
1

Machine Learning Based Attestation for the Internet
of Things Using Memory Traces

Muhammad Naveed Aman, Haroon Basheer, Jun Wen Wong, Jia Xu, Hoon Wei Lim, Biplab Sikdar

Abstract—The advent of 4G and 5G mobile networks have
made IoT devices an essential part of smart nation drives.
Firmware integrity is crucial to the security of IoT systems.
Most of the existing techniques for firmware attestation require a
legitimate copy of an IoT device’s firmware. However, firmware
is considered an intellectual property (IP) of the manufacturer
and may not be available. To solve this issue, this paper proposes
a software based attestation technique where remote verifiers use
machine learning classifiers on an IoT device’s memory dump
to verify the integrity of an IoT device’s internal state. The
experimental results from an actual prototype show that the
proposed technique not only successfully detects attacks with
high accuracy but also results in about 96% lower latency as
compared to existing techniques. All this is achieved with high
availability, low computational complexity, and without requiring
a legitimate copy of the device’s original firmware.

Index Terms—Malware, Software Attestation, Internet of
Things, Intrusion Detection, Memory Traces.

I. INTRODUCTION

INTERNET of Things (IoT) is gaining popularity in indus-
trial control [1], [2], healthcare, smart cities, defense, and

other fields. Therefore, protecting the data and code of IoT
devices is critical. The large number of IoT devices producing
data of critical nature, makes IoT devices an attractive target
for cyber-criminals [3]. A recent study showed that 95% of
vulnerabilities detected in smart things were firmware related
[4], [5], [6]. The process of checking the authenticity of the
firmware/software running on an embedded device against any
malicious changes is termed attestation. A verifier is the trusted
entity that decides to invoke attestation, while the prover is the
embedded device proving its own authenticity. In traditional

This work was supported in part by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Corporate Labora-
tory@University Scheme, National University of Singapore, and in part by
the Singapore Telecommunications Ltd.

M. N. Aman was with the Department of Computer Science, National
University of Singapore, 13 Computing Drive, Singapore 117417. He is now
with the Department of Computer Science & Engineering, University of
Nebraska-Lincoln, Lincoln, NE 68588, USA. e-mail: naveed.aman@unl.edu.

M. H. Basheer is with the Department of Computer Science, National
University of Singapore, 13 Computing Drive, Singapore 117417, e-mail:
haroon.basheer@nus.edu.sg.

J. W. Wong, J. Xu, and H. W. Lim are with the NUS-Singtel Cyber Secu-
rity R&D Lab, e-mail: junwen.wong@trustwave.com, jia.xu@trustwave.com,
hoonwei.lim@trustwave.com.

B. Sikdar is with the Department of Electrical and Computer Engineering,
National University of Singapore, 4 Engineering Drive 3, Singapore 117576,
e-mail: bsikdar@nus.edu.sg.

schemes, a challenge is sent to the prover by the verifier.
A hash digest is calculated by the prover over its firmware
source code and conveyed to the verifier. This checksum is
then used by the verifier to detect compromised devices by
calculating the same checksum locally using a saved copy
of the prover’s firmware. The main bottleneck in traditional
schemes is the higher computational complexity and longer
verification delay of iterating over the whole memory multiple
times to calculate the hash based checksum. Moreover, the
requirement of storing an actual copy of the prover’s firmware
at the verifier may lead to IP violations.

Existing attestation techniques can be categorized as fol-
lows: software-based, hardware-based, and hybrid. Software-
based attestation techniques take advantage of the computing
limitations of embedded devices, e.g., running an algorithm
within a specific amount of time. These techniques are suit-
able for low-cost embedded devices, since they don’t require
any specialized hardware. Nevertheless, these techniques are
computationally intensive. The attestation techniques that use
advanced hardware, e.g., secure-coprocessing or trusted plat-
form modules (TPMs) [7], are known as hardware-based.
Although, the computational complexity of these techniques is
low, in general, IoT devices do not have the required hardware
modules. Conversely, hybrid attestation techniques attempt to
find a middle ground by keeping the hardware requirement to
a minimum and also reducing the computational complexity.
However, most of the hybrid attestation techniques have strict
architectural requirements which limits their applicability.

The degree to which the routine operation of an IoT
device is unaffected by executing a security routine is re-
ferred to as availability. Real-time safety-critical applications
deployed in IoT devices require security protocols that do
not impair availability. However, The majority of current
attestation techniques rely on the attestation routine running
in an uninterrupted manner. Typically, attestation procedures
may take long periods of time to complete, which yields
sub par availability of IoT devices. Apart from computational
complexity, hardware requirements, and availability, most of
the existing techniques require a legitimate copy of a device’s
firmware. However, most manufactures consider the firmware
as an IP and keep it protected. This invalidates the basic
assumption of most existing attestation techniques and thus,
making them essentially impractical.

To address the aforementioned problems, this paper pro-
poses a software based attestation technique with significantly
lower computational complexity as compared to the existing
software based attestation techniques. Moreover, the proposed
technique does not require a copy of the prover’s legitimate

2

TABLE I: Summary of existing literature.

Technique [8], [9], [10], [11],
[12],[13], [14] [15] [16] [17] [18] [19], [20] [21], [22],

[23] [24] HAtt [25] Proposed
Technique

Checksum 3 7 7 3 3 3 3 3 7 7
Precise Time Stamps 3 3 7 7 3 3 3 7 7 7
Interrupts Disabled 3 3 7 7 3 3 3 7 7 7
Advanced Hardware 7 7 3 3 7 3 7 3 7 7
Low Availability 3 3 7 7 3 3 3 7 7 7
Firmware Required 3 3 3 3 3 3 3 3 3 7

Checksums: Computationally complex checksums?
Precise Time Stamps: Needs precise time measurement for execution and network latency?
Interrupts Disabled: All interrupts need to be disabled?
Advanced Hardware: Needs expensive hardware primitives?
Low Availability: Affects the routine operation of the device?
Firmware Protection: An original copy of the prover’s firmware required?

IoT Device

IoT Device

IoT Device

Gateway Ver ifierInternet

Fig. 1: Network model.

(i.e., original) firmware, ensuring IP protection. The proposed
technique collects traces from an IoT device’s main memory
and then converts them into grayscale images. Using machine
learning (ML) based classifiers on these images, the proposed
technique can detect any tampering with an IoT device’s
firmware. The major contributions of this paper may be
summarized as

(i) A software based attestation technique which does not
require any computationally expensive operations.

(ii) Using memory traces rather than the actual firmware to
verify the firmware integrity of an IoT device.

(iii) Validation of the proposed protocol using actual proto-
types.

The rest of the paper is organized as follows. We discuss the
related work in Section II. The system model is discussed in
Section IV and the proposed technique is presented in Section
V. The experiment design is described in Section VI while the
performance analysis is presented in Section VII. The paper
is concluded in Section VIII.

II. RELATED WORK

In the available literature, important software-based attesta-
tion techniques include SWATT [8], SCUBA [9], and SAKE
[10]. SWATT performs numerous iterations on the memory in
order to compute a collective hash. SWATT requires at least

50,000 iterations to detect an adversary. As a result, execu-
tion times and complexity increase. Similarly, [9] employs a
technique similar to SWATT to identify contaminated sensor
nodes. In a related study [10], the authors suggest a second
way for establishing a secret key across sensor nodes in the
event of an attack. These techniques, however, rely on precise
time measurements and sophisticated procedures. To reduce
computational cost, a recent approach [15] for attestation
performs considers partial memory checksums. However, the
attestation routine must continue to run uninterrupted, resulting
in a poor level of availability. Additionally, this approach
detects malware after a large number of rounds. Note that
all these techniques use the actual firmware stored in the
flash memory. On the other hand, the proposed technique is
based on using the RAM traces instead of the actual firmware.
This has two major advantages: firstly, the RAM size is
magnitudes smaller than the flash memory, and secondly, the
proposed technique does not iterate over the memory locations,
instead we use features extracted from the memory traces to
perform device attestation. This leads to significantly reduced
computational complexity.

[16], [26], [17], [27], [28] are some of the prominent
hardware-based attestation methodologies. The approach de-
scribed in [26] presupposes TPM equipped sensor nodes. This,
however, may not be a reasonable assumption for resource
constrained IoT devices. The approaches described in [16]
and [17] choose a cluster head based on TPM availability and
form clusters. Verifying the nodes’ integrity in a cluster is the
responsibility of the cluster head. On the other hand, the cluster
head’s integrity is validated using the on-board TPM which
acts as its root of trust. However, the single point of failure
makes these systems susceptible to failure. Additionally, these
solutions depend on the availability of TPMs, which are not
appropriate for IoT devices. On the other hand, the proposed
technique is based on the availability of RAM traces only and
does not require any hardware modules.

SMART [18], TrustLite [19], TyTan [20], ATT-Auth [22],
and PRoM [29] are some of the important existing works on
hybrid attestation. These solutions, however, fall short of en-
suring high availability. Furthermore, because these techniques
do not incorporate wandering malware into their threat model,
they are susceptible to roving malware. Another technique
SMARM [24], proposes a hybrid attestation technique for

3

Internet

Prover
(IoT Device)

Attestation
Request

Memory Trace
Request

Attestation
Response

Ver ifier

Memory

Obtain a
Memory Trace

Attestation
Response

Rpi3

Attestation
Request

Memory Trace
Response

With FE:
Conver t to Grayscale

Image

Without FE:
Obtain the norm

With FE:
Classify Image as Safe/Compromised

Without FE:
Classify the Mean of Norms as

Safe/Compromised

Fig. 2: Overall operation of proposed technique.

.text

.data

.bss

stack/heap

Memory Trace Re-ogranized
Memory Trace

Gray Scale
Image

007 150 216 216 216
216 216 216 216 216

2D Integer
Array

0.1 0.5 0.8 0.8 0.8
0.8 0.8 0.8 0.8 0.8

Normalized
Array

025 127 204 204 204
204 204 204 204 204

Grayscale
Array

Fig. 3: From memory trace to grayscale image.

detecting roaming malware. SMARM is based on the SMART
architecture with one notable exception: it relaxes the SMART
atomicity constraint, allowing the attestation process to be
interrupted. However, similar to software-based attestation
solutions, SMARM requires a hash digest of an IoT de-
vice’s full memory, leading to longer execution times and
higher computational complexity. Additionally, because of the
SMART architecture’s unique needs, SMARM cannot be used
with low-cost devices. Note that all these technique suffer from
availability concerns and are susceptible to roving malware.
In contrast, the proposed technique does not disable interrupts
and can run without hindering the normal operation of the IoT
device. Moreover, as the proposed technique is based on RAM
traces rather than flash memory, it can detect roaming malware
because the RAM contents do not depend on the location of
the adversary in the flash memory [24].

A summary of existing techniques and comparison with the
proposed technique is presented in Table I which shows that
the existing attestation techniques suffer from one or more of
the following problems:

i. Owing to the use of complex operations, devices have a
high overhead.

ii. Rely on expensive hardware modules.
iii. Result in low availability due to the requirement of

interrupts to be disabled.
iv. Require a copy of the legitimate firmware, leading to IP

loss.

The proposed technique avoids these problems as follows:

1) No complex operation is carried out on the IoT device
except for reading the memory dump.

2) No hardware modules are required.
3) As the memory traces are used to attest the IoT devices,

the IoT device does not need to disable interrupts.
4) Firmware of IoT devices can be verified without a copy

of the actual firmware using machine learning techniques.

III. BACKGROUND

This section describes the machine learning techniques used
in the proposed technique.

4

A. Classification and Regression Trees

A classification and regression tree (CART) minimizes the
Gini diversity index (gdi) as follows:

Gini(D) = 1−
L∑

l=1

(
|Cl|
|D|

)2, (1)

where L denotes the number of classes and Cl denotes the
number of samples in the l− th class. The gdi can be thought
of as the inverse of the goodness-of-fit for a model, i.e., a small
value of gdi indicates a better match. In each iteration, the
CART separates D into two subsets and chooses the prediction
that results in the smallest gdi of the subsets to make the
decision at the current node/vertex of the tree by evaluation:

Gini(D, Im) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2), (2)

where Im is one of the features with m ∈ 1, 2 and D1 and
D2 are the two divided subsets of data. Thus, starting with
the first node (referred to as the root node), the CART builds
the binary tree for classification iteratively using the training
data.

B. Logistic Regression

In logistic regression, ’logit’ is used as the link function:

log(
p

1− p
) = βTx (3)

where the set of coefficients is represented by β =
[β0, β1, · · ·βn]T , and x = [x1, x2, · · · , xn]T is an array
formed by the features of an observation. Which leads to a
sigmoid function:

p =
1

1 + e−βTx
(4)

The weights β can be calculated by using the gradient descent
method to minimize the cost function [30].

C. Support Vector Machines

The hyper-plane for accurately dividing the training data set
(to obtain the largest geometric margin) in a support vector
machine (SVM) with a linear kernel is given by:

wTx + b = 0 (5)

where the predictor array is denoted by x and an observation
is represented by x, while the SVM hyper-plane coefficients
are w = [w1, w2]T and b assuming two features. The margin
(d) for an observation (x) to a hyper-plane is given by:

d =
1

‖w‖
(wTx + b). (6)

SVM learns by finding the hyper-plane (w, b) such that the
minimum margin d is maximized. This leads to a convex
quadratic optimization problem [31]:

minimize
w

f(w) =
1

2
‖w‖2

subject to (wTX + b) > 1
(7)

where X is the data set with N observations, i.e., X =
[x1,x2, · · · ,xN].

D. Naive Bayes Classifier

The Naive Bayes classifier is based on the popular Bayes
theorem:

p(A|B) =
p(B|A)p(A)

p(B)
, (8)

i.e., the probability of the event A given an observation B.
The features are assumed to be independent. Thus, based
on an observation the probability of each class is calculated
and the observation is classified as the class with the highest
probability.

IV. NETWORK MODEL

Figure 1 presents the network model for this paper with the
following entities:

i.) IoT Device: A set of IoT devices is connected to a
gateway through a wireless or wired connection. An IoT
device acts as the prover for an attestation request. IoT
devices are assumed to be resource constrained in terms
of processing, memory, and energy.

ii.) Gateway: Typically IoT devices do not have the
complete transmission control protocol/Internet protocol
(TCP/IP) stack. Therefore, they need to be connected to
border router elements for Internet connectivity. In this
paper, the gateway serves two purposes: (i) it functions as
a device manager and a router for a set of IoT devices,
enabling communication between an IoT device and a
verifier; (ii) The gateway is used to process the raw
hex dump of random access memory (RAM) collected
from an IoT device. The gateway is assumed to be
more powerful and less resource constrained than the IoT
devices. The gateway is in-turn connected to a remote
verifier through the Internet.

iii.) Verifier: The verifier is a trusted remote server that can
initiate an attestation request. The verifier maintains the
dictionary of gateways, IoT devices under each gateway,
and application variants executed in each IoT device.
Thus, It stores the legitimate traces for each IoT device
for training classifiers to detect compromised devices.
The frequency of attestation and training of classifiers
is managed by the Verifier.

V. PROPOSED TECHNIQUE

The overall operation of the proposed technique is shown in
Figure 2. The first step in the proposed technique is to extract
the hex memory dump from the IoT device as discussed in
Section VI and called a memory trace from hereon. A memory
trace can be considered as a two-dimensional (2D) array of
8 bit unsigned integers. Therefore, the memory trace can be
visualized as a grayscale image using the typical range of
[0, 255]. In this paper, based on empirical results, we fixed
the image width at 192-bits or 24 8-bit unsigned integers. The
width of the image is fixed while the height depends on the
size of memory. The process of converting a memory trace
into a grayscale image is shown in Figure 3 with the following
steps:

i. Re-organize the memory trace by changing the width and
height according to the memory size [33].

5

Time:

Feature Extraction

Classifier

Safe/Compromised

(a) Training

Memory Trace

Send hex memory
dump to gateway

Conver t Memory
Trace to Grayscale

Image

Grayscale Image

Classify Image as
safe or

compromised

IoT Device
Gateway Ver ifier

(b) Attestation

Fig. 4: Proposed technique with a machine learning based
classifier and feature engineering.

ii. Each word in the memory trace is converted from hex-
adecimal into its integer value.

iii. An l1 normalization is done along the columns.
iv. Each element of the resulting array is multiplied by 255.
v. Encode each element of the resulting array to an unsigned

8-bit integer (uint8).

A typical memory is divided into the following sections:

i. .text: Use to store the executable code.
ii. .data: Stores initialized static and global variables.

iii. .bss: Memory allocated for uninitialized static and global
variables.

iv. stack/heap: Memory allocated for dynamic memory al-
location on a heap or used for function calls, interrupts,
and local variables.

Thus, the content of memory is dependent on the code being
executed and the data it is using. Based on this insight, the
proposed technique aims at classifying a memory trace image
as “safe” or “compromised”. A safe or legitimate memory
trace is one which does not indicate any tampering with the
firmware, while, a compromised memory trace image is one
that indicates abnormal behaviour of the memory and thus,
points to possible tampering with the IoT device firmware.

To classify an image as safe or compromised, we can take
two approaches, machine learning based classification with
or without feature engineering. The classifiers considered in
this paper include classification and regression trees (CART),
logistic regression (LR), support vector machines (SVM),
K-means nearest neighbour (K-NN), multi-layer perceptron
(MLP), and Gaussian Naive Bayes (NB) [34].

A. Classifier with Feature Engineering

The main focus of this section is to apply feature en-
gineering to extract features to improve the classification
accuracy of the classifiers. HOG is a feature descriptor that
is used in computer vision and image processing to aid in
the detection of objects. The approach identifies instances of
gradient orientation within a specified region of an image.
The HOG descriptor is concerned with an object’s structure
or form. It outperforms all other edge descriptors because
it computes features using both the magnitude and angle of
the gradient. It generates histograms for the image’s regions
based on the gradient’s magnitude and orientation. Thus, given
the dynamic nature of RAM, HoG was selected based on its
robustness to changing objects. The steps to extract the HoG
features are as follows:

i. The gradient is calculated by combining the image’s mag-
nitude and angle. The horizontal and vertical gradients Gx

and Gy are initially calculated for each pixel in a block
of 3 × 3 pixels. To begin, Gx and Gy are calculated for
each pixel value using:

Gx(i, j) = I(i, j + 1)− I(i, j − 1) (9)
Gy(i, j) = I(i− 1, j)− I(i+ 1, j), (10)

where i and j represent the the rows and columns,
respectively. Furthermore, to calculate the magnitude µ
and angle θ of the pixels, we have:

µ =
√
G2

x +G2
y (11)

θ =

∣∣∣∣tan−1

(
Gy

Gx

)∣∣∣∣ (12)

ii. The gradient matrices, i.e., magnitude and angle matrix,
are divided into blocks (8× 8 cells) and for each cell in
a block, we calculate:

j =

⌊(
θ

∆θ
− 1

2

)⌋
(13)

Cj = θ(j + 0.5) (14)

Vj = µ ·
[
θ

∆θ
− 1

2

]
(15)

Vj+1 = µ ·
[
θ − Cj

∆θ

]
(16)

iii. The values of Vj and Vj + 1 are appended to an array
(used as a bin for a block) at the index of the jth and
(j + 1)th bin generated for each pixel. Thus, we obtain
the histogram for all the blocks.

iv. The scikit-image processing library was used to extract
the features from each block.

2000 features were extracted using the HoG technique out
of which 6 features were used for classification. The overall
operation of the proposed technique is shown in Figure 4.
An IoT device sends a hex memory dump to the gateway
through a wired or wireless connection. The gateway converts
the memory trace into an image (as described previously) and
forwards it to the verifier. The image is classified as safe or
compromised by the verifier.

6

(a) Training

Norms

IoT Device
Gateway

Ver ifier
Memory Trace

Memory Trace

Memory Trace

(b) Attestation

Fig. 5: Proposed technique with a machine learning based
classifier and no feature engineering.

B. Classifier without Feature Engineering

Although, the proposed technique with feature engineering
may result in higher accuracy of detection, it may entail
higher communication overheads. This is due to the fact
that a complete grayscale image of the memory dump of
the IoT device needs to be sent to the verifier (each time)
for attestation. To solve this issue, we also propose a light-
weight method for attestation without feature engineering.
The process of training these classifiers is shown in Figure
5(a). Memory traces are converted into training images, a
“difference” image is obtained by subtracting the previous
image from the current image as follows:

∆X = Xti+1 −Xti , (17)

i.e., the difference of two consecutive images is obtained by
subtracting the matrix Xti+1 from the matrix Xti , where ti
represents the ith time sample. The difference image ∆X is
then used to calculate the l1 norm ||x||1 as follows:

||x||1 =

i=m,j=n∑
i=1,j=1

|∆xij |, (18)

where m and n represent the number of rows and columns in
∆X and ∆xij denotes the pixel at the ith row and jth column

in the difference image. After calculating the l1 norms of the
difference images over the training data set, these l1 norms
were then used to train the classifiers with pre-assigned tags
of safe or compromised.

The trained classifiers are then deployed at the verifier.
The proposed attestation process after receiving an attestation
request from the verifier is shown in Figure 5(b) and has the
following steps:

i. The IoT device sends ω consecutive memory traces to the
gateway.

ii. The gateway converts the consecutive memory traces into
grayscale images and then calculates the l1 norms over
the difference images.

iii. The gateway calculates the mean of (ω − 1), l1 norms,
denoted by µl1 . The gateway then sends this mean value
to the verifier in a secure way (assuming a pre-shared
symmetric key between the gateway and verifier). Note
that instead of using just two memory traces to generate
the l1 norm, we used an average over a window of size
ω to improve the accuracy of detection.

iv. After receiving µl1 , the verifier uses this as a predictor
with the trained classifier to detect attacks (if any).

Thus, it is clear from Figure 2 and the above description
that the proposed technique only uses RAM traces to perform
attestation and does not rely on keeping a firmware copy at
the verifier. This section presented the proposed techniques for
IoT device attestation with and without feature engineering.
The main difference between the two techniques is the feature
generation, i.e., with feature engineering the proposed tech-
nique has 2000 features to select from while without feature
engineering the proposed technique uses the l1 norm of the
difference of consecutive images as the only predictor.

VI. EXPERIMENTAL DESIGN

The system model for the prototype developed to assess the
proposed technique is shown in Figure 6. We implemented our
gateway for IoT devices using a RaspberryPi-3 (Rpi3) with
Broadcom BCM2837 64-bit central processing unit (CPU)
operating at 1.2 Ghz. It has 4 universal serial bus (USB) ports
through which up to 4 IoT devices can be connected. The
Rpi3’s BCM43438 wireless local area network (LAN) is used
to establish a TCP/IP connection with the remote verifier. The
Rpi3 has a 32 GB micro secure digital (SD) card running
on the ARM port of the Debian Stretch desktop distro. The
gateway has 3 important functions as follows:

i. Maintain TCP/IP connection with the verifier and a wire-
less or wired connection (through serial port) with the IoT
devices.

ii. Collect RAM traces from the IoT device upon the veri-
fier’s request and synchronise the traces.

iii. Convert memory traces into images and send the norms
or the images themselves to the verifier.

To create an experiment which is representative of a wide
range of IoT devices, we selected the commonly used micro-
controller, the Arduino Uno. Arduino supports analogue-to-
digital input with a possibility of connecting light, tempera-
ture or sound sensor modules. Such sensors with the serial

7

Fig. 6: Prototype system model.

Star t

Flash IoT device with a
firmware var iant

Collect the required
number of traces by

sampling the memory
dump

Store the memory trace
and tag it as safe

More
firmware
var iants?

Yes

Stop

No

Fig. 7: Data set generation.

peripheral interface (SPI) or inter-integrated circuit interface
(I2C) may also be used to cover up to 99% of these apps’
market [35], [36]. Arduino Uno is an 8-bit ATmega328P AVR
based microcontroller (mcu) development board with 32 KB
of flash memory and 2 KB of RAM. The mcu’s Universal
Asynchronous Receiver Transmitter (UART) TTL is used for
serial communication and data exchange with the gateway at
a baud rate of 115200. The RAM is accessed through direct
addressing mode ranging between 0x0100 to 0x08FF.

To verify the effectiveness of the proposed technique, we
considered four different application types with different task
objectives ranging from sensing to cryptography. For ease of
notation the developed firmware are represented by F1, F2,

F3, and F4 and are described as follows:

1) F1: Encrypts a given input data block and then decrypts
it to retrieve the original data. The encryption and de-
cryption is done in separate functions and executed in an
iterative manner.

2) F2: An XTS-AES block cipher based on variable block
cipher encryption. Plain Text, key and tweak modules are
considered for encryption. For simplicity, key and tweak
are sent from the gateway along with read input.

3) F3: Samples the voltage at the temperature sensor pin
and converts it into the corresponding Celsius value. A
separate method is used to read the temperature and store
the value, which is called in the Arduino loop method
followed by the collection of the trace.

4) F4: Changes the brightness of the built-in light emitting
diode (LED), i.e., pin 13, based on the analog values
read from the sensor (pin 3). The LED control method is
defined separately and called in the Arduino loop method
followed by trace collection

We observe that F1 and F2 are applications based on cryp-
tography, while, F3 and F4 are sensor based applications.
Note that the objective of considering these various types of
applications is to evaluate the effectiveness of the proposed
technique under various circumstances.

After developing different types of firmware, the next task is
to introduce an attack on these applications. For this purpose,
we consider three variants:

1) Tampering with Control Dependency: The control
dependency graph of the code is tampered by introducing
new pointers. This affects the .data section of memory.

2) Tampering with Functional Dependency: A new stack
frame is generated in the stack section of memory.

3) Tampering with Variable Initialization: The code for
variable initialization is tampered, leading to changes in
the .bss section of memory.

The firmware generated after these three types of tampering
is represented byMC ,MS , andMV , respectively. Note that
these three types of dependencies are the most critical when it
comes to good software engineering practices [37]. Therefore,
the results in this section are representative of the majority of
tampering attacks.

The next step in our experiment design is to generate
the training and testing data sets. For this purpose, Figure
7 shows the process of collecting memory traces with safe
and compromised firmware. The training is done using the
following steps:

1) A specific firmware is flashed onto the IoT device.
2) The IoT device is run for a specific time and the gateway

is used to obtain 1500 traces. Each collected trace is
tagged as safe.

Figure 7 shows that the IoT device is flashed using each of
the firmware variants and then the gateway is used to collect
the memory traces. These traces are stored and tagged safe
at the verifier to train the proposed classifiers. For testing the
classifiers, 1500 extra traces were collected composed of 300
safe traces and 400 traces for each type of attack, i.e., control

8

dependency, functional dependency, and variable initialization
tampering.

VII. PERFORMANCE ANALYSIS

In this section we discuss the accuracy of detecting com-
promised IoT devices, i.e., IoT devices whose firmware has
been tampered, using the proposed technique. We present a
discussion on the comparison and trade-offs at the end of the
section.

A. Performance of Classifiers with Feature Engineering

The top four classifiers in terms of classification accuracy on
the test data set are shown in Table II. Note that every firmware
has a different feature engineering model. We observe that
MLP can detect attacks on the IoT device firmware almost
perfectly in most of the variants except for F2. To check the
statistical significance of these results we repeated the process
of training ML models 100 times to see the effect of randomly
splitting the dataset on the performance of the models. For
this purpose, we used the corrected paired Student’s t-test
proposed by Nadeau and Bengio [38]. The results are shown
in Figure 8. We observe that at a significance level of 5%,
the null hypothesis can not be rejected for LR and SVM.
However, it is statistically evident that the performance of
MLP is significantly different from the other classifiers, i.e.,
the null hypothesis can be rejected at a significance level of
5%. Thus, we only consider MLP in the following discussion.

Firmware LR SVM MLP NB

F1 0.98 0.98 1.00 0.93
F2 0.65 0.65 0.83 0.83
F3 0.99 0.99 1.00 0.98
F4 1.00 1.00 1.00 0.98

TABLE II: AUC of ML based classifiers with feature engi-
neering.

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.1041 0.0018 0.0007
SVM – – 0.0069 0.0109
MLP – – – 0.0006
NB – – – –

(a) F1

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.1089 0.0021 0.0019
SVM – – 0.0219 0.0201
MLP – – – 0.0004
NB – – – –

(b) F2

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.2101 0.0019 0.0005
SVM – – 0.0019 0.0110
MLP – – – 0.0010
NB – – – –

(c) F3

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.1401 0.0209 0.0400
SVM – – 0.0210 0.0040
MLP – – – 0.0056
NB – – – –

(d) F4

Fig. 8: Corrected Student’s t-test significance values for ML
based classifiers with feature engineering.

A confusion matrix is shown in Figure 9 with the following
definitions:

1) True Negative (TN): A safe test image is observed to be
part of the safe traces and is correctly classified as safe.

2) False Negative (FN): A compromised test image is
observed to be part of the safe traces and is erroneously
classified as safe.

3) True Positive (TP): A compromised test image is not
observed to be part of the safe traces and is correctly
classified as compromised.

4) False Positive (FP): A safe test image is not observed to
be part of the safe traces and is erroneously classified as
compromised.

Moreover, P and P
′

denote positive in terms of ground
truth and classifier outcome, respectively, i.e., the device is
compromised and the attestation was unsuccessful. Similarly,
N and N

′
are used to represent successful attestation in terms

of ground truth and classifier outcome, respectively.

9

A
ct

ua
l

Classifier
P

′
N

′

P TP FN

N FP TN

Fig. 9: Confusion matrix definition.

Note that missed detection of compromised devices should
be kept low to make sure a compromised device is detected
with high probability and does not infect other devices in the
network. To observe the performance of the proposed classifier
under a missed detection probability (PMD) of less than 5%,
the confusion matrices for the MLP classifier for the four
firmware are shown in Figure 10. The matrices are shown for
the three types of attacks defined in Section VI. It is observed
that the performance of the proposed feature engineering based
ML classifier does not depend on the type of attack.

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(a) Control Tampering:
F1

A
ct

ua
l

Classifier
P

′
N

′

P 715 35

N 70 680

(b) Control Tampering:
F2

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(c) Control Tampering:
F3

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(d) Control Tampering:
F4

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(e) Functional Tamper-
ing: F1

A
ct

ua
l

Classifier
P

′
N

′

P 716 34

N 70 680

(f) Functional Tamper-
ing: F2

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(g) Functional Tamper-
ing: F3

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(h) Functional Tamper-
ing: F4

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(i) Initialization Tam-
pering: F1

A
ct

ua
l

Classifier
P

′
N

′

P 717 33

N 70 680

(j) Initialization Tam-
pering: F2

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(k) Initialization Tam-
pering: F3

A
ct

ua
l

Classifier
P

′
N

′

P 750 0

N 0 750

(l) Initialization Tam-
pering: F4

Fig. 10: Confusion Matrices for MLP, PMD ≤ 5%.

B. Performance of Classifiers without Feature Engineering

Figure 11 shows the area under the curve (AUC) for top
four classifiers. We observe that classification trees clearly

Firmware
Variant

Window
Size CART LR SVM NB

F1

10 0.9315 0.8741 0.8741 0.8390
20 0.9524 0.8872 0.8872 0.8463
30 0.9711 0.9037 0.9037 0.8622
40 0.9614 0.9091 0.9091 0.8788

F2

10 0.7107 0.5574 0.5569 0.6510
20 0.8633 0.5955 0.5000 0.6881
30 0.9393 0.6044 0.5000 0.7630
40 0.9477 0.6612 0.5702 0.7603

F3

10 0.7062 0.5534 0.5007 0.5337
20 0.8245 0.6427 0.6405 0.6484
30 0.9304 0.6015 0.5000 0.6489
40 0.8871 0.6832 0.3388 0.6832

F4

10 0.9212 0.7501 0.4682 0.7888
20 0.9486 0.7801 0.4959 0.8765
30 0.9622 0.7615 0.3481 0.7970
40 0.9091 0.7438 0.6832 0.8099

TABLE III: AUC of ML based classifiers without feature
engineering.

outperform the other classifiers, while, the performance of
SVM classifier is the worst and close to random classification.
The AUC values for the classifiers are given in Table III for
the test data set. We observe that at a window size of 30,
CART has an AUC of approximately 95%. We observe that a
window size of 30 images results in the best AUC performance
for the CART classifier. This is also apparent from Figure
12 which shows the receiver operating characteristic curve
(ROC) of the CART classifier using different window sizes.
The corrected Student’s t-test results for the classifiers without
feature engineering with a window size of 30 images are given
in Figure 13. We observe that LR and SVM performance is
the same. However, the performance of CART and NB is
statistically significantly different from the other classifiers.
Thus, CART is considered the best among the other classifiers
and is considered in the following discussion.

To further observe the performance of the proposed classi-
fier under a missed detection probability (PMD) of less than
5%, the confusion matrices for the CART classifier for the
four firmware are shown in Figure 14. It is observed that the
CART classifier performed slightly better in case of variable
initialization attack. However, the difference is not significant
and we observe stable performance from the proposed ML
based classifier without feature engineering across the three
attacks.

Thus, we observe that the proposed technique with feature
engineering results in an overall better performance in terms
of AUC.

C. Effect of Feature Engineering

Although, in the previous section we observed that feature
engineering improves the AUC performance, AUC or clas-
sification accuracy is not the only performance metric that
can decide the ultimate winner. There are two critical aspects
related to IoT device attestation:

1) Prover Side Complexity: This relates to the compu-
tational complexity and latency required by the attestation
routine on the prover side. Too much complexity or latency not

10

(a) F1 (b) F2 (c) F3

(d) F4

Fig. 11: Classification performance of ML based classifiers without feature engineering.

(a) F1 (b) F2 (c) F3

(d) F4

Fig. 12: Effect of window size on AUC performance of CART classifier.

11

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.2101 0.0010 0.0007
SVM – – 0.0011 0.0009
CART – – – 0.0001
NB – – – –

(a) F1

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.2209 0.0011 0.0009
SVM – – 0.0019 0.0009
MLP – – – 0.0014
NB – – – –

(b) F2

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.2001 0.0009 0.0006
SVM – – 0.0010 0.0007
MLP – – – 0.0020
NB – – – –

(c) F3

LR SVM MLP NB
(p) (p) (p) (p)

LR – 0.2400 0.0001 0.0030
SVM – – 0.0002 0.0031
MLP – – – 0.0006
NB – – – –

(d) F4

Fig. 13: Corrected Student’s t-test significance values for ML
based classifiers without feature engineering.

only increases the time for carrying out IoT attestation but also
limits the applicability of the technique to various IoT devices.
Note that a higher latency results in low availability of the IoT
device as well [25].

The computational complexity of using an ML based clas-
sifier with feature engineering in the proposed technique
is essentially just the complexity of collecting a memory
trace and converting it into a grayscale image. However, the
computational complexity of using an ML based classifier
without feature engineering in the proposed technique requires
generating multiple grayscale images (depending on the win-
dow size) and calculating the mean of l1 norms. Denoting
the size of a grayscale image by np = rg × cg , where np is
the total number of pixels given the number of horizontal and
vertical pixels, i.e., rg and cg , respectively. The computational
complexity of taking the difference of two grayscale images is
O(np). Then, the computational complexity of calculating the
l1 norm of the difference images and taking the mean is also
given by O(np). Therefore, if we denote the computational
complexity of collecting a memory trace and converting it to
a grayscale image by ζgray = O(np), then the computation
complexity of using an ML based classifier with feature engi-
neering is ζFE = ζgray, while, the computation complexity

A
ct

ua
l

Classifier
P

′
N

′

P 721 29

N 50 700

(a) Control Tampering:
F1

A
ct

ua
l

Classifier
P

′
N

′

P 718 32

N 58 692

(b) Control Tampering:
F2

A
ct

ua
l

Classifier
P

′
N

′

P 719 33

N 60 690

(c) Control Tampering:
F3

A
ct

ua
l

Classifier
P

′
N

′

P 721 29

N 52 698

(d) Control Tampering:
F4

A
ct

ua
l

Classifier
P

′
N

′

P 720 30

N 46 704

(e) Functional Tamper-
ing: F1

A
ct

ua
l

Classifier
P

′
N

′

P 715 35

N 60 690

(f) Functional Tamper-
ing: F2

A
ct

ua
l

Classifier
P

′
N

′

P 719 33

N 59 691

(g) Functional Tamper-
ing: F3

A
ct

ua
l

Classifier
P

′
N

′

P 720 30

N 54 696

(h) Functional Tamper-
ing: F4

A
ct

ua
l

Classifier
P

′
N

′

P 730 20

N 29 721

(i) Initialization Tam-
pering: F1

A
ct

ua
l

Classifier
P

′
N

′

P 725 25

N 53 697

(j) Initialization Tam-
pering: F2

A
ct

ua
l

Classifier
P

′
N

′

P 733 17

N 44 706

(k) Initialization Tam-
pering: F3

A
ct

ua
l

Classifier
P

′
N

′

P 731 19

N 41 709

(l) Initialization Tam-
pering: F4

Fig. 14: Confusion matrices for CART, PMD ≤ 5%, window
size = 30.

of an ML based classifier without feature engineering is
ζl1 = ωζgray + (ω − 1)O(np) ≈ O(np).

The latency is defined as the execution time on the prover
side to complete one round of an attestation request. Any
security primitive which affects the normal operation of an
IoT device is said to have low availability. As an IoT device
may perform time critical operations, attestation techniques
designed for IoT devices should have high availability, one
aspect of which is low latency. The latency of the proposed
technique is presented along with a comparison with state-
of-the-art existing attestation techniques in Table IV. These
results are for a probability of evasion less than 5%. It is
observed that the proposed technique with feature engineering
has 99%, 99%, 99%, 97%, and 96% lower latency compared
to SWATT [8], SMARM [24], [15], TyTan [20], and HAtt
[25], respectively. We observe similar results for the proposed
technique without feature engineering. Moreover, the differ-
ence between the execution time of the proposed technique
with and without feature engineering is negligible.

2) Scalability: Given the large number of IoT devices,
the bottleneck in terms of scaling an attestation technique to
thousands (or even more) IoT devices is the communication

12

TABLE IV: Comparison of Latency

Technique Latency (sec)
SWATT [8] 80.97
SMARM [24] 53.06
[15] 0.855
TyTan [20] 0.126
HAtt [25] 0.104

Proposed Technique DL Classifier 0.004
ML Classifier 0.0043

overhead. The communication overhead is the number of
bytes/bits that need to be sent from the prover to the verifier.
Although, the proposed technique with feature engineering
requires the gateway to collect a single memory trace from
the IoT device, the whole grayscale image is sent to the
verifier. Therefore, the communication overhead between an
IoT device and gateway, and between the gateway and verifier
scales as O(np). On the other hand, the proposed technique
without feature engineering requires the prover to send ω
memory traces to the gateway leading to a communication
overhead of O(ωnp). However, the gateway only sends a
single floating point value of 4 bytes to the verifier, which
translates into O(1) communication overhead. This shows
that an ML based classifier without feature engineering has
significantly better scalability in terms of the communication
between the gateway and the verifier, while an ML based
classifier with feature engineering scales well in terms of the
communication between the IoT device and the gateway.

From the above discussion, we observe a trade-off between
accuracy and scalability between the proposed technique with
and without feature engineering, respectively. Although, the
proposed technique without feature engineering leads to lower
accuracy as compared to the proposed technique with feature
engineering, the accuracy is still above 93% which in most
applications may be an acceptable performance.

VIII. CONCLUSION

This paper presented a software based attestation technique
that uses an IoT device’s memory to verify the integrity of
its internal state. The proposed technique collects memory
traces from an IoT device and converts them into grayscale
images. These images are then used to detect any attack on
the IoT device’s firmware by classifying them into safe or
compromised. The proposed technique can effectively detect
attacks by training ML classifiers with or without feature
engineering. Although, using a feature engineering based ML
classifier results in higher AUC performance, ML based clas-
sifiers without feature engineering result in better scalability.
The choice of the type of classifier used depends on the
application requirements. The experimental results showed that
the proposed technique is at least 96% faster than existing
attestation techniques at the same level of accuracy. It is worth
noting that these performance gains are achieved without a
legitimate copy of the prover’s firmware.

ACKNOWLEDGMENT

The authors would like to thank Mr. Virat Kohli from
the Birla Institute of Technology India, who worked in the

capacity of an internee at the NUS-Singtel Cybersecurity R&D
Lab.

REFERENCES

[1] M. M. Hassan, A. Gumaei, S. Huda and A. Almogren, “Increasing
the Trustworthiness in the Industrial IoT Networks Through a Reliable
Cyberattack Detection Model,” in IEEE Transactions on Industrial
Informatics, vol. 16, no. 9, pp. 6154-6162, Sept. 2020.

[2] C. Zhou, X. Li, S. Yang and Y. Tian, “Risk-Based Scheduling of Security
Tasks in Industrial Control Systems With Consideration of Safety,” in
IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3112-
3123, May 2020.

[3] J. Lee, L. Kim and T. Kwon, “FlexiCast: Energy-Efficient Software
Integrity Checks to Build Secure Industrial Wireless Active Sensor
Networks,” in IEEE Transactions on Industrial Informatics, vol. 12, no.
1, pp. 6-14, Feb. 2016.

[4] L. Ilascu, “When their firmware is vulnerable, its up to
you to protect your smart devices,” [Online] Available:
https://www.bitdefender.com/box/blog/iot-news/bitdefender-box-data-
firmware-vulnerable-protect-smart-devices/, Accessed: 5 May 2019.

[5] M. Cheminod, L. Durante, L. Seno and A. Valenzano, “Semiautomated
Verification of Access Control Implementation in Industrial Networked
Systems,” in IEEE Transactions on Industrial Informatics, vol. 11, no.
6, pp. 1388-1399, Dec. 2015.

[6] Y. Shi, W. Wei, F. Zhang, X. Luo, Z. He and H. Fan, “SDSRS: A Novel
White-Box Cryptography Scheme for Securing Embedded Devices in
IIoT,” in IEEE Transactions on Industrial Informatics, vol. 16, no. 3,
pp. 1602-1616, March 2020.

[7] Trusted Computing Group. TPM Main Specification Level 2 Version 1.2.
[8] A. Seshadri et al., “SWATT: Software-based attestation for embedded

devices.” In Proc. IEEE Symp. on Security and Privacy, 2004.
[9] A. Seshadri et. al., “SCUBA: Secure Code Update By Attestation in

sensor networks,” In Proc. WiSe’06, pp. 85-94.
[10] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software Attestation

for Key Establishment in Sensor Networks,” In Proc. International
Conference on Distributed Computing in Sensor Systems, pp. 372-385,
2008.

[11] C. Castelluccia, et. al, “On the difficulty of software-based attestation
of embedded devices,” in Proc. ACM conference on Computer and
Communications Security (CCS), 2009.

[12] M. Jakobsson and K. A. Johansson, “Retroactive detection of malware
with applications to mobile platforms,” in ACM HotSec 10, 2010.

[13] M. Jakobsson and A. Juels, “Server-side detection of malware infection,”
in New Security Paradigms Workshop (NSPW), 2009.

[14] Y. Yang et. al, “Distributed softwarebased attestation for node com-
promise detection in sensor networks,” in Proc. IEEE International
Symposium on Reliable Distributed Systems, pp. 219–230, Washington,
DC, USA, 2007.

[15] B. Chen et. al, “Secure and Efficient Software-based Attestation for
Industrial Control Devices with ARM Processors,” in Proc. ACM Annual
Computer Security Applications Conference, pp. 425-436, orlando, FL,
USA, 2017.

[16] C. Krauss et al., “Detecting node compromise in hybrid wireless
sensor networks using attestation techniques,” in Proc. ESAS, Berlin,
Heidelberg, 2007, pp. 203-217.

[17] S. Agarwal et al., “Program integrity verification for detecting node
capture attack in wireless sensor networks,” in S. Jojodia and C.
Manumdar, editors, Information Systems Security, vol. 9478 of LNCS,
pp. 419-440. Springer International Publishing, 2015.

[18] K. Eldefrawy, “SMART: Secure and minimal architecture for (establish-
ing dynamic) root of trust,” in Network and Distributed System Security
Symposium (NDSS), 2012.

[19] P. Koeberl, “TrustLite: A security architecture for tiny embedded de-
vices,” in ACM European Conference on Computer Systems (EuroSys),
2014.

[20] F. Brasser, “TyTAN: tiny trust anchor for tiny devices,” in ACM/IEEE
Design Automation Conference (DAC), 2016.

[21] J. Kong et. al, “PUFatt: Embedded platform attestation based on novel
processor-based PUFs,” in Proc. ACM/EDAC/IEEE Design Automation
Conference (DAC), San Francisco, CA, 2014, pp. 1-6.

[22] M. N. Aman, B. Sikdar, “ATT-Auth: A Hybrid Protocol for Industrial IoT
Attestation With Authentication,” in IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 5119-5131, Dec. 2018.

13

[23] W. Feng et. al, “AAoT: Lightweight attestation and authentication of
low-resource things in IoT and CPS,” in Computer Networks, vol. 134,
pp. 167-182, 2018.

[24] X. Carpent, “Remote attestation of IoT devices via SMARM: Shuffled
measurement against roving malware,” in IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), Washington, DC,
2018, pp. 9-16.

[25] M. N. Aman et al., “HAtt: Hybrid Remote Attestation for the Internet
of Things With High Availability,” in IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 7220-7233, Aug. 2020.

[26] H. Tan et al., “A TPM-enabled remote attestation protocol (TRAP) in
wireless sensor networks,” in Proc. ACM PM2HW2N, New York, NY,
2011, pp. 9-16.

[27] A. Visintin et al., “SAFEd: Self-attestation for networks
of heterogeneous embedded devices,” preprint, available:
https://arxiv.org/abs/1909.08168.

[28] W. Yan et al., “EAPA: Efficient Attestation Resilient to Physical Attacks
for IoT Devices,” in Proc. ACM IoT S&P, 2019, New York, NY, USA,
2–7.

[29] M. N. Aman et al., “PRoM: Passive Remote Attestation Against Roving
Malware in Multicore IoT Devices,” in IEEE Systems Journal, Early
access, 2021.

[30] C. J. Peng, K. L. Lee and G. M. Ingersoll, “ An Introduction to Logistic
Regression Analysis and Reporting,” in The Journal of Educational
Research,, vol. 96, no. 1, pp. 3-14, 2002.

[31] V. Jakkula, “Tutorial on support vector machine (svm),” in School of
EECS, Washington State University, vol. 37, 2006.

[32] K. M. Leung, “Naive bayesian classifier,” Polytechnic University De-
partment of Computer Science/Finance and Risk Engineering, 2007.

[33] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. “Malware
images: visualization and automatic classification,” In Proc. ACM VizSec
New York, NY, USA, 2011, pp. 1–7.

[34] V. Lakshmanan, M. Gorner, and R. Gillard, “Practical Machine Learning
for Computer Vision,” 1st Ed., O’Reily Media Inc., Sebastopol, CA
USA, 2021.

[35] A. Zola, “IoT Platforms Overview: Arduino, Raspberry Pi, Intel
Galileo And Others,” [Online] Available: https://intersog.com/blog/iot-
platforms-overview-arduino-raspberry-pi-intel-galileo-and-others/,
Accessed: 10 Feb. 2022.

[36] A. Velosa, “Critical Capabilities for Industrial IoT Platforms,” Gartner,
2021.

[37] Viet Hung Nguyen and Le Minh Sang Tran, “Predicting vulnerable
software components with dependency graphs,” In Proc. ACM MetriSec,
New York, NY, USA, 2010, pp. 1–8.

[38] C. Nadeau and Y. Bengio, “Inference for the Generalization Error,” in
Machine Learning, vol. 52, pp. 239–281, 2003.

Muhammad Naveed Aman received the B.Sc. de-
gree in Computer Systems Engineering from KPK
UET, Peshawar, Pakistan, M.Sc. degree in Computer
Engineering from the Center for Advanced Studies
in Engineering, Islamabad, Pakistan, M.Engg. de-
gree in Industrial and Management Engineering and
Ph.D. in Electrical Engineering from the Rensselaer
Polytechnic Institute, Troy, NY, USA in 2006, 2008,
and 2012 respectively.
He is currently working as an Assistant Professor
with the Department of Computer Science and En-

gineering at the University of Nebraska-Lincoln, USA. Dr. Aman previously
served as a Senior Research Fellow with the Department of Computer Science
at the National University of Singapore, Singapore and as an Assistant
Professor with Department of Electrical Engineering at the National University
of Computer and Emerging Sciences, Pakistan. His research interests include
IoT and network security, wireless and mobile networks, and secure embedded
systems.

Haroon Basheer (S’18) is a Research Assistant
with NUS-Singtel Cybersecurity Research & Devel-
opment Laboratory since Nov 2017. He received his
Bachelor of Technology in Electronic Engineering
from National University of Singapore, where he is
also pursuing his Master of Computing degree in
Computer Science.

Jun Wen Wong has more than 10 years of work
experience in the cybersecurity field. He is currently
a Senior R&D Engineer and one of the Co-Principal
Investigators at Singtel Cybersecurity R&D in Trust-
wave, a Singtel Company. His areas of research
include Trusted Computing, Internet of Things and
Network Security. Prior to joining Singtel, Jun Wen
was a Senior Research Engineer at the Institute for
Infocomm Research, Agency for Science, Technol-
ogy and Research (A*STAR), Singapore. He was
involved in the European Union and Singapore Gov-

ernment funded projects relating to critical infrastructures such as sensor
network, energy and rail transport.

Jia Xu is a Cyber Security R&D Manager special-
izing in Cloud and Data Security and Post Quantum
Security in NUS-SingTel Cyber Security R&D Lab.
He received PhD in computer science from the Na-
tional University of Singapore in 2012. He worked
as a research scientist in the Institute for Infocomm
Research from 2012 to 2017. He’s interested in
applied cryptography and cloud computing security.

Hoon Wei Lim received the Ph.D. degree in In-
formation Security from Royal Holloway, Univer-
sity of London. He held research positions at the
Institute for Infocomm Research, Singapore, the
National University of Singapore, Nanyang Techno-
logical University, and SAP, France. He is currently
an Associate Director with the NUS-Singtel Cyber
Security Research and Development Lab. His recent
research interests have been centered around data
security and privacy, and security intelligence and
analytics within enterprise environments and cyber-

physical systems.

Biplab Sikdar received the B.Tech. degree in elec-
tronics and communication engineering from North
Eastern Hill University,Shillong, India, in 1996, the
M.Tech. degree in electrical engineering from the
Indian Institute of Technology, Kanpur, India, in
1998, and the Ph.D. degree in electrical engineering
from the Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2001. He was on the faculty of Rensselaer
Polytechnic Institute from 2001 to 2013, first as an
Assistant and then as an Associate Professor.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering, National University of
Singapore, Singapore. His research interests include wireless network, and
security for IoT and cyber physical systems. Dr. Sikdar is a member of Eta
Kappa Nu and Tau Beta Pi. He served as an Associate Editor for the IEEE
Transactions on Communications from 2007 to 2012. He currently serves as
an Associate Editor for the IEEE Transactions on Mobile Computing.

