
1

Swarm-Net: Firmware Attestation in IoT Swarms
using Graph Neural Networks and Volatile Memory

Varun Kohli†, Bhavya Kohli†, Muhammad Naveed Aman, Senior Member, IEEE, Biplab Sikdar, Senior
Member, IEEE

Abstract—Amidst the large-scale deployment of IoT networks
worldwide, studies have highlighted critical security concerns
many of which stem from firmware-related issues. IoT swarms
have become more prevalent in industries, smart homes, and
agricultural applications and malicious activity on one node can
propagate to other network sections. While several Remote Attes-
tation (RA) techniques have been proposed in the literature, they
are limited by their latency, availability, complexity, hardware
assumptions, and uncertain access to firmware copies under
Intellectual Property (IP) rights. To address these problems, we
present Swarm-Net, a novel swarm attestation technique that
uses Graph Neural Networks (GNNs) to exploit the inherent,
interconnected, graph-like structure of IoT networks and the
runtime information stored in the Static Random Access Memory
(SRAM). We also present the first datasets on SRAM-based
swarm attestation encompassing different types of firmware
and edge relationships. In addition, a secure swarm attestation
protocol is proposed to ensure authentication, availability, and
attestation. Swarm-Net is computationally lightweight and does
not require a copy of the firmware. It achieves a 99.96%
attestation rate on authentic firmware, 100% detection rate on
anomalous firmware, and 99% detection rate on propagated
anomalies, at a communication overhead and inference latency of
∼ 1 second and ∼ 10−5 seconds (on a laptop CPU), respectively.
In addition to the collected datasets, Swarm-Net’s effectiveness is
evaluated on simulated trace replay, random trace perturbation,
and dropped attestation responses, showing robustness against
such threats. Lastly, we compare Swarm-Net with past works
and present a security analysis.

Index Terms—Internet of Things (IoT), Remote Attestation
(RA), Swarm Attestation, Graph Neural Networks (GNN),
Anomaly Detection, Static Random Access Memory (SRAM)

I. INTRODUCTION

The Internet of Things (IoT) has emerged as a leading
force behind smart city initiatives for agriculture, healthcare,
homes, industry, transportation security, and supply chains,
owing to advances in 5G, artificial intelligence, and edge

This research was supported in part by the National Research Foun-
dation, Singapore and Infocomm Media Development Authority under its
Future Communications Research Development Programme, under grant FCP-
NUSRG-2022- 019. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore and Infocomm Media
Development Authority.

V. Kohli and B. Sikdar are with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117417. (e-mail:
varun.kohli@u.nus.edu, bsikdar@nus.edu.sg).

B. Kohli is with the Center for Machine Intelligence and Data Science,
Indian Institute of Technology Bombay, Mumbai, India 400076. (e-mail:
bhavyakohli@iitb.ac.in)

M. N. Aman is with the School of Computing, University of Nebraska-
Lincoln, Lincoln, NE 68588, USA. (e-mail: naveed.aman@unl.edu).

† marked authors have made equal contribution to this paper.

computing technologies [1]. Despite billions of dollars worth
of investment worldwide [2], its constituent devices, which are
mostly low-end embedded systems with limited computational
capabilities, are often the target of various security threats [3].

A recent study highlighted that 95% of security vulnerabili-
ties in IoT networks stem from firmware-related problems [4].
Thus, evaluating firmware integrity is an essential part of en-
suring security and trust in IoT networks. Remote Attestation
(RA) has emerged as an important field of research for this
purpose, and various single-node software [5], hardware [6], or
hybrid [7] RA techniques have been proposed. However, their
applicability to larger networks is often naive, and therefore,
efficient swarm attestation approaches have also been proposed
[8]. Among available attestation techniques, several software-
based methods rely on computationally intensive checksums
over the IoT device’s flash memory and offer low availability.
They also require a copy of the firmware, which may not be
possible under the manufacturers’ Intellectual Property (IP)
rights [9–11]. Further, hardware and hybrid RA techniques
assume the availability of Trusted Platform Modules (TPM),
Memory Protection Units (MPU), and Trusted Execution Envi-
ronments (TEE), which do not apply to low-end devices [12–
14]. Lastly, studies based on network-flow information have
limited detection capabilities against malicious firmware with
normal network activity [15].

A recent paper [16] made minimal hardware assumptions on
IoT devices and used Static Random Access Memory (SRAM)
as a feature for machine learning-based attestation. However,
their method targeted single-node RA, used the entire SRAM,
and was limited to a few anomalous firmware classes in a
classification-based approach. We show that the SRAM data
section (a smaller part of the SRAM) is useful for detecting
nodes infected by malicious firmware and propagating anoma-
lies when combined with Graph Neural Networks (GNNs)
for anomaly detection. In addition, the SRAM is significantly
smaller than flash memory and, thus, easier to traverse. It
captures runtime information, can indicate roving malware,
and eliminates the need for firmware copies during attestation.
Furthermore,

Contributions: To the best of our knowledge, this paper is
the first to use SRAM as a feature for swarm attestation and
presents the first datasets on SRAM-based swarm attestation.
The contributions of this study are listed below.

1) A novel GNN-based lightweight method for firmware
attestation in swarms. The proposed method uses the
SRAM’s data section and simple GNN designs.

2

TABLE I: Qualitative comparison of related works on single-node and swarm attestation.

Evaluation Criteria [9–11] [16] [12, 17, 18] [13, 19, 20] HAtt [21] [22–28] WISE [29] FeSA [30] [15] RAGE [31] [14] Swarm-Net
Target Single Single Single Single Single Swarm Swarm Swarm Swarm Single Swarm Swarm
RA methodology* S/W S/W H/W H/b H/b H/b H/b S/W S/W H/b S/W S/W
Approach* Crypto ML Crypto Crypto Crypto Crypto Crytpo + ML FL GNN GNN ML GNN
Feature used Flash SRAM Flash Flash Flash Flash Flash Property Network Execution trace Property SRAM
Low availability ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

High latency ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Interrupts disabled ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Specific hardware ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Homogenous devices ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Firmware needed ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Limited attacks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

* Notations - S/W: Software, H/W: Hardware, H/b: Hybrid, Crypto: Cryptography, ML: Machine Learning, FL: Federated Learning, GNN: Graph Neural Network

2) A secure swarm attestation protocol and the correspond-
ing security analysis.

3) Datasets on SRAM-based swarm attestation for (phys-
ically deployed) four four-node and six-node swarm
configurations, encompassing various complex node-level
and inter-node behaviors.

4) Thorough experimental results of different GNN architec-
tures using the collected datasets and additional simulated
scenarios.

5) A comparison with related works on remote and swarm
attestation.

The codes for firmware, dataset collection, and attestation
are available on GitHub1. The remainder of this paper is
organized as follows: Section II discusses related works on at-
testation and presents a qualitative comparison of the proposed
method with related works. Section III discusses background
concepts on SRAM and GNN, followed by Section IV, which
presents the network and threat models considered in this
study. Section V introduces, Swarm-Net, the proposed swarm
attestation method, followed by a detailed discussion on the
dataset, devices, hyperparameters, and evaluation metrics in
Section VI. Section VII shows the experimental results, and
Section VIII analyses the security of the proposed method.
The paper is concluded in Section IX.

II. RELATED WORKS

Several techniques for single-node RA and swarm attesta-
tion have been proposed to solve firmware-related problems
in IoT. We structure our discussion into three parts: (a) on
specific software (S/W), hardware (H/W), and hybrid (H/b)
RA techniques for single prover scenarios, followed by (b)
swarm attestation approaches, and lastly, (c) a brief overview
of Swarm-Net. Table I presents a qualitative comparison of
Swarm-Net with related works.

A. RA methodologies

Traditional software-based RA techniques in single-prover
scenarios typically require an IoT microcontroller to evalu-
ate a checksum on its program memory, which the verifier
validates using a copy of the hash digest [9–11]. SWATT
[9], for instance, performs over fifty thousand cumulative,
uninterrupted hash iterations using pseudo-random memory
traversal to attest a device. Attacks are detected by calculating

1https://github.com/VarunKohli18/swarm-net

time deviations in normal and attack scenarios. However, such
an approach is complex, has high latency (∼ minutes), low
IoT device availability, uses precise time measurements, and
requires a copy of the firmware with the verifier. SCUBA [10]
and SAKE [11] share similar problems. A few lightweight
software attestation approaches use a combination of the mi-
crocontrollers’ flash and RAM for firmware attestation using
checksum verification but do not consider roving malware
[32–34]. The authors of [16] use the SRAM as a feature
for a Multi-layer Perceptron (MLP) classifier to attest among
known malware and authentic nodes at high accuracy and
availability; however, their method has limited scalability to
a larger number of devices and firmware variants due to its
classification-based approach. Notable studies on hardware-
based RA include [12, 17, 18], which assume the availability
of a TMP or software enclaves. This assumption does not
apply to medium- and low-end IoT devices. To find a middle
ground between hardware assumptions and cost-effectiveness,
various hybrid approaches based on hardware/software code-
sign have been proposed, among which some notable studies
include SMART [19], TrustLite [20], TyTan [13], ATT-Auth
[35], HAtt [21] and [36]. [13, 19, 20, 35] however, do not
provide security against roving malware. Although the RAM-
based approach presented in [36] has low latency, it requires
a memory protection unit for privileged/unprivileged software
execution. HAtt [21] is another lightweight mechanism that
offers a high availability of IoT nodes. It uses Physically
Unclonable Functions (PUF) to protect secret information on
IoT nodes from physical attacks, although requiring a copy of
the microcontroller’s firmware. The authors of a recent study
propose RAGE [31], a hybrid, Variational Graph Autoencoder
(VGAE)-based control-flow attestation method that attests IoT
devices using a single execution trace collected from each
device using a TEE. They achieve an average performance
of 91% and 98% for return-oriented programming and data-
oriented programming attacks, respectively, with high avail-
ability. However, the TEE assumption does not apply to low-
end devices.

B. Swarm attestation

The feasibility and efficacy of RA techniques designed for
single-node scenarios do not always relate to larger networks
- uniform assumptions may not apply to networks of hetero-
geneous devices with different communication and hardware
capabilities. In addition, the attestation feature used is of great

https://github.com/VarunKohli18/swarm-net

3

importance; for instance, leaving aside their latency, software-
based approaches that use program memory checksums cannot
capture relationships between nodes. These issues highlight
the importance of efficient swarm attestation using suitable
features; several (mostly hybrid and program memory check-
sum) methods have been proposed.

Notable cryptographic methods include [22–28]. The au-
thors of [22] propose a distributed, Merkle Hash Tree (MHT)
attestation process for in-vehicle controller area networks in
which. However, the nodes have high complexity and memory
requirements. Furthermore, points of failure can lead to various
unattested nodes. SEDA [23] is a hybrid swarm RA technique
built upon extends SMART [19] and TrustLite [20]. The
verifier selects an arbitrary initiator node, creating a spanning
tree following it. Each node calculates a hash over its memory,
and the initiator collects the accumulated attestation report
and shares it with the verifier for cross-checking. Despite its
viability, a few limitations include its architectural impact,
attestation timeout selection, and initiator node selection as
highlighted by [24]. The latter study proposes asynchronous
and synchronous protocols called LISAα and LISAs, respec-
tively, with minimal changes over SMART+ [24]. SAFEd [25]
eliminates the need for a verifier by spreading security proofs
among devices in a swarm, which they can use to validate
each other. Another study, HEALED [28], can detect malicious
firmware using MHT on the nodes’ flash memory and disinfect
compromised nodes. The five discussed studies, however, do
not account for roving malware.

Some Machine Learning (ML)-based approaches have also
been proposed. WISE [29] is an intelligent attestation method
that addresses the heterogeneity of IoT devices and roving
malware using a multi-clustering technique and variable attes-
tation windows. It achieves an average detection rate of 62%,
with an evaluation latency of about 3.5 seconds. FeSA [30] is
a distributed swarm attestation technique that uses Federated
Learning (FL) and dynamic attestation periods based on the
properties (device state, energy, and traffic) and security re-
quirements for different devices, achieving an average of 87%
accuracy across various scenarios and low inference latency (∼
one second). However, federated learning is typically associ-
ated with lower accuracies. A GNN-based distributed anomaly
detection approach, is presented in [15]. The proposed graph
MLP achieves an average 97.7% accuracy for various network
attacks using five or more seconds of network flow data.
However, the model has limited applicability to malicious
firmware, such as those with normal network behavior (which
is a limitation of all network flow-based methods). Lastly, a
TEE assumption is made in [14], which uses machine learning
for property-based attestation.

C. Swarm-Net

Based on the above discussion, most studies have limitations
in one or more properties shown in Table I, aside from
some latency and performance differences, which we highlight
in Section VII. While there exists a study on single-node
attestation using SRAM [16], there are no available studies
on SRAM-based attestation of swarms. To fill these gaps, we

.data

Initialized global/static
variables

.bss

Uninitialized global/static
variables

heap
Dynamically allocated

variables

stack

Local variables
Return addresses

START ADDRESS

END ADDRESS

Data
Section

SRAM
Length

Fig. 1: General organization of a microcontroller’s SRAM.

propose a novel GNN- and software-based attestation approach
for reliable swarm attestation with high availability. Swarm-
Net makes minimal assumptions on IoT devices and verifies
their state using a single SRAM trace during the attestation
phase. We justify the use of SRAM over flash memory and
network flow features for the following reasons:

1) SRAM is a readily available component on all medium-
and low-end IoT microcontrollers.

2) It is significantly smaller than flash memory by several
orders of magnitude and is, therefore, faster to traverse.

3) It captures runtime information, and its usage does not
depend on the location of malware in the memory. It can
indicate any firmware-related anomaly on the microcon-
troller, including roving malware.

4) Since received messages are typically stored in the SRAM
for usage, propagated anomalies are detectable.

5) Lastly, there is no IP violation since a copy of the
firmware is not required.

Since the proposed method does not require the IoT device
to compute uninterrupted checksums over the memory, it
offers high availability on the IoT device. Furthermore, the
interconnected nature of IoT networks is exploited using
GNNs, enabling Swarm-Net to (both) detect node-level and
propagated anomalies.

III. BACKGROUND

This section provides a basic background on SRAM and
GNN; Table II compiles a list of relevant notations for the

4

TABLE II: List of relevant notations.

Notation Description
MSE Mean Square Error
CS Cosine Similarity
GCN Graph Convolution Network
GAT Graph Attention Network
GT Graph Transformer
IDV Verifier ID
IDG Gateway ID
IDS Swarm ID
Nj jth node in a swarm
Tj Complete SRAM trace
T ′
j SRAM data section trace

bi Hex value at ith byte
d Data section length
Gθ GNN with parameters θ
Nv Number of one-hop neighbors
eij Attention coefficients
αij Importance values
W Weight matrix
SR Swarm Response
X Trainset
x Graph sample
x̂ Reconstructed graph
x̃ Graph sample with uniform noise
ϵ Uniform noise
k Noise factor
DT Decision Threshold
sf Scaling factor
Tdef Default trace set
L Maximum padding length
f Predicted decision flags
C Nonce
ANj Anomaly at Nj

Si Simulated scenario i
AR Attestation Rate
DR Detection Rate
To Overhead/latency

readers’ reference.

A. Static Random Access Memory

SRAM is a type of volatile memory that stores an embedded
device’s runtime data and is refreshed on every powerup. It
is several orders of magnitude smaller than flash (thus, more
practical), and its contents are refreshed on every power-
up. The SRAM stores useful runtime information about the
firmware installed on a microcontroller and is divided into four
segments [37] as shown in Figure 1. The .data and .bss sections
store initialized and uninitialized global or static variables,
respectively. The heap stores dynamically allocated variables,
and the stack stores local variables and return addresses. The
first three sections together may be called the data section,
which has a varying size depending on the memory usage
of the program loaded on the microcontroller. As we show
in this paper, the data section is a useful feature for verifying
firmware integrity. The stack, on the other hand, has been used
for device authentication by a recent study [38].

The data section has the same behavior for the same
firmware on different devices (consistency) [38] and different

behavior for different firmware versions on the same device
(distinguishability) [16]. Making changes to the firmware leads
to changes in the SRAM during runtime, and thus, malicious
code is likely to have abnormal SRAM dumps. Furthermore,
in a swarm setting, data generated at one node and sent to
another creates a relationship between the otherwise indepen-
dent SRAM contents of the two nodes as variables with the
same values are created on both devices. This can help detect
the downstream effects of firmware and network anomalies.
We leverage these properties to perform software-based swarm
attestation of microcontroller firmware.

SRAM notations: A complete SRAM trace (tj) generated
by an IoT device Nj is represented as a sequence of l bytes:

Tj = [b0, b1, ..., bl−1]j , (1)

where bi is the hexadecimal value stored at the ith byte of
the SRAM, and l is the length of the node’s SRAM. However,
each node in the swarm must send only the SRAM data
section:

T ′
j = [b0, b1, ..., bd−1]j , (2)

where d is the size of the data section corresponding to the
firmware loaded on Nj . Note that d ¡¡ l, typically.

B. Graph Neural Networks

Graph notations: We denote a graph G = (V, E) where V
is a set consisting of nodes {v1, v2, ..., vn} and E ⊆ V × V
represents the set of edges in G. For a given node v ∈ V ,
Nv denotes the set of one-hop neighbors of v, i.e., all nodes
w ∈ Nv are connected to v via one edge. We also denote
A ∈ {0, 1}n×n as the adjacency matrix and X ∈ Rn×d as the
node features of the graph. In this study, we assume a given
graph is simple and unweighted.

Network architectures: GNNs typically follow the
message-passing propagation framework, which first aggre-
gates the features of a node v with neighboring nodes u ∈ Nv

using an aggregation function ϕ, then updates them using a
learnable function fθ (usually an MLP) [39]. This process is
repeated several times to obtain node representations that can
be used for downstream tasks.

GNNs are suitable for analysing the SRAM behavior of
IoT swarms which typically have a graph-like structure. Edges
between IoT devices can have complex behaviors that need
to be modeled using suitable learnable aggregation methods
for a more robust understanding of how the network shares
and uses information. In this paper, we consider three GNN
architectures from Pytorch Geometric (PyG) 2 for attestation:
Graph Convolution Networks (GCN) [40], Graph Attention
Networks (GAT) [41] and Graph Transformers (GT) [42].

Graph Convolution Network: Given node features H(l) at
layer l (sufficiently padded to account for bias), feature prop-
agation in the case of the PyG implementation GCNConv is
computed as follows:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l)) , (3)

2https://pytorch-geometric.readthedocs.io/en/stable/

https://pytorch-geometric.readthedocs.io/en/stable/

5

where Ã = A+I (self-loops added), D̃ii =
∑
Ãi, W (l) is the

weight matrix for layer l, and σ(·) is an activation function.
Preliminary intuition: GCN assigns equal importance to

all neighbors [41], and despite its inherent simplicity which
makes it worth testing in this use case, it may not be ideal for
heterogeneous inter-node relationships present in IoT swarms,
which is supported by our results in Section VII. We therefore
also look at other GNN architectures, such as GAT and GT,
that provide better parameterization of graph edges.

Graph Attention Network: GAT computes attention coeffi-
cients eij as per the following:

eij = a(Whi,Whj) . (4)

The attention mechanism a(·) uses a weight matrix W , and
the current node features hi and hj to compute the importance
of node j to node i. These important values αij are normalized
across the neighborhood of node i. The PyG implementation
GATConv computes αij using the following:

αij = softmaxi(eij) =
exp(eij)∑

k∈Ni
exp(eik)

. (5)

Graph Transformer: Transformer networks have emerged
as the state-of-the-art for various machine learning tasks
due to their ability to handle multimodal data and their
improvement over Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) architectures in learning
long-term dependencies in sequential data [43]. We use the
Unified Message Passing model (UniMP), which extends
vanilla multi-headed attention [44] to graphs. The PyG im-
plementation of GT, TransformerConv, uses 4 weight matrices
W

(l)
1 ,W

(l)
2 ,W

(l)
3 ,W

(l)
4 per attention head at layer l to compute

a weighted aggregation of features of neighboring nodes.
Additionally, a fifth and a sixth weight matrix (W (l)

5 and
W

(l)
6) can be introduced if gated residual connections between

layers or edge features need to be considered. Attention
coefficient coefficients αij’s are computed (softmax over all
nodes j ∈ Ni) using

αij = softmaxi

(
qT kj√

C

)
, (6)

where q = W
(l)
1 h

(l)
i , kj = W

(l)
2 h

(l)
j , vj = W

(l)
3 h

(l)
j , and

feature propagation follows

h
(l+1)
i = W

(l)
4 h

(l)
i +mj , (7)

where mj =
∑

j∈Ni

αijvj . Here C is the number of output

channels for a given TransformerConv layer. For more than
one head, unique q and kj values are computed for each
head, and the final mj is obtained by either concatenating
or averaging all m(c)

j ’s.
Preliminary intuition: In contrast to GAT, which uses a

single shared linear transformation on every node parameter-
ized by a single weight matrix W , feature propagation in GT
may enable learning more complex inter-node relationships
due to a higher degree of parameterization using W

(l)
1−4 [44].

This intuition is supported by our results presented in Section
VII.

Verifier
Layer

Swarm A Swarm X

Graph-like structure

Request
Async.

Response

Swarm A
Collated

Response

Gateway
Layer

IoT Device
Layer

Verifier

Gateway

GNN A

GNN X

Sense

Process

ControlSense

Control

Process

Fig. 2: Layered network model.

IV. NETWORK AND THREAT MODEL

This section presents the network model and assumptions
about an adversary.

A. Network Model

Figure 2 shows the network model considered in this study.
The network consists of three overall layers:

1. Verifier Layer: This layer comprises the verifier, a
trusted remote device with computational power to run
the proposed attestation method. The verifier sends at-
testation requests for a specific swarm to the gateway
devices under its jurisdiction. It analyzes the collated
responses from the gateways using the corresponding
GNN. We assume that the communication between the
verifier and the gateways is secure and that the verifier
has prior knowledge of the functionality of the swarm
and its constituent devices [30].

2. Gateway Layer: This layer consists of one or more
trusted gateway devices that receive attestation requests
from the verifier for the swarms under their jurisdiction,
send an attestation request to the swarm specified by the
verifier, collect the asynchronous responses received from
a swarm’s devices, and send the collated response set to
the verifier.

3. IoT Device Layer: This layer comprises swarms of vul-
nerable IoT devices, each comprising a microcontroller
as the hardware platform. The tasks of the IoT devices
may be divided into three overall categories (or their
combinations): sense, process, and control [24]. In the
context of attestation, IoT devices are the provers that
respond to attestation requests from the gateway with

6

Algorithm 1: Training algorithm run by IDV .

1 t← time()
2 request(IDG, IDS , samples = m)
3 while time()− t ≥ timeout do
4 if receive(sender = IDG) then
5 SR← receive(sender = IDG)
6 break()
7 else
8 return(−1) // No reply from IDG

9 Gθ ← initializeGNN()
10 X ← pad(int(SR)/255, L)
11 x̃ = x+ k · ϵ,∀x ∈ X
12 e = 0
13 while e ≤ epochs do
14 Gθ ← backprop(θ, x, x̃),∀x ∈ X
15 e = e+ 1

16 DTj ← sf ·mini∈[0...m−1] CS(Xj , X̂j),∀Nj ∈ IDS

17 Tdef,j =
∑

Xj

m ,∀Nj ∈ IDS

18 DT ← [DT0, ..., DTn − 1]
19 Tdef ← [Tdef,0, ..., Tdef,n−1]
20 saveParams({Gθ, DT, Tdef , L}S)

their SRAM dumps. Swarms have an inherent, graph-like
structure due to the necessary communication between
sense-process-control tasks. Furthermore, we assume that
the direction and type of information flow in the swarm
are known to the verifier, given its knowledge of the
nodes’ normal functionality at the time of deployment.

B. Threat Model

The following assumptions are made about the adversary.

1. The adversary may send malicious firmware updates to
one or more remote devices. In doing so, the adversary
may partially or completely change an IoT device’s
functionality.

2. The adversary can eavesdrop on the communication
within the swarm and launch man-in-the-middle attacks.

3. The adversary can drop messages shared between (a) two
IoT devices to create out-of-sync network states and (b)
an IoT device and the gateway to cause desynchronization
of the attestation round.

4. The adversary can launch a denial of service on the
swarm by impersonating the gateway and frequent attesta-
tion requests. It may achieve this by replaying previously
authorized attestation requests sent to the swarm.

5. The adversary can replay old attestation responses to
impersonate a prover.

6. The adversary cannot access the secret key or the attesta-
tion round nonce shared between the IoT microcontrollers
and the trusted gateway [45].

Swarm-Net attempts to solve these threats and is discussed
in Section V.

Algorithm 2: Attestation algorithm run by IDV .

1 t← time()
2 request(IDG, IDS , samples = 1)
3 while time()− t ≥ timeout do
4 if receive(sender = IDG) then
5 SR← receive(sender = IDG)
6 break()
7 else
8 return(−1) // No reply from IDG

9 {Gθ, DT, Tdef , L}S ← loadParams(IDS)
10 x← SR == 0 ? Tdef : SR
11 x← padding(int(x)/255, L)
12 x̂← Gθ(x)
13 f ← CS(x, x̂) > DT ? 0 : 1
14 return(f)

V. PROPOSED TECHNIQUE: SWARM-NET

This section discusses the training phase, the attestation
algorithm, and the overall attestation protocol.

A. Training Phase

After deploying a swarm IDS , the verifier IDV initiates
the training phase depicted in Algorithm 1. It prompts the
gateway IDG to collect a sufficient number (m ≳ 500 based
on experiments) of collated samples from each IoT device Nj

under normal operation. IDG collects the necessary m-sample
swarm response SR and sends it to IDV . We assume this col-
lection happens under monitored conditions with no malicious
activity to ensure a clean training dataset. On the verifier’s end,
each T ′ in SR is converted to its integer equivalent, scaled
by a factor of 255 (to bring it in a [0,1] range), and padded
to an appropriately selected maximum length L for uniformity
during evaluation. A training set of graphs X ∈ Rm×n×L ⊂ X
is thus created, where X is the complete distribution of graphs
associated with normal firmware in the swarm. The learnable
parameters θ are then optimized using back-propagation to
approximately reconstruct the training distribution X. To do so
all x ∈ X are perturbed with scaled Uniform noise ϵ ∼ U(0, 1)
such that x̃ = x + k · ϵ where ϵ, x ∈ Rn×L and the GNN is
trained to denoise x̃ such that MSE(x, x̂) is minimized. Here,
k is the noise factor, x̂ = Gθ(x̃) and MSE(x, x̂) is computed
as follows:

MSE(x, x̂) =
||x− x̂||22

nL
, (8)

where || · ||2 is the L2 norm. Adding ϵ is necessary to force
Gθ to learn the output distribution X regardless of the input,
thereby improving the model’s performance on anomalous
samples. Upon completion of model training, IDV computes
the detection threshold DTj of each device Nj . While most
anomaly detection studies use MSE-based thresholds, we
observe that Cosine Similarity (CS) enables a more intuitive
and generalized threshold selection approach. Each DTj is
computed as follows:

7

Verifier (IDV) Gateway (IDG)

Initialize SR = {0}n
Record tstart = time()
for j = 0 ; j < n ; j ++:

Retrieve nonce Cj
Generate Ireq,j = HMAC(Kj, Cj)

Nj

Ireq,j, IDG

mresp,j, Iresp,j, IDj

if (time() - tstart) < timeout then
Verify Iresp,j

Decrypt mresp,j, Verify Cj
Update SR[j] = Tj'

Generate nonce Cnew,j
Store Cj:= Cnew.j

Generate mupdate,j = {Cnew,j, C}Kj
Generate Iupdate,j = HMAC(Kj, mupdate,j)

end if

After timeout

N0

Attest IDS

Collated response (SR)

Preprocess SR
Attest IDS using stored params

Investigate anomalies
Implement mitigation measures

mupdate,j, Iupdate,j, IDG

Verify Iupdate,j
Decrypt mupdate,j

Verify C
Store Cj := Cnew.j

1

3

2

4

5b 5a

6

Retrieve nonce Cj
Verify Ireq,j

Generate nonce C
Retreive data section Tj'

Generate mresp,j = {Cj, C, Tj'}Kj
Generate Iresp,j = HMAC(Kj, mresp,j)

Nn-1

Swarm (IDS)

Select (IDS, IDG)
Initiate Algorithm 2

Fig. 3: The Swarm-Net attestation protocol.

DTj = sf · min
i∈[0...m−1]

CS(Xj , X̂j) , (9)

where Xj is the preprocessed data of Nj , and sf is the scaling
factor of the thresholds, which decides how close the decision
boundary should be to the normal CS scores. We use sf =
0.999 in our experiments. Further, x̂ = Gθ(x) and CS between
two vectors ū and w̄ is evaluated as:

CS(ū, w̄) =
ū · w̄
|ū||w̄|

. (10)

IDV compiles each DTj into a single set DT ∈ Rn×1. Fur-
ther, for the event of dropped attestation responses from nodes

in IDS , IDV computes a set Tdef = [Tdef,0...Tdef,n−1] ∈
Rn×L of default traces where Tdef,j ∈ R1×L is computed as:

Tdef,j =

∑
Xj

m
. (11)

Here, Xj is the training data of Nj . These average traces
are in the event of dropped responses during attestation. This
way, IDV can verify the firmware of other respondents while
avoiding a single point of failure. Finally, IDV stores the
parameter set param = {Gθ, DT, Tdef , L}S in its memory.
In addition, IDG creates a set of resynchronization nonces
LR, which it distributes to the swarm. LR is used by IDG

to resync the attestation process in case of desynchronization

8

attacks by an adversary.

B. Attestation Phase

The attestation phase includes two sub-parts: an algorithm
and the overall protocol.

1) Attestation algorithm: Algorithm 2 presents the at-
testation procedure run by IDV to attest IDS . The veri-
fier requests IDG for one graph SRAM sample from IDS

over a secure channel and waits for IDG’s collated swarm
response SR. Upon receiving SR, it retrieves param =
{Gθ, DT, Tdef , L}S and preprocesses SR. It replaces the
missing responses (if any) using the respective default values
of the nodes in the set Tdef . It then scales the traces by a factor
of 255 and pads them with zeros to a common length L. The
model Gθ then generates a reconstructed graph x̂ = Gθ(x).
IDG evaluates the similarity scores of each node as CS(x, x̂)
and compares them with the pre-determined DT . All Nj with
CSj above their respective DTj are flagged as authorized
(0) and, otherwise, anomalous (1). The algorithm returns
the decision array f , which the verifier uses to investigate
anomalies (if any) and initiate necessary threat mitigation
measures. Algorithm 2 is encapsulated within the attestation
protocol, which is explained next.

2) Attestation protocol: The Swarm-Net attestation pro-
tocol is presented in Figure 3. The devices use symmetric-
key encryption and Hash-based Message Authentication Codes
(HMAC, SHA-256 [46]). Furthermore, we assume that the
gateway securely shares the secret keys with the IoT devices
during the initial setup and as needed in subsequent firmware
updates [45]. One run of the protocol consists of the six
following steps:

1. The verifier IDV picks a swarm IDS and its correspond-
ing trusted gateway IDG. It then initiates Algorithm 2,
sends an attestation request to IDG for IDS via a secured
channel and waits for a response.

2. IDG initializes a n-size Swarm Response (SR) and
begins the timeout timer. It retrieves a stored nonce Cj

and the shared secret Kj and generates an HMAC Ireq,j
for each node Nj in the swarm, which it then sends to
the nodes.

3. Each Nj verifies the validity of HMAC Ireq,j using the
stored Cj and shared secret key Kj . It generates a nonce
C and retrieves its SRAM data section T ′

j . It sends an
encrypted message mresp,j and the HMAC Iresp,j to
IDG.

4. IDG collects the responses from all nodes and accepts
them if they arrive within the timeout. It verifies the
accepted HMAC Iresp,j using Kj . It decrypts mresp,j

and verifies Cj . It then generates a new nonce Cnew,j for
each valid respondent Nj , stores it into Cj , and creates an
encrypted message mupdate,j and HMAC Iupdate,j which
it sends to Nj .

5a. Each respondent Nj verifies the received Iupdate,j using
Kj . It decrypts mupdate,j , verifies C, and stores Cnew,j

into Cj for the next attestation round.
5b. Upon completion of the timeout, IDG sends the collated

SR to IDV over a secure channel.

6. IDV continues Algorithm 2. It preprocesses SR to x and
evaluates the reconstructed traces x̂ using the stored Gθ.
It then evaluates a trust decision f for the swarm using
DT . In case of anomalies, the administrator is prompted
to investigate and take mitigation measures.

VI. EXPERIMENTAL SETUP

This section covers the experimental setup used in this
paper, including the devices, programming platforms and
libraries, sample IoT swarms, datasets, hyperparameters, and
evaluation metrics.

A. Hardware and Software

Figure 4 and 5 show sample swarms and the physical setup
used for dataset collection, respectively. All IoT nodes are
variants of the Arduino UNO Rev3 and Elegoo UNO Rev3
devices, each with an 8-bit ATmega328P microcontroller and
a 2KB SRAM. To understand the efficacy of the IoT device
SRAM as a suitable feature for swarm attestation, we aimed
to use simple devices and simplified representations of IoT
firmware and network behaviors in this paper. Therefore,
Arduino UNO Rev3 devices were selected for this study
due to their inherent simplicity and flexibility. The gateway
device is a Dell Latitude laptop with an Intel i7 processor
and 16GB DRAM. Further, we use two verifier devices: GPU
experiments were run on a compute server with an AMD
EPYC 7742 processor and an Nvidia A100-SXM4 GPU, and
CPU experiments were run locally on a laptop with an Intel(R)
Core(TM) Ultra 7 155H processor.

The firmware was programmed in Arduino IDE 2.3.2, while
the data collection and attestation codes were written in Python
3.8. The main Python libraries used are Numpy 1.26.4, Pandas
2.2.2, Pyserial 3.5, and Pytorch Geometric 2.5.3.

B. IoT Swarms, Datasets, and Simulations

We present our SRAM dataset on IEEE Dataport [47].
The gateway device used a Python script to send attestation
requests to the Arduino UNO devices in the physical network
(Figure 5) using the Pyserial Python library. The IoT devices
then printed their SRAM contents onto their serial monitors
for the gateway to read and store. This process was repeated to
create a corpus for various normal and abnormal network states
by flashing one or more devices with anomalous firmware
variants, as explained later in this subsection. The sample
networks shown in Figure 4 are simplified representations of
real-world IoT swarms in smart city initiatives wherein each
device performs one or more of three overarching IoT tasks
- sense, process, and control. While practical smart IoT im-
plementations may be more complex, it is fruitful to consider
networks such as Figure 4a and 4b as a proof of concept.
Furthermore, the gateway device collected unencrypted SRAM
samples from the sample swarms to save development and
sampling time. However, in a real-world setting, the device and
firmware manufacturers must ensure that their IoT devices also
have the functionality to ensure confidentiality and integrity of
communication.

9

PromptN0

N1

N2

N3

Prompt

Prompt

Control

Sense

Process

Sensor
data

Processed
signal

Control

(a) Four-node network configuration of Swarm-1.

PromptN0

Sensor
data

N1

Processed
signal

N2

N3

Sensor
data

N4

N5

Prompt

Prompt

Prompt

Prompt

Control

Control

Process
& Control

Sense

Process

Sense

(b) Six-node network configuration of Swarm-2.

Fig. 4: Swarm configurations used to collect the two datasets.

TABLE III: Normal and anomalous firmware in Swarm-1.

Node Type Normal firmware functions d Anomalous firmware functions d

N0 Control Broadcasts one byte to all nodes 191 Generate three random integers 195Broadcasts one byte to all nodes

N1 Sense Generate six floating point numbers in unique ranges 450 Generate data in an extended range 438Send data to N2 Send data to N2

N2 Process Process received data into a six-byte signal 516 Generate a random six-byte signal 414Send processed signal to N3 Send control signal to N3

N3 Control Control six LEDs using the processed signal 406 Control six LEDs at random 386

Fig. 5: Physical swarm setup for dataset collection.

1) Swarm-1: Swarm-1 is the four-node network shown in
Figure 4a.

Behaviors: This swarm captures normal behavior, phys-
ical twins of development networks, malicious firmware,
faulty/tampered data, and abnormal peripheral control.

Firmware: Details about the normal and anomalous variants
of each node are provided in Table III. N0 sends one byte
to all other nodes in the swarm. In its anomalous variant,
N0 generates three random integers (six bytes) in addition
to its main function. The anomalous variant doesn’t affect
other nodes, and its purpose is to detect node-level anomalies
with the same network behavior as the normal variant, as

TABLE IV: Swarm-1 dataset scenarios.

S.No. Scenario Primary
Anomaly

Secondary
Anomaly

Swarm Label
N0 − ...−N3

1-2 D1−2 - - 0-0-0-0
3-4 P1−2 - - 0-0-0-0
5 AN0 N0 - 1-0-0-0
6 AN1 N1 N2, N3 0-1-1-1
7 AN2 N2 N3 0-0-1-1
8 AN3 N3 - 0-0-0-1
9 AN12 N1, N2 N3 0-1-1-1

10 AN23 N2, N3 - 0-0-1-1
11 AN13 N1, N3 N2 0-1-1-1
12 AN123 N1−3 N2, N3 0-1-1-1
13 AN0123 N0−3 N2, N3 1-1-1-1

well as to check if the GNN misclassifies other nodes due to
message passing. N1 is a sense-type node that generates six
floating point numbers (twenty-four bytes) in unique ranges
and sends them to N2. In its anomalous variant, N1 generates
these numbers in an extended range (including the original),
creating partially/completely faulty data collection scenarios
at downstream nodes (N2 and N3). N2 is a process-type
node that receives six floating point numbers (twenty-four
bytes) and generates a control signal (six bytes) based on pre-
defined logic. It then sends this processed signal to N3. In
its anomalous variant, N2 discards the data received from N1

and instead generates a random control signal for N3, which
affects N3’s operation. Lastly, N3 is a control-type node that

10

TABLE V: Normal and anomalous firmware in Swarm-2.

Node Type Normal firmware functions d Anomalous firmware functions d

N0 Control Broadcasts one byte to all nodes 195 Generate two random integers 199Broadcasts one byte to all nodes

N1 Sense Generate four floating point numbers in unique ranges 438 Generate data in an extended range 430Send data to N2 Send data to N2

N2 Process Process received data into a four-byte signal 490 Generate a random four-byte signal 414Send processed signal to N3 Send control signal to N3

N3 Control Control four LEDs using the processed signal 394 Control four LEDs at random 386

N4 Sense Generate three floating point numbers in unique ranges 430 Generate data normally 372Send data to N5 Does not send data to N5

N5
Process &
Control

Process received data into a three-byte signal 446 Process received data normally 452Control three LEDs using the processed signal Control three unauthorized LEDs

TABLE VI: Swarm-2 dataset scenarios.

S.No. Scenario Primary
Anomaly

Secondary
Anomaly

Swarm Label
N0 − ...−N5

1-4 D1−4 - - 0-0-0-0-0-0
5 AN0 N0 - 1-0-0-0-0-0
6 AN1 N1 N2, N3 0-1-1-1-0-0
7 AN2 N2 N3 0-0-1-1-0-0
8 AN3 N3 - 0-0-0-1-0-0
9 AN4 N4 N5 0-0-0-0-1-1
10 AN5 N5 - 0-0-0-0-0-1

uses the processed signals from N2 to control six LEDs. In its
anomalous variant, N3 discards the received signal and instead
controls the output LEDs at random.

Dataset: The Swarm-1 dataset includes thirteen scenarios
(four normal and nine anomalous), as shown in Table IV.
D1 and D2 are development sets used for training and testing
and are collected from two independent initializations of the
original swarm network. In contrast, P1 and P2 are collected
from two physical twin networks made using a different
set of devices. Among the anomalous scenarios, ANj refers
to an anomaly introduced at Nj . Each scenario has 400
synchronized, sequential SRAM traces for each Nj , where
each trace is the sequence of integer equivalents of the hex
content of the SRAM.

2) Swarm-2: Swarm-2 is the six-node network shown in
Figure 4b that offers a greater challenge to the verifier given
its more complex design, a lower number of communicated
bytes, a lower degree of change in firmware for anomalous
cases, and a larger number of threat types.

Behaviors: This swarm captures normal behavior, malicious
firmware, faulty/tampered data, dropped messages, out-of-sync
states, abnormal peripheral control, and additional malicious
peripherals.

Firmware: The details of the normal and anomalous
firmware of each node are given in Table V. N0 has the same
purpose as explained in Swarm-1. It sends one byte to N1−N5.
In its anomalous variant, N0 generates two random integers
(four bytes). The first branch in this swarm consists of three
nodes: N1 is a process-type node that generates four floating
point numbers (sixteen bytes) in unique ranges. Its anomalous
variant generates random data in extended ranges, causing
downstream effects at N2 and N3. N2 is a process-type node
that uses the data received from N1, and generates a four-byte

TABLE VII: Behavior types encapsulated in the swarm
datasets and simulated scenarios.

S.No. Behavior type Scenarios
1 Normal behavior D1−4, P1−2

2 Physical twins P1−2

3 Malicious firmware ∀ANi

4 Propagated anomalies
AN1, AN2, AN12,
AN13, AN4

5 Faulty/tampered data AN1, AN2

6 Abnormal peripheral control AN3, AN5

7 Tampered functions AN4

8 Out-of-sync states AN4, S3

9 Added peripherals AN5

10 Dropped responses S1

11 SRAM perturbation S2

12 Trace replay S3

processed signal for N3. In its anomalous variant, N2 sends
a random processed signal to N3, affecting its operation. N3

is a control-type node that uses the received processed signal
to control four LEDs. In its anomalous variant, N3 generates
a random control signal. The second branch of Swarm-2
comprises two nodes: N4 is a process-type node that generates
three floating point numbers (twelve bytes) and sends them
to N5. In its anomalous variant, the function used to send
data is commented out (tampering with control dependencies).
This anomaly creates an out-of-sync state between N4 and
N5 and should be detectable at both nodes during attestation.
Lastly, N5 is a process- and control-type node that processes
the data received from N4 and controls three LEDs. In its
anomalous variant, N5 uses the received data to control three
LEDs connected to different microcontroller pins.

Dataset: The Swarm-2 dataset consists of ten scenarios
(four normal and six anomalous), as shown in Table VI.
D1 − D4 are development sets for training and testing col-
lected from four separate initializations of the development
network. AN0−AN5 are six anomalous scenarios where ANj

corresponds to an anomaly at Nj . Each scenario comprises
900 synchronized, sequential SRAM traces for all Nj .

3) Simulated Scenarios: In addition to the scenarios in the
Swarm-1 and Swarm-2 datasets, we use the development sets
to simulate the following scenarios:

1. Dropped responses (S1): Since adversaries may drop at-
testation responses from the swarm to the gateway, it is

11

TABLE VIII: Attestation results on Swarm-1 averaged over twenty training and testing phases.

GCN GAT GTScenario N0 N1 N2 N3 N0 N1 N2 N3 N0 N1 N2 N3

D1 100 100 100 100 100 100 100 100 100 100 100 100
D2 100 100 100 100 100 100 100 100 100 100 100 100
P1 99.67 99.67 100 100 99.67 99.67 100 100 100 100 100 100
P2 100 99.33 99 100 100 99.33 99 100 100 98.63 99.33 100

AN0 100 100 97.95 100 100 100 100 100 100 99.98 100 100
AN1 100 100 13.98 95.38 100 100 3.68 81.87 100 100 97.48 99.02
AN2 99 100 100 20.72 99.33 100 100 0.83 99.63 100 100 100
AN3 100 100 99.67 100 100 100 99.67 100 100 100 100 100
AN12 100 100 100 21.48 100 100 100 0.98 100 100 100 100
AN23 99.33 100 100 100 99.67 100 100 100 100 99.97 100 100
AN13 99.78 100 13.45 100 100 100 2.33 100 100 100 96.95 100
AN123 100 100 100 100 100 100 100 100 100 100 100 100
AN0123 100 100 100 100 100 100 100 100 100 100 100 100

TABLE IX: Attestation results on Swarm-2 averaged over twenty training and testing phases.

GCN GAT GTScenario N0 N1 N2 N3 N4 N5 N0 N1 N2 N3 N4 N5 N0 N1 N2 N3 N4 N5

D1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
D2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
D3 100 99.88 100 100 99.88 100 100 99.88 100 100 99.88 100 100 99.88 100 100 100 100
D4 100 99.75 100 100 100 100 100 99.75 100 100 100 100 100 99.88 100 100 100 100

AN0 71.03 99.99 100 100 100 100 12.42 99.75 99.94 99.88 100 100 100 99.99 100 100 99.88 100
AN1 100 100 0 1.12 100 100 100 100 0 2.16 100 100 99.99 100 100 98.08 100 100
AN2 100 100 100 36.02 100 100 99.97 100 100 41.69 100 100 99.98 99.88 100 100 100 100
AN3 100 100 100 100 100 100 100 99.88 100 100 100 100 100 100 100 100 100 100
AN4 99.75 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
AN5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.99 100 100 100

important to evaluate the performance of Algorithm 2 in
such a case. To simulate dropped responses, attestation
responses from randomly selected Nj are dropped and
replaced with the corresponding default trace tdef,j from
Tdef during attestation.

2. SRAM perturbation (S2): An adversary may attempt to
forge an SRAM trace or attack the integrity of communi-
cation by changing the messages sent from the swarm to
the gateway. To simulate such a scenario, we add varying
bytes of randomness to the development sets.

3. Trace replay/out-of-sync states (S3): An adversary may
drop messages between nodes or attempt to replay attes-
tation responses collected from nodes. In doing so, they
may create network states that are not in sync with the
current state of the Sense-Process-Control tasks in the
network. To create such a threat scenario, we randomly
shuffle the development sets along the temporal axis.

C. Models and Hyperparameters

We experiment with three GNN architectures - GCN,
GAT, and GT using the respective GCNConv, GATConv, and
TransformerConv layers from PyG. Hyperparameter selection
followed an iterative process to select the simplest possible
models with the best performance for each GNN architecture
to ensure efficacy and efficiency on the verifier. Based on this
goal, the best-performing models consisted of two graph layers
compressing input data to a latent dimension of 32, followed
by a single Linear layer for reconstruction. In all experiments,
we use the Adam [48] optimizer with a learning rate of 0.01

and a weight decay (L2 regularization on model weights) of
0.0005. Uniform noise sampled from U(0, 1) are added to the
inputs with a coefficient of 0.4.

D. Evaluation Metrics

The proposed threshold-based anomaly detection approach
is essentially a binary classification problem, wherein similar-
ity scores of SRAM data sections lying above their respective
thresholds are flagged as safe (0) and otherwise anomalous
(1). We define True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) as the correct 1,
correct 0, incorrect 1, and 0 invalid flags after thresholding,
respectively.

Subsequently, we use three metrics: Accuracy (A), Detec-
tion Rate (DR), and Attestation Rate (AR) defined as follows:

A =
TP + TN

TP + TN + FP + FN
(12)

DR =
TP

TP + FN
(13)

AR =
TN

TN + FP
(14)

Here, DR and AR are analogous to the true positive and
negative rates, respectively.

VII. RESULTS

This section presents the experimental results observed in
various test scenarios (categorized in Table VII), an analysis

12

TABLE X: Comparison with related works.

Method To (s) Model Task
Swarm-Net (CPU) ∼ 1 GT Anomaly

detectionSwarm-Net (GPU) ∼ 1

WISE [29] 3.5
Crypto,

ML
Checksum,
clustering

FeSA [30] ∼ 1 FL Classification

Protogerou et. al. [15] > 5 GNN
Anomaly
detection

Rage [31] tc + 0.15 VGAE
Anomaly
detection

Aman et. al. [16] ∼ 2 MLP Classification
HAtt [21] 0.126 Crypto PUF
SWATT [9] 81 Crypto Checksum

of performance, and a quantitative comparison with related
works.

A. Swarm-1

Table VIII shows the detection results on the Swarm-1
dataset. In addition, Figure 6a compiles these results into four
categories: overall performance, authentic firmware, anoma-
lous firmware, and propagated anomalies, and compares the
three proposed model architectures.

As the table and figure show, GT has an overall accuracy
of 99.83% with a 99.92% AR on authentic firmware, 100%
DR on anomalous firmware, and 98.7% DR on propagated
anomalies. While GAT and GCN have comparable perfor-
mance to GT in normal and anomalous firmware samples, their
performance is significantly lower on propagated anomalies
observed in AN1, AN2, AN12 and AN13. In such cases, GAT
and GCN attain an average DR of 18% and 33%, lowering
their overall accuracy to 92.04% and 93.43%, respectively.

B. Swarm-2

Similarly, Table IX and Figure 6b show the results of the
three GNN architectures on Swarm-2.

GT achieves an overall accuracy of 99.96% with a 99.99%
AR on authentic firmware, 100% DR on anomalous firmware,
and 99.52% DR on propagated anomalies. GAT and GCN
have comparable AR on authentic firmware (99.98% each);
however, their performance is lower on anomalous firmware
(specifically on AN0). As mentioned in Section VI, the anoma-
lous variant of N0 in Swarm-2 generates four random bytes
compared to six in Swarm-1. This makes the detection of the
anomaly more difficult. However, GT has a 100% DR in this
case. Furthermore, given the reduced number of bytes shared
between N1, N2 and N3 compared to Swarm-1, detecting
downstream anomalies is a greater challenge in this dataset.
GAT and GCN have an average 12.4% and 14.6% DR on
propagated anomalies in AN1 and AN2. However, they have
100% DR in the case of AN4. Overall, GT outperforms GCN
and GAT in detection capabilities in both datasets, making it
the best choice.

C. Simulations

Figure 7 shows Swarm-Net(GT)’s performance in the sim-
ulated scenarios.

1. Dropped response (S1): The proposed model has a 99.9%
accuracy in attesting swarms when one node’s response
is dropped at random. It is, therefore, resistant to single
points of failure due to dropped messages.

2. Perturbation (S2): We observe a 95+% DR for 10 or more
bytes of random SRAM perturbation.

3. Trace replay/out-of-sync states (S3): The proposed
model achieves an 87.7% DR in detecting trace replay
attacks and out-of-sync network states. Thus, attempts at
such threats are likely to be detected.

D. Intuition Behind Model Architectures

Since IoT swarms have a graph-like structure, GNNs are an
obvious choice - among which GT, GCN, and GAT are the
three most popular GNN architectures in the literature due to
their ability to handle graph-structured data efficiently using
different aggregation functions. Based on our discussion in
Section III on the efficacy of their aggregation methods for
modeling complex inter-node relationships in IoT networks,
GT has an advantage over GAT and GCN due to the higher
degree of parameterization in its design compared to GAT and
the appropriate modeling of edges compared to the oversim-
plified averaging in GCN, which may not correctly represent
relationships between the SRAM contents of connected nodes.
This is supported by the results observed for Swarm-1, Swarm-
2, and the simulated scenarios.

E. Latency and Memory
Overhead (To) may be defined as the summation of the

communication overhead (tc), preprocessing (tp), and infer-
ence time (ti) following the equation:

To = tc + tp + ti (15)

Table X compares latency between various related works.
Since Swarm-Net is the first paper to use SRAM for swarm
attestation, it differs vastly from the related works in its nature,
and the methods used in other studies may not apply to SRAM-
based analysis. Thus, our comparison is limited to the total
attestation overhead on the verifier’s end and computation
complexity on the IoT devices.

As the table shows, Swarm-Net has a To = 1 seconds,
most of which is associated with the data collection time.
The processing time on the IoT devices (included in tc) is
low (∼ milliseconds) since they need not perform complex
computation on the SRAM traces, unlike other software-based
RA methods [9, 10, 22]. In addition, the proposed method uses
a single SRAM trace for attestation, compared to WISE [15],
which requires over 5 seconds of network flow information
for attestation. It is worth noting that the communication
overhead stays constant for larger swarms since the gateway
sends attestation requests in parallel and collects the prover
responses asynchronously.

The evaluation time (tp + ti) of our best model (GT) is of
the order 10−5 for both CPU- and GPU-based verifiers, which
can be attributed to its simple design (compared to the more
complex VGAE proposed in RAGE [31] designed for single-
node attestation). Lastly, the verifier needs around 10 minutes

13

0
10
20
30
40
50
60
70
80
90

100

Overall
Authentic
firmware

Anomalous
firmware

Propagated
anomalies

GT 99.83 99.92 100 98.7
GAT 92.04 99.88 100 18
GCN 93.43 99.78 100 33

Ac
cu

ra
cy

 (%
)

(a) Swarm-1

0
10
20
30
40
50
60
70
80
90

100

Overall
Authentic
firmware

Anomalous
firmware

Propagated
anomalies

GT 99.96 99.99 100 99.52
GAT 95.12 99.98 95.2 34.3
GCN 94.25 99.98 85.4 35.96

A
cc

ur
ac

y
(%

)

(b) Swarm-2

Fig. 6: Performance of the proposed graph models across different detection tasks.

99.9 95 87.7

0
10
20
30
40
50
60
70
80
90

100

Dropped
response

10-byte
perturbation

Trace replay

Ac
cu

ra
cy

 (%
)

Fig. 7: Performance of Swarm-Net(GT) on simulated attacks.

to sample enough traces for training the GNN and incurs 0.036
seconds (GPU) and 0.563 seconds (CPU) per epoch (for GT)
during the training phase.

F. Scalability

The proposed GT model consists of 600, 448 trainable
parameters and occupies ∼ 2.4 MB of verifier memory per
swarm. To examine the viability of Swarm-Net on large
network sizes, we simulated a 1000-node GT and tested it
on randomized input traces. The model occupied 400MB of
verifier memory and incurred 10−2 seconds of evaluation
latency per swarm response. Furthermore, since the gateway
collects SRAM responses asynchronously, the data collection
time depends on the timeout duration (1 second in this study)
and would be the same for large IoT networks. Furthermore,
testing the proposed method’s overall attestation performance
on swarms of such a scale is impossible, given the practi-
cal difficulty of creating meaningful physical networks and
firmware. However, given its efficacy on the collected and sim-
ulated dataset, we expect Swarm-Net to perform comparably
well on larger swarms.

VIII. SECURITY ANALYSIS

We now present a security analysis of the Swarm-Net
attestation protocol.

Lemma 1. Consistency: The data sections obtained from the
same firmware on physical twins behave similarly.

The same firmware loaded on two different devices with the
same functionality can generate data sections following similar
behavior. The results of the proposed attestation algorithm on
P1 and P2 from the Swarm-1 dataset support this claim.

Lemma 2. Distinguishability: Only an authorized firmware
can generate an authentic SRAM trace using its own SRAM.

Changes made to the variables and control dependencies
in the firmware create observable differences in the SRAM
behavior, as supported by the results on node-level anomalies
ANj in Section VII. Thus, an unauthorized firmware cannot
generate a valid T ′ using its own SRAM.

Theorem 3. Mutual Authentication: Completing one protocol
run implies that the verifier, gateway, and IoT node have done
so with a legitimate counterpart.

Proof. Since the communication between the verifier and
gateway is assumed to be secure, an adversary may only
impersonate either (1) the trusted gateway or (2) an IoT node
Nj .

In case (1), the adversary must furnish a valid parameter
Ireq,j and subsequently Iupdate,j and mupdate,j to Nj , which
is not possible without the knowledge of the shared secret key,
Kj , and the nonce for that attestation round, Cj .

In case (2), the adversary must furnish a valid parameter
Iresp,j and message mresp,j to the gateway, which is not
possible without knowledge of the shared secret key, Kj , and
the updated nonce for the attestation round, Cj .

Theorem 4. Availability: A registered swarm is always avail-
able.

Proof. To affect the availability of a registered swarm, an
adversary may do one of three things: (1) denial of service on
the swarm, (2) replay old attestation requests from the gateway,
or (3) drop messages between the gateway and the swarm.

In case (1), an adversary may launch a denial of service on
the swarm by sending frequent authentication requests to the
swarm, which is not possible without the knowledge of Kj

and Cj between the gateway and each Nj in the swarm.

14

In case (2), an adversary may replay previously valid attes-
tation parameters Ireq,j to each Nj in the swarm. However,
these parameters will not be valid for subsequent attestation
rounds as the nonce Cj is updated by the gateway and the
swarm nodes after every attestation round.

Lastly, in case (3), an adversary may drop messages between
the gateway and the swarm, causing a state of desynchroniza-
tion. However, the gateway maintains a list of valid nonces LR

as mentioned in Section V, which it uses to resynchronize the
devices in future attestation rounds. Furthermore, the verifier
maintains a list of default traces Tdef , which it uses to replace
missing responses during attestation, thereby avoiding single
points of failure as shown by the results on dropped responses
in Section VII-C.

Theorem 5. Attestation: Successful attestation by Algorithm
2 proves that the provers have authentic firmware.

Proof. An adversary may attempt the following: (1) generate
an authentic trace from the SRAM of a device loaded with
malicious firmware, and (2) attempt to capture and replay a
valid trace.

Case (1) is impossible, as stated in Lemma 2; malicious
firmware cannot generate a valid trace using the microcon-
troller’s SRAM. Furthermore, traces generated from malicious
firmware are easily detected by Algorithm 2 as supported by
the results in Section VII. Finally, an adversary may attempt to
forge SRAM traces using a random guess. Given a maximum
padding length L and minimum m bytes of detectable uniform
random perturbation by the attestation method, the adversary’s
probability (PAdv) of fooling the attestation method is as
follows.

PAdv ≤
m

L
(16)

Based on our perturbation experiments on S2 in Section VII-C,
Swarm-Net can detect m = 10 bytes or more of uniform
random noise for L = 2048. Thus, the adversary has a
PAdv ≤ 0.0048 in such an attack, provided it can bypass the
confidentiality and integrity measures in addition to forging
an SRAM trace.

In case (2), the adversary cannot access the valid traces
since the communication between the verifier and the swarm
is encrypted. However, even if an adversary succeeds in doing
so, replaying old traces will create out-of-sync network states,
which are detectable during attestation based on the results of
trace replay attacks in Section VII-C.

IX. CONCLUSION

This paper proposed the first SRAM-based swarm attesta-
tion approach, Swarm-Net, that exploited the graph-like struc-
ture of IoT swarms using GNNs. It presented the first datasets
on SRAM-based attestation that cover various complicated
node-level and inter-node relationships. In addition, a secure
protocol was proposed that ensured confidentiality, integrity,
mutual authentication, and attestation. Swarm-Net achieved a
99.9% overall accuracy across all types of behaviors ranging
from normal firmware to anomalous firmware and propagated
anomalies. It was also tested on simulated scenarios, such

as dropped responses, trace replay attacks, and SRAM per-
turbation, which showed resistance to such attacks. Latency
evaluation showed an overhead and evaluation latency of the
order of 1 second and 10−5 seconds, respectively. Lastly, a
security analysis highlighted security against impersonation,
replay attacks, denial of service, dropped messages, mali-
cious firmware, and propagated anomalies. Future studies can
attempt swarm attestation using a smaller number of data
section bytes. Furthermore, while this study uses single SRAM
responses for attestation, time-series information captured by
sequences of SRAM traces may help detect intermittent ma-
licious activity and can be explored by future studies.

REFERENCES
[1] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, “A comprehensive

review of the covid-19 pandemic and the role of iot, drones, ai,
blockchain, and 5g in managing its impact,” Ieee access, vol. 8, pp.
90 225–90 265, 2020.

[2] B. Marr. 2024 iot and smart device trends:
What you need to know for the future. [Online].
Available: https://www.forbes.com/sites/bernardmarr/2023/10/19/
2024-iot-and-smart-device-trends-what-you-need-to-know-for-the-future/

[3] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: application areas, security threats, and solution
architectures,” IEEe Access, vol. 7, pp. 82 721–82 743, 2019.

[4] L. Ilascu, “When their firmware is vulnerable, its up to you to protect
your smart devices,” Accessed: May, vol. 5, 2019.

[5] S. F. J. J. Ankergård, E. Dushku, and N. Dragoni, “State-of-the-art
software-based remote attestation: Opportunities and open issues for
internet of things,” Sensors, vol. 21, no. 5, p. 1598, 2021.

[6] I. Sfyrakis and T. Gross, “A survey on hardware approaches for remote
attestation in network infrastructures,” arXiv preprint arXiv:2005.12453,
2020.

[7] W. A. Johnson, S. Ghafoor, and S. Prowell, “A taxonomy and review of
remote attestation schemes in embedded systems,” IEEE Access, vol. 9,
pp. 142 390–142 410, 2021.

[8] M. Ambrosin, M. Conti, R. Lazzeretti, M. M. Rabbani, and S. Ranise,
“Collective remote attestation at the internet of things scale: State-of-the-
art and future challenges,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 4, pp. 2447–2461, 2020.

[9] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt: Software-
based attestation for embedded devices,” in IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004. IEEE, 2004, pp. 272–282.

[10] A. Seshadri, M. Luk, A. Perrig, L. Van Doorn, and P. Khosla, “Scuba:
Secure code update by attestation in sensor networks,” in Proceedings
of the 5th ACM workshop on Wireless security, 2006, pp. 85–94.

[11] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” in Distributed Computing in Sensor
Systems: 4th IEEE International Conference, DCOSS 2008 Santorini
Island, Greece, June 11-14, 2008 Proceedings 4. Springer, 2008, pp.
372–385.

[12] S. Agrawal, M. L. Das, A. Mathuria, and S. Srivastava, “Program
integrity verification for detecting node capture attack in wireless sensor
network,” in Information Systems Security: 11th International Confer-
ence, ICISS 2015, Kolkata, India, December 16-20, 2015. Proceedings
11. Springer, 2015, pp. 419–440.

[13] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings of the
52nd annual design automation conference, 2015, pp. 1–6.

[14] S. W. Kibret, “Property-based attestation in device swarms: a machine
learning approach,” Machine Learning for Cyber Security, p. 71, 2023.

[15] A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and I. Refani-
dis, “A graph neural network method for distributed anomaly detection
in iot,” Evolving Systems, vol. 12, no. 1, pp. 19–36, 2021.

[16] M. N. Aman, H. Basheer, J. W. Wong, J. Xu, H. W. Lim, and B. Sikdar,
“Machine-learning-based attestation for the internet of things using
memory traces,” IEEE Internet of Things Journal, vol. 9, no. 20, pp.
20 431–20 443, 2022.

[17] C. Krauß, F. Stumpf, and C. Eckert, “Detecting node compromise in
hybrid wireless sensor networks using attestation techniques,” in Security
and Privacy in Ad-hoc and Sensor Networks: 4th European Workshop,
ESAS 2007, Cambridge, UK, July 2-3, 2007. Proceedings 4. Springer,
2007, pp. 203–217.

https://www.forbes.com/sites/bernardmarr/2023/10/19/2024-iot-and-smart-device-trends-what-you-need-to-know-for-the-future/
https://www.forbes.com/sites/bernardmarr/2023/10/19/2024-iot-and-smart-device-trends-what-you-need-to-know-for-the-future/

15

[18] H. Tan, W. Hu, and S. Jha, “A tpm-enabled remote attestation protocol
(trap) in wireless sensor networks,” in Proceedings of the 6th ACM work-
shop on Performance monitoring and measurement of heterogeneous
wireless and wired networks, 2011, pp. 9–16.

[19] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure
and minimal architecture for (establishing dynamic) root of trust.” in
Ndss, vol. 12, 2012, pp. 1–15.

[20] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A
security architecture for tiny embedded devices,” in Proceedings of the
Ninth European Conference on Computer Systems, 2014, pp. 1–14.

[21] M. N. Aman, M. H. Basheer, S. Dash, J. W. Wong, J. Xu, H. W. Lim,
and B. Sikdar, “Hatt: Hybrid remote attestation for the internet of things
with high availability,” IEEE Internet of Things Journal, vol. 7, no. 8,
pp. 7220–7233, 2020.

[22] M. Khodari, A. Rawat, M. Asplund, and A. Gurtov, “Decentralized
firmware attestation for in-vehicle networks,” in Proceedings of the 5th
on Cyber-Physical System Security Workshop, 2019, pp. 47–56.

[23] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “Seda: Scalable embedded device
attestation,” in Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, 2015, pp. 964–975.

[24] X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik,
“Lightweight swarm attestation: A tale of two lisa-s,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security, 2017, pp. 86–100.

[25] A. Visintin, F. Toffalini, M. Conti, and J. Zhou, “Safeˆ d: Self-
attestation for networks of heterogeneous embedded devices,” arXiv
preprint arXiv:1909.08168, 2019.

[26] B. Kuang, A. Fu, S. Yu, G. Yang, M. Su, and Y. Zhang, “Esdra:
An efficient and secure distributed remote attestation scheme for iot
swarms,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8372–8383,
2019.

[27] E. Dushku, M. M. Rabbani, M. Conti, L. V. Mancini, and S. Ranise,
“Sara: Secure asynchronous remote attestation for iot systems,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 3123–
3136, 2020.

[28] A. Ibrahim, A.-R. Sadeghi, and G. Tsudik, “Healed: Healing & attes-
tation for low-end embedded devices,” in Financial Cryptography and
Data Security: 23rd International Conference, FC 2019, Frigate Bay,
St. Kitts and Nevis, February 18–22, 2019, Revised Selected Papers 23.
Springer, 2019, pp. 627–645.

[29] M. Ammar, M. Washha, and B. Crispo, “Wise: Lightweight intelligent
swarm attestation scheme for iot (the verifier’s perspective),” in 2018
14th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE, 2018, pp. 1–8.

[30] B. Kuang, A. Fu, Y. Gao, Y. Zhang, J. Zhou, and R. H. Deng,
“Fesa: Automatic federated swarm attestation on dynamic large-scale
iot devices,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 4, pp. 2954–2969, 2022.

[31] M. Chilese, R. Mitev, M. Orenbach, R. Thorburn, A. Atamli, and A.-R.
Sadeghi, “One for all and all for one: Gnn-based control-flow attestation
for embedded devices,” arXiv preprint arXiv:2403.07465, 2024.

[32] M. Jakobsson and K.-A. Johansson, “Retroactive detection of malware
with applications to mobile platforms,” in 5th USENIX Workshop on
Hot Topics in Security (HotSec 10), 2010.

[33] Y. Li, J. M. McCune, and A. Perrig, “Sbap: Software-based attestation
for peripherals,” in Trust and Trustworthy Computing: Third Interna-
tional Conference, TRUST 2010, Berlin, Germany, June 21-23, 2010.
Proceedings 3. Springer, 2010, pp. 16–29.

[34] B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
efficient software-based attestation for industrial control devices with
arm processors,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017, pp. 425–436.

[35] M. N. Aman and B. Sikdar, “Att-auth: A hybrid protocol for industrial
iot attestation with authentication,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 5119–5131, 2018.

[36] S. Hristozov, J. Heyszl, S. Wagner, and G. Sigl, “Practical runtime
attestation for tiny iot devices,” in NDSS Workshop on Decentralized
IoT Security and Standards (DISS), vol. 18, 2018.

[37] J. Koshy and R. Pandey, “Remote incremental linking for energy-
efficient reprogramming of sensor networks,” in Proceeedings of the
Second European Workshop on Wireless Sensor Networks, 2005. IEEE,
2005, pp. 354–365.

[38] V. Kohli, M. N. Aman, and B. Sikdar, “An intelligent fingerprinting
technique for low-power embedded iot devices,” IEEE Transactions on
Artificial Intelligence, 2024.

[39] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A

comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[40] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[41] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[42] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” arXiv preprint arXiv:2009.03509, 2020.

[43] P. Xu, X. Zhu, and D. A. Clifton, “Multimodal learning with transform-
ers: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 10, pp. 12 113–12 132, 2023.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[45] F. Samiullah, M. L. Gan, S. Akleylek, and Y. Aun, “Group key
management in internet of things: A systematic literature review,” IEEE
Access, 2023.

[46] H. Gilbert and H. Handschuh, “Security analysis of sha-256 and sisters,”
in International workshop on selected areas in cryptography. Springer,
2003, pp. 175–193.

[47] V. Kohli, B. Kohli, M. Naveed Aman, and B. Sikdar, “Iot device
swarm sram dataset for firmware attestation,” 2024. [Online]. Available:
https://dx.doi.org/10.21227/gmee-vj41

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Varun Kohli is a Ph.D. student at the Depart-
ment of Electrical and Computer Engineering at
the National University of Singapore. He received
his B.E. in Electrical and Electronics Engineering
from the Birla Institute of Technology and Science,
Pilani, India, in 2021. His research interests include
Artificial Intelligence, IoT, and Security.

Bhavya Kohli is an undergraduate student at IIT
Bombay, India. He is pursuing his B.Tech in Elec-
trical Engineering and M.Tech in Artificial Intelli-
gence as an interdisciplinary dual degree, with an
expected graduation in 2025. His research interests
include Machine Learning, Security, and real-world
applications of ML.

Muhammad Naveed Aman an Assistant Profes-
sor in the University of Nebraska-Lincoln received
the B.Sc. degree in Computer Systems Engineering
from KPK UET, Peshawar, Pakistan, M.Sc. degree
in Computer Engineering from the Center for Ad-
vanced Studies in Engineering, Islamabad, Pakistan,
M.Engg. degree in Industrial and Management En-
gineering and Ph.D. in Electrical Engineering from
the Rensselaer Polytechnic Institute, Troy, NY, USA
in 2006, 2008, and 2012, respectively. His research
interests include IoT security.

Biplab Sikdar received the B.Tech. degree in elec-
tronics and communication engineering from North
Eastern Hill University, Shillong, India, in 1996,
the M.Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur, India, in
1998, and the Ph.D. degree in electrical engineering
from the Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2001. He is currently a Professor with the
Department of Electrical and Computer Engineer-
ing, National University of Singapore, Singapore.
His research interests include wireless network, and

security for IoT and cyber-physical systems.

https://dx.doi.org/10.21227/gmee-vj41

	Introduction
	Related Works
	RA methodologies
	Swarm attestation
	Swarm-Net

	Background
	Static Random Access Memory
	Graph Neural Networks

	Network and Threat Model
	Network Model
	Threat Model

	Proposed Technique: Swarm-Net
	Training Phase
	Attestation Phase
	Attestation algorithm
	Attestation protocol

	Experimental Setup
	Hardware and Software
	IoT Swarms, Datasets, and Simulations
	Swarm-1
	Swarm-2
	Simulated Scenarios

	Models and Hyperparameters
	Evaluation Metrics

	Results
	Swarm-1
	Swarm-2
	Simulations
	Intuition Behind Model Architectures
	Latency and Memory
	Scalability

	Security Analysis
	Conclusion
	Biographies
	Varun Kohli
	Bhavya Kohli
	Muhammad Naveed Aman
	Biplab Sikdar

