TOPPO consistently reduces delays across a
range of algorithms, making it a highly effective solution for
AIGC task offloading and ensuring efficient task processing
in latency-sensitive environments.

As shown in Figure 6(c), the proposed TOPPO algorithm
has a lower AIGC task failure rate compared to the other 8
baseline algorithms. This indicates that our method effectively
improves the success rate of AIGC task completion.

We conducted a comparative experiment to evaluate the
CPU utilization before and after load optimization using
TOPPO. The experimental results, as shown in Figure 7,
demonstrate that in the early stages before TOPPO optimiza-
tion, the number of AIGC tasks executed locally on intelligent
devices was relatively low, leaving many devices underutilized,
resulting in a suboptimal CPU utilization of only 42.57%.
However, after applying TOPPO optimization, there was a
significant improvement in load distribution, with the average
CPU utilization increasing to 79.25%.

To verify the generalization ability and stability of the
proposed method, we increased the number of AIGC service
intelligent devices M (i.e., the number of AIGC tasks) and
conducted comparative experiments against 8 baseline algo-
rithms. As shown in Figure 8, when the number of tasks
is small, the AC series algorithms outperform the proposed
TOPPO algorithm. However, when M ≥ 30, the average
reward of the TOPPO method consistently exceeds that of the
8 baseline algorithms. This demonstrates that the proposed al-
gorithm can effectively generalize to offloading and scheduling
scenarios with a larger number of AIGC service devices.

To validate the robustness of the TOPPO method across het-
erogeneous computational capacities, we incorporated a series
of experiments where we varied the computational capabilities
of the edge servers. As shown in Figure 9, under varying
computational capacities of edge servers, TOPPO achieves su-
perior solutions compared to other baseline algorithms across
multiple metrics, including energy consumption, latency, load,
and task success rate. Experimental results demonstrate that
TOPPO is minimally impacted by device computational power,
demonstrating strong adaptability.

The joint optimization of energy consumption and work-
load enables AIGC tasks to achieve low latency and high
efficiency in applications such as smart homes, intelligent
transportation, and smart factories. By reducing device energy
consumption, operational time is extended, while workload
optimization improves the system’s real-time responsiveness,
ensuring rapid execution of AIGC tasks. In intelligent trans-
portation, optimized AIGC tasks enable real-time analysis and
decision-making, enhancing traffic safety and efficiency. In
smart factories, this optimization supports a higher number
of concurrent tasks, reducing costs and enhancing automation

0 50 100 150 200
Episode

1000

2000

3000

4000
Av

er
ag

e
en

er
gy

(J)

Round-Robin
Random
DQN
DoubleDQN
DuelingDQN

D3QN
AC
A2C
TOPPO

(a) Energy Consumption

0 50 100 150 200
Episode

0.4

0.6

0.8

Av
er

ag
e

de
la

y(
Se

c)

Round-Robin
Random
DQN
DoubleDQN
DuelingDQN

D3QN
AC
A2C
TOPPO

(b) Latency

0 25 50 75 100 125 150 175 200
Episode

0.06

0.08

0.10

0.12

0.14

0.16

Av
er

ag
e

dr
op

ou
t Round-Robin

Random
DQN
DoubleDQN
DuelingDQN

D3QN
AC
A2C
TOPPO

(c) AIGC Task Failure Rate

Fig. 6: Comparison of Energy Consumption and Latency Convergence Across Different Methods

(a) CPU Utilization - Early Stage of Optimization (b) CPU Utilization - Later Stage of Optimization

Fig. 7: Comparison of CPU Utilization Across Different Stages of TOPPO Optimization

Fig. 8: Comparison of Reward for Different Methods and
different number of InDe

levels. Overall, the optimization of energy consumption and
workload provides a more efficient and scalable execution
environment for AIGC tasks, driving intelligent applications
toward sustainable development.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an AIGC task offloading frame-
work (AIECOF) for the IoIT-assisted ECN. Based on this
framework, we formulated the AIGC task offloading problem
as a complex mathematical optimization problem. To solve
this, we introduced a novel AIGC task offloading algorithm
(TOPPO), which integrates the efficient policy optimization
of Proximal Policy Optimization (PPO) with the temporal
dependency handling capabilities of Long Short-Term Mem-
ory (LSTM). The integration of LSTM not only enhances
TOPPO’s adaptability to dynamic environments but also opti-
mizes energy consumption, reduces latency, and ensures load
balancing in the AIGC task offloading process. When tested
with m = 30 and n = 8, the TOPPO offloading algorithm
delivered approximately 100% higher average cumulative re-
wards compared to traditional methods like RR and random
algorithms. Additionally, when compared to six state-of-the-art
DRL algorithms, TOPPO demonstrated significant improve-
ments, achieving up to 43.56% energy savings and reducing
latency by as much as 33.90%. Moreover, it boosted the
combined average reward for energy efficiency, latency, task
success rate, and loading by over 8.36%. Even as the number
of AIGC tasks increased, TOPPO consistently outperformed

(a) Energy Consumption (b) Latency

(c) Loading (d) Task Completion Rate

Fig. 9: Comparison of different performance indicators under different computing capabilities of ESs

other methods, showcasing robust performance.
In future work, we will explore the performance of the

TOPPO algorithm in larger-scale AIGC task offloading scenar-
ios. By integrating Transformer models, TOPPO is expected to
achieve new breakthroughs in adaptability and robustness for
large-scale AIGC task offloading, further extending its applica-
tion to broader task scheduling scenarios in edge computing.

ACKNOWLEDGMENT

This work was supported in part by the National Natu-
ral Science Foundation of China under grant No.52275480;
in part by the Guizhou Provincial Department of Science
and Technology Project under grant Nos.QKHZYD[2023]002,
QKHP-GCC[2023]001, QKHP-KXJZ[2024]002; and in part
by the Guiyang Science and Technology Platform Construc-
tion Project under Grant No.ZKHT[2023]7; and in part by
China Scholarship Council [No.202306670004].

REFERENCES

[1] J. Wang, H. Du, D. Niyato, J. Kang, S. Cui, X. S. Shen, and P. Zhang,
“Generative ai for integrated sensing and communication: Insights from
the physical layer perspective,” IEEE Wireless Communications, 2024.

[2] M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han,
A. Jamalipour, D. I. Kim, X. Shen et al., “Unleashing the power of
edge-cloud generative ai in mobile networks: A survey of aigc services,”
IEEE Communications Surveys & Tutorials, vol. 26, no. 2, pp. 1127–
1170, 2024.

[3] J. Wang, H. Du, D. Niyato, Z. Xiong, J. Kang, B. Ai, Z. Han, and
D. I. Kim, “Generative artificial intelligence assisted wireless sensing:
Human flow detection in practical communication environments,” IEEE
Journal on Selected Areas in Communications, 2024.

[4] Y. Liu, X. Lin, S. Li, G. Li, Q. Mao, and J. Li, “Towards multi-
task generative-ai edge services with an attention-based diffusion drl
approach,” arXiv preprint arXiv:2405.08328, 2024.

[5] M. Y. Akhlaqi and Z. B. M. Hanapi, “Task offloading paradigm in
mobile edge computing-current issues, adopted approaches, and future
directions,” Journal of Network and Computer Applications, vol. 212,
p. 103568, 2023.

[6] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, “A novel
framework for mobile-edge computing by optimizing task offloading,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 13 065–13 076, 2021.

[7] J. Wang, H. Du, Y. Liu, G. Sun, D. Niyato, S. Mao, D. I. Kim, and
X. Shen, “Generative ai based secure wireless sensing for isac networks,”
arXiv preprint arXiv:2408.11398, 2024.

[8] B. Lai, J. Wen, J. Kang, H. Du, J. Nie, C. Yi, D. I. Kim, and S. Xie,
“Resource-efficient generative mobile edge networks in 6g era: Funda-
mentals, framework and case study,” IEEE Wireless Communications,
vol. 31, no. 4, pp. 66–74, 2024.

[9] C. Xu, J. Guo, J. Zeng, S. Meng, X. Chu, J. Cao, and T. Wang,
“Enhancing ai-generated content efficiency through adaptive multi-
edge collaboration,” in 2024 IEEE 44th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2024, pp. 960–970.

[10] Q. Liu, Z. Tian, N. Wang, and Y. Lin, “Drl-based dependent task of-
floading with delay-energy tradeoff in medical image edge computing,”
Complex & Intelligent Systems, pp. 1–22, 2024.

[11] B. He, H. Li, and T. Chen, “Drl-based computing offloading approach
for large-scale heterogeneous tasks in mobile edge computing,” Con-
currency and Computation: Practice and Experience, vol. 36, no. 19, p.
e8156, 2024.

[12] K. Jia, H. Xia, R. Zhang, Y. Sun, and K. Wang, “Multi-agent drl for edge
computing: A real-time proportional compute offloading,” Computer

Networks, vol. 252, p. 110665, 2024.
[13] J. Lu, J. Yang, S. Li, Y. Li, W. Jiang, J. Dai, and J. Hu, “A2c-drl:

Dynamic scheduling for stochastic edge-cloud environments using a2c
and deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 11, no. 9, pp. 16 915–16 927, 2024.

[14] M. K. Mondal, S. Banerjee, D. Das, U. Ghosh, M. S. Al-Numay, and
U. Biswas, “Towards energy-efficient and cost-effective task offloading
in mobile edge computing for intelligent surveillance systems,” IEEE
Transactions on Consumer Electronics, 2024.

[15] T. Baker, Z. Al Aghbari, A. M. Khedr, N. Ahmed, and S. Girija, “Editors:
Energy-aware dynamic task offloading using deep reinforcement transfer
learning in sdn-enabled edge nodes,” Internet of Things, vol. 25, p.
101118, 2024.

[16] Z. Gao, L. Yang, and Y. Dai, “Large-scale computation offloading using
a multi-agent reinforcement learning in heterogeneous multi-access edge
computing,” IEEE Transactions on Mobile Computing, vol. 22, no. 6,
pp. 3425–3443, 2022.

[17] J. Ren, T. Hou, H. Wang, H. Tian, H. Wei, H. Zheng, and X. Zhang,
“Collaborative task offloading and resource scheduling framework for
heterogeneous edge computing,” Wireless Networks, vol. 30, no. 5, pp.
3897–3909, 2024.

[18] X. Yuan, Z. Zhang, C. Feng, Y. Cui, S. Garg, G. Kaddoum, and K. Yu,
“A dqn-based frame aggregation and task offloading approach for edge-
enabled iomt,” IEEE Transactions on Network Science and Engineering,
vol. 10, no. 3, pp. 1339–1351, 2022.

[19] C. Fang, Z. Hu, X. Meng, S. Tu, Z. Wang, D. Zeng, W. Ni, S. Guo,
and Z. Han, “Drl-driven joint task offloading and resource allocation for
energy-efficient content delivery in cloud-edge cooperation networks,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 12, pp. 16 195–
16 207, 2023.

[20] C. Li, J. Xia, F. Liu, D. Li, L. Fan, G. K. Karagiannidis, and A. Nal-
lanathan, “Dynamic offloading for multiuser muti-cap mec networks: A
deep reinforcement learning approach,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 3, pp. 2922–2927, 2021.

[21] L. Ai, B. Tan, J. Zhang, R. Wang, and J. Wu, “Dynamic offloading
strategy for delay-sensitive task in mobile-edge computing networks,”
IEEE Internet of Things Journal, vol. 10, no. 1, pp. 526–538, 2022.

[22] S. Li, X. Lin, H. Xu, K. Hua, X. Jin, G. Li, and J. Li, “Multi-agent
rl-based industrial aigc service offloading over wireless edge networks,”
arXiv preprint arXiv:2405.02972, 2024.

[23] J. Zhang, Z. Wei, B. Liu, X. Wang, Y. Yu, and R. Zhang, “Cloud-
edge-terminal collaborative aigc for autonomous driving,” IEEE Wireless
Communications, vol. 31, no. 4, pp. 40–47, 2024.

[24] D. Wang, H. Zhu, C. Qiu, Y. Zhou, and J. Lu, “Distributed task
offloading in cooperative mobile edge computing networks,” IEEE
Transactions on Vehicular Technology, vol. 73, no. 7, pp. 10 487–10 501,
2024.

[25] W. Zeng, J. Zheng, H. Wang, Q. Sun, R. Cao, S. Ji, J. Ren, and L. Gaol,
“Delay-aware parallel offloading aigc service in edge computing,” in
2024 IEEE/CIC International Conference on Communications in China
(ICCC Workshops). IEEE, 2024, pp. 208–213.

[26] F. Ramezani Shahidani, A. Ghasemi, A. Toroghi Haghighat, and A. Ke-
shavarzi, “Task scheduling in edge-fog-cloud architecture: a multi-
objective load balancing approach using reinforcement learning algo-
rithm,” Computing, vol. 105, no. 6, pp. 1337–1359, 2023.

[27] C. Xu, “Phd forum abstract: Diffusion-based task scheduling for effi-
cient ai-generated content in edge networks,” in 2024 23rd ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 2024, pp. 333–334.

[28] W. Cheng, X. Liu, X. Wang, and G. Nie, “Task offloading and resource
allocation for industrial internet of things: A double-dueling deep q-
network approach,” IEEE Access, vol. 10, pp. 103 111–103 120, 2022.

[29] H. Li, K. D. R. Assis, S. Yan, and D. Simeonidou, “Drl-based long-
term resource planning for task offloading policies in multiserver edge
computing networks,” IEEE Transactions on Network and Service Man-
agement, vol. 19, no. 4, pp. 4151–4164, 2022.

[30] L. Zhao, E. Zhang, S. Wan, A. Hawbani, A. Y. Al-Dubai, G. Min, and
A. Y. Zomaya, “Meson: A mobility-aware dependent task offloading
scheme for urban vehicular edge computing,” IEEE Transactions on
Mobile Computing, vol. 23, no. 5, pp. 4259–4272, 2023.

[31] I. Ullah, H.-K. Lim, Y.-J. Seok, and Y.-H. Han, “Optimizing task of-
floading and resource allocation in edge-cloud networks: a drl approach,”
Journal of Cloud Computing, vol. 12, no. 1, p. 112, 2023.

[32] K. Zhu, S. Li, X. Zhang, J. Wang, C. Xie, F. Wu, and R. Xie, “An
energy-efficient dynamic offloading algorithm for edge computing based
on deep reinforcement learning,” IEEE Access, vol. 12, pp. 127 489–
127 506, 2024.

[33] J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization for
efficient hierarchical federated learning in wireless edge networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
2687–2700, 2021.

[34] M. Holzleitner, L. Gruber, J. Arjona-Medina, J. Brandstetter, and
S. Hochreiter, “Convergence proof for actor-critic methods applied to
ppo and rudder,” in Transactions on Large-Scale Data-and Knowledge-
Centered Systems XLVIII: Special Issue In Memory of Univ. Prof. Dr.
Roland Wagner. Springer, 2021, pp. 105–130.

[35] M. Ibrahim, A. Alsheikh, and R. Elhafiz, “Resiliency assessment of
power systems using deep reinforcement learning,” Computational In-
telligence and Neuroscience, vol. 2022, no. 1, p. 2017366, 2022.

[36] A. Staffolani, V.-A. Darvariu, P. Bellavista, and M. Musolesi, “Rlq:
Workload allocation with reinforcement learning in distributed queues,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 3,
pp. 856–868, 2023.

[37] A. Chraibi, S. Ben Alla, A. Touhafi, and A. Ezzati, “A novel dynamic
multi-objective task scheduling optimization based on dueling dqn and
per,” The Journal of Supercomputing, vol. 79, no. 18, pp. 21 368–21 423,
2023.

[38] H. Hu, D. Wu, F. Zhou, X. Zhu, R. Q. Hu, and H. Zhu, “Intelligent
resource allocation for edge-cloud collaborative networks: A hybrid
ddpg-d3qn approach,” IEEE Transactions on Vehicular Technology,
vol. 72, no. 8, pp. 10 696–10 709, 2023.

[39] B. Wang, L. Liu, and J. Wang, “Task offloading optimization based on
actor-critic algorithm in vehicle edge computing,” in 2023 International
Wireless Communications and Mobile Computing (IWCMC). IEEE,
2023, pp. 687–692.

