
Run-time Self Attestation of FPGA Based IoT
Devices

Muhammad Usama, Student Member, IEEE, Muhammad Naveed Aman, Senior Member, IEEE,
and Biplab Sikdar, Senior Member, IEEE

Abstract—Flexibility and reconfigurability make FPGAs ideal
for IoT applications because they enable efficient customization
and optimization of hardware acceleration tasks in diverse
IoT applications. Malicious hardware trojans pose a significant
security threat, capable of compromising the integrity of re-
configurable devices such as FPGAs. The majority of current
attestation schemes either demonstrate complexity and demand
significant resources or lack versatility. To solve this issue,
this paper proposes a novel lightweight run-time attestation
approach to detect hardware trojans or malicious modifications
in a hardware design. The proposed technique can verify the
integrity of both the hardware design’s finite state machine
and its datapath. Attesting the finite state machine ensures
the accuracy of state transitions and control behavior while
verifying the datapath validates the data processing operations.
When combined, these provide a comprehensive validation of
the overall hardware functionality. A trusted verifier initiates
challenges by stipulating a starting state and an input sequence
to the prover. The prover then executes these challenges and
reports the observed responses, i.e., state transitions, control
outputs, status outputs, and timing metrics. Anomalies between
the expected and observed behaviors serve as indicators of
potential trojan interventions. The proposed method’s efficacy is
substantiated through simulation and implementation on a Zynq-
7000 SoC, showcasing its efficiency in terms of resource utilization
overhead. Collectively, this study advances the capabilities of
remote attestation while bolstering the security of reconfigurable
platforms.

Index Terms—Attestation, datapath, FPGA, FSM, hardware
security, hardware trojan

I. INTRODUCTION

A Field-Programmable Gate Array (FPGA) device con-
sists of a two-dimensional array of configurable logic blocks
(CLBs), which can be interconnected through routing channels
to implement a digital logic circuit. A hardware description
language (HDL), such as Verilog or VHDL, is used to describe
the design of a digital circuit. HDLs allow designers to

This research was supported in part by the National Research Foundation,
Singapore and Infocomm Media Development Authority under its Future
Communications Research Development Programme, under grant FCP-NUS-
RG-2022- 019. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore and Infocomm Media
Development Authority.

M. Usama and M. N. Aman are with the School of Computing, University
of Nebraska-Lincoln, 1400 R St, Lincoln, Nbraska, United States 68588.
Email: usama2@huskers.unl.edu, naveed.aman@unl.edu.

B. Sikdar is with the Department of Electrical and Computer Engineering,
National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
Email: bsikdar@nus.edu.sg.

program, modify, and reprogram the hardware design of digital
circuits. The popularity of FPGA devices has increased signifi-
cantly because of the advantages these devices provide as com-
pared to general-purpose microprocessors and/or Application-
Specific Integrated Circuits (ASICs) such as parallel pro-
cessing capability, reconfigurability, higher power efficiency,
Shorter time to market, and lower upfront non-recurring engi-
neering cost [1]. Dynamic partial reconfiguration is another
notable feature found in modern FPGA devices, enabling
the reconfiguration of specific portions while the remaining
sections of the FPGA remain active and operational. This ca-
pability offers extensive versatility by allowing a diverse array
of computational units to be utilized within a single device [2].
Nevertheless, the dynamic reconfigurability inherent in FPGA
devices also presents potential avenues for malicious actors to
exploit, introducing hardware trojans or altering the original
design with the intent to disrupt the intended functionality
of these devices. These potential attacks can compromise the
security and reliability of the system resulting in critical data
theft, operation disruption, unauthorized access, etc [3].

Cyber vulnerabilities highlight the importance of devising
security measures and rigorous validation procedures to guar-
antee the reliability and integrity of FPGA configurations;
thereby, protecting against potential attacks and guaranteeing
the secure operation of FPGA devices (especially for sensitive
applications). In general, attestation mechanisms are employed
to verify the software/firmware integrity of a target device. The
purpose of attestation is to establish a mechanism wherein
an untrusted device undergoing testing can demonstrate to
a remote trusted verifier that the executed code remains
unaltered. A generic attestation protocol is depicted in Figure 1
[4]. The verifier initiates the process by sending a challenge to
the device, also known as the prover. Subsequently, the prover
executes a local algorithm to compute a value, which is then
transmitted back as a response. By evaluating the received
value the verifier assesses whether any modifications were
made to the device’s intended design.

Fig. 1: A generic attestation protocol.

Various hardware attestation techniques have been proposed
to secure FPGA devices against a range of hardware attacks.
However, the existing methods are either based on complex
computation algorithms [1], [5]–[9] or limited to specific
components of hardware design [10]–[12]. To solve these
issues, this paper proposes a novel approach aimed at attest-
ing the integrity of hardware designs through a meticulous
examination of both the operation of the finite state machine
(FSM) and the behavior of the datapath. Attestation of the
operation of an FSM encompasses the validation of the state
transitions and their associated control signals. In parallel, a
comprehensive assessment of the datapath’s behavior involves
validating its response to control signals generated by the
FSM, coupled with an evaluation of the response time to
generate the anticipated responses. By comparing projected
state transitions, the control signals generated by the FSM for
each state, the status signals of the datapath in response to
control signals, and the temporal metrics of each state against
the tangible behavior observed during the attestation process,
a comprehensive evaluation of the integrity of a prover’s
hardware is established. This methodology proves instrumental
in pinpointing and mitigating potential vulnerabilities arising
from hardware-based attacks, effectively enhancing the overall
security of FPGA devices. The major contributions of this
paper are as follows:

• An attestation approach for verification of the FSM in
a hardware design against unauthorized modifications in
state transition and/or control logic.

• An attestation approach for verification of hardware de-
sign of the datapath against malicious modifications.

• Experimental validation of the proposed technique on ac-
tual hardware, and comparison with existing techniques.

II. LITERATURE REVIEW

Many schemes have been proposed to protect FPGA de-
vices from hardware trojans. The authors in [5] discussed
hardware trojan attacks on FPGA devices and proposed an
approach called Adapted Triple Modular Redundancy (ATMR)
to protect FPGA devices against them. However, this approach
requires extra resources as it utilizes three spare copies of the
original hardware circuit to contain or bypass the effects of
hardware trojans. An approach to detect hardware trojans in
cryptographic intellectual property (IP) modules provided by
an untrusted third party is proposed in [6]. This approach com-
pares the optical microscopic pictures of the silicon product
to the original view from a layout database reader. However,
this approach fails to detect hardware trojans inserted in the
RTL layer of a hardware design. Moreover, this approach only
detects hardware trojans in cryptographic IP modules and does
not guarantee the protection of the whole hardware design. The
authors in [10] analyzed the detection of hardware Trojans in
Scalable Encryption Algorithm (SEA) crypto. They proposed
an approach to use path delays to detect hardware trojans
inserted at different stages in the ASIC design flow at both
the gate and layout levels. However, this method is limited to
identifying hardware trojans that were introduced during the

design and production phases. Furthermore, this strategy may
not be utilized for other algorithms or technologies because
it was developed for a specific technology (90nm libraries)
along with a specific algorithm (SEA crypto). To protect
the design against malicious hardware insertion, the authors
of [7] developed a hybrid design verification technique. The
unused circuit identification (UCI) technique is employed in
the proposed scheme to automatically identify and delete
harmful circuitry during the design verification stage. An
adversary could, however, possibly bypass the UCI method
by inserting malicious test cases that perform incorrect state
checks.

The authors in [8] proposed an attestation scheme for
reconfigurable devices by employing a cryptographic hash
function to validate a bitstream. The authors also utilized
delimitation of the area to optimize the attestation process.
The authors in [1] proposed a scheme for the self-attestation
of configurable hardware. This approach employed a hashing
function-based message authentication code (MAC) to per-
form validation of the bitstream loaded into the configuration
memory of an FPGA device. The authors in [9] proposed a
secure architecture to remotely compute and deliver the code
integrity attestation of an executing program. However, all
these approaches require extensive computational resources as
well as time-consuming operations such as cryptographically
secure hash and/or MACs. The authors in [11] and [12]
proposed protocols to prevent a remote update of malicious
code on FPGA devices. These approaches provide security
against replay attacks by ensuring the confidentiality and in-
tegrity of the hardware loaded into an FPGA device. However,
these techniques only consider remote attacks and assume that
physical attacks are not feasible.

Each of the above attestation approaches is either complex
and demands extensive resources or targets a specific attack or
part of hardware design. In contrast, the proposed attestation
mechanism does not require extensive resources and possesses
the generality to attest all types of hardware designs that
are controlled by an FSM. A comparison between existing
approaches and the proposed work is drawn in Table I.

TABLE I: Summary of existing techniques and comparison
with the proposed work.

[1] [5] [7]
[8] [9] [6] [10] [11]

[12]
Pro-

posed
Resource-
efficient

✗ ✗ ✗ ✓ ✓ ✓

Detection of
remote attacks

✓ ✓ ✗ ✗ ✓ ✓

Detection of
local attacks

✓ ✓ ✓ ✓ ✗ ✓

Full design
coverage

✓ ✗ ✓ ✓ ✓ ✓

Run-time
detection

✓ ✓ ✗ ✗ ✓ ✓

Generality ✓ ✓ ✓ ✗ ✓ ✓

III. BACKGROUND, MODELS, AND ASSUMPTIONS

A. Background

1) Finite State Machine: FSMs are utilized for modeling
and controlling the behavior of hardware designs. They orga-
nize the operation of a design into a finite set of states, define
the actions/outputs associated with each state, and specify the
transition mechanism between states. The state of an FSM
refers to a particular configuration of the system at a given
time and is based on the input it has received and the actions it
has taken thus far. Action in an FSM refers to a defined activity
to be executed at a specific time, exerting an influence on the
system’s behavior. A transition describes how a state can be
changed based on the occurrence of a certain input. It denotes
the connection between two states and lists the prerequisites
for the FSM to change from one state to the next. An FSM
can be formally defined as a sextuple as given in Equation (1)
[13].

M = (Q,Γ, O, δ, λ, q0) (1)

where
• Q: Set of finite states in the FSM.
• Γ: Set of finite possible inputs to the FSM.
• O: Set of finite possible outputs of the FSM.
• δ: Transition function, that maps a state and an input to

the next state; δ : Γ×Q 7→ Q.
• λ: Output function, that maps a state and an input to the

corresponding output; λ : Γ×Q 7→ O.
• q0: Initial state.

FSMs are usually divided into two categories: Mealy machines
and Moore machines. For the Mealy machine, the output
function λ is dependent on both the state and input, i.e.,
λ : Γ × Q 7→ O. Conversely, the output function λ only
depends on the state of a Moore’s machine, i.e., λ : Q 7→ O.

2) Dynamic Partial Reconfiguration of FPGAs: The partial
reconfiguration feature of modern FPGA devices enables de-
signers to logically divide the hardware design into multiple
partitions. Each of these partitions can be configured and re-
configured separately at run-time without affecting the regular
operation of other partitions. These partitions can be classified
into static and dynamic partitions. Static partitions usually
remain unchanged and are never reconfigured. These partitions
are used to contain the configuration for external interaction
and control parts of the hardware design. Whereas, dynamic
partitions contain the intended hardware design and can be
reconfigured at any time. To reconfigure the dynamic partition
of an FPGA, a bitstream that targets the specific dynamic
partition is updated while the rest of the bitstreams remain
unchanged. This type of bitstream is referred to as a partial
bitstream. The proposed architecture utilizes the concept of
partitioning to isolate the attestation part from the system
design part.

B. System and Adversary Model

1) System Model: The system model consists of the prover
(Pr), verifier (Ve), and a controller (Co). We assume that these

entities have a pre-established secure communication channel
over the public internet. The Pr is an FPGA device that
has some specific set of resources and performs an intended
operation when configured. The Pr is divided into secure
(SecPart) and open (OpenPart) partitions using the partial
configuration feature. The SecPart is a static partition to
include the secure configuration. Whereas, the OpenPart is a
dynamic partition that contains the intended hardware design,
and can be reconfigured locally as well as remotely. The Pr
also has a nonvolatile memory element (NVM) to store the
configuration when power goes out. The Ve is a computer
or a server and is not constrained in terms of computational
resources. The Ve is responsible for initiating and conducting
the attestation process. The Co is also a computer or a server
that could be the same as Ve or a different entity. The Co
can reconfigure the SecPart as well as the OpenPart. It also
communicates the intended update in the hardware design to
the Ve. The system model considered in this paper is depicted
in Figure 2.

Fig. 2: System model.

2) Adversary Model: In this paper, we consider an adver-
sary (Ad) that is capable of maliciously altering the configu-
ration of a hardware design by injecting hardware trojans. We
specifically concentrate on stealthy hardware trojans that target
the flow of operations. We also assume that the adversary
is capable of launching physical attacks that can modify the
configuration of the hardware design to disrupt the operation
flow. Other attacks that only target configuration memory and
do not apply changes to the hardware design to disrupt the
operation flow are excluded from our adversary model.

C. Assumptions

We make the following assumptions for this work
• Initially, both the SecPart and OpenPart of an FPGA are

securely configured with the intended bitstream.
• The SecPart in the Pr can only be reconfigured by the

Co and is protected against any modification attack.

• The NVM is a secure element and is only accessible
from within the Pr for read and write operations. It has
sufficient capacity to store all the configuration files.

• Both the Ve and the Co are considered trusworthy, im-
pervious to any cyberattack.

• Communication channel between the Co, the Ve, and the
Pr is secure to ensure the confidentiality and integrity of
the communication.

IV. PROPOSED TECHNIQUE

FSMs in the digital designs are tied to clock signals,
synchronizing their operation with the system clock. These
FSMs have well-defined finite states and transitions between
states. Due to this deterministic nature, the Ve is required to
validate the design only for scenarios that are explicitly defined
in the design. This characteristic loosens the requirement of
creating a large number of challenges, which avoids unnec-
essary complexity and system overhead. The deterministic
nature of digital designs implies that the Ve can concentrate
on specific and significant cases, in contrast to probabilistic
systems where thorough testing might necessitate an extensive
list of challenges. A Ve equipped with the knowledge of the
FSM and the datapath functionality can choose challenges that
cover all relevant states, transitions, and datapath activities.
This focused strategy not only simplifies the attestation process
but also improves its efficacy and effectiveness.

The proposed attestation mechanism is centered around
validating the behavior of both the FSM and the datapath of
a hardware design. The operation of the FSM is validated in
run-time by analyzing its various parameters in Equation (1)
that includes states (Q), transitions between states (δ), and
the control signals (O) generated by the FSM in response to a
given input status sequence (Γ). Whereas, run-time validation
of the datapath is done by analyzing its response and response
time to the control signals. A successful attestation outcome
indicates the absence of any unauthorized modifications in
the hardware design. In contrast, if a modification attack
is attempted on the hardware design, it would disrupt the
operation flow of the FSM and/or datapath, leading to a failed
validation during the attestation process.

Since the proposed attestation technique is based on the
validation of the design’s functional behavior and is capable
of dealing with low-level implementation modifications. The
scheme is robust to implementation variations because it
focuses on capturing the underlying functions of the digital
design rather than relying on specific implementation details
that may vary during the synthesis and compilation processes.
As long as the critical structure and features of the design,
including control and status signal flow, are retained, the
proposed scheme can validate the design’s integrity across
many FPGA targets.

A. Proposed Architecture

In this section, we present a system architecture to comple-
ment the proposed attestation mechanism. This architecture
mainly encompasses the following elements:

1) The Prover: We exploit the partial configuration feature
of FPGAs by dividing the resources of the Pr into an OpenPart
and a SecPart [14]. Moreover, an NVM is also included in the
architecture of the Pr as described in Section III-B.

a) NVM: The integration of NVM in reconfigurable
devices is a fundamental and widely adopted practice that
offers numerous advantages, including reliable configuration
persistence across power cycles, instant-on functionality, en-
abling in-system configuration updates, and optimizing power
consumption [15]. Various protocols have been suggested
and are utilized to ensure the security and smooth operation
of NVMs [16]–[19]. Our proposed architecture involves the
utilization of an NVM either as an internal component within
the Pr or as an external module to store the configuration
files of the design. Regardless of its location, we assume that
the NVM is secure and only accessible for read and write
operations from within the Pr [20]. Since most of the com-
monly used FPGAs are based on SRAM, their configurations
are erased once the power is cut off. The updated design
configuration files for the hardware design are always stored
in the NVM. These design configuration files are loaded into
the configuration memory of the Pr to reconfigure it with the
design. We assume that the NVM’s capacity is sufficient to
store the entire configuration file, providing ample space for
accommodating the complexities of the hardware design.

b) Secure Partition: The SecPart, constitutes a safe-
guarded area within the system, accessible solely to the Co for
reconfiguration purposes. Within this partition, reside essen-
tial modules including communication, partial reconfiguration,
and attestation modules. The partial reconfiguration module,
residing in SecPart, assumes the responsibility of writing the
configuration memory for the configuration/reconfiguration of
the OpenPart. Furthermore, the communication module estab-
lishes vital connections, facilitating communication between
the Pr, Ve, Co, and NVM, effectively bridging these compo-
nents. Additionally, the attestation module, nestled within the
SecPart, takes on the responsibility of computing the hardware
design’s response to challenges posed by the Ve. This process
involves the Ve creating challenges for the Pr to authenticate
itself. Upon receiving the challenge within SecPart of the
Pr, the attestation module diligently computes the runtime
response to the challenge. The internal architecture of the Pr
is depicted in Figure 3.

c) Open Partition: The OpenPart, being openly acces-
sible both locally and remotely, allows for dynamic con-
figuration/reconfiguration from any location. This partition
holds the primary hardware design deployed into the Pr. Due
to its unrestricted accessibility and housing of the intended
FPGA configuration, it becomes a primary target for potential
adversaries. When presented with a challenge, the SecPart
takes charge and performs the challenge execution on the
OpenPart. The resulting response is then relayed back to the
verifier, contributing to the system’s overall attestation process.

2) Controller and Verifier: The Co is a desktop, laptop,
or server. It holds central authority within the system and
possesses full access to communicate, modify, and update

Fig. 3: A prover architecture.

all components. Specifically, the Co is exclusively authorized
to make modifications to the hardware design within the
OpenPart of the Pr. Additionally, it can alter the attestation
module residing in its SecPart. Furthermore, the Co can update
the (Ve) about any changes made to the hardware design. The
(Ve), on the other hand, is an entirely independent system that
can be deployed on a desktop, laptop, or server, or it can
be an application running on the Co system. The primary
responsibilities of the Ve include initiating the attestation
process by generating a challenge and subsequently verifying
the response received from the Pr. This verification is per-
formed by comparing the response with the expected behavior,
ensuring the integrity and security of the Pr.

B. Attestation Mechanism

The overall operation of the proposed attestation scheme
is shown in Figure 4. The Ve generates a fresh challenge
every time and dispatches it to the Pr. Subsequently, the Pr
counterpart computes the response of the incoming challenge
and sends it back to the Ve, where it is compared with the
expected response to conclude the attestation process. The pro-
posed attestation mechanism offers flexibility by introducing
three distinct modes of attestation: Mode 1; targeting solely
the FSM, Mode 2; concentrating solely on the datapath, and
Mode 3; encompassing the overall hardware design as shown
in Figure 4. The flexibility these various attestation modes
provide enables the Ve to selectively execute attestation on
either the FSM or the datapath independently. This segregation
not only optimizes resource utilization but also streamlines
the attestation process, making it efficient in terms of both
resource consumption and execution time. Additionally, Our
approach provides flexibility for the Ve to attest any specific
portion of the design. For extremely large designs, the Ve can
divide the entire design into smaller, manageable parts and

attest each part separately. This incremental attestation ensures
thorough verification while addressing scalability concerns. By
breaking down the attestation process, the Ve can handle large
designs effectively without compromising the integrity and
completeness of the attestation.

Fig. 4: Attestation Scheme.

1) Attestation of the FSM (Mode-1): The FSM controls
the datapath by organizing its operation in various states. It
monitors the status of the operation in each state, issues the
control signal, and executes the transition between the states.
Any unauthorized modifications to the logic of the FSM would
result in changes in the control signals and/or the transitions
between the states. The proposed scheme attests the FSM by
validating the control signals and the transitions between the
states. The challenge is designed to offer further flexibility
to the Ve by allowing partial as well as full attestation. Partial
attestation validates a specific portion of the FSM, whereas full
attestation validates the entire FSM. The challenge created by
the Ve consists of the following two elements:

a. The starting state for attestation. The starting state for
attestation enables the Ve to initiate the attestation process
from any random state of the FSM. This randomness
is crucial for protecting against replay attacks. In our
framework, the FSM states are typically represented using
a one-hot encoding scheme, where each bit represents a
distinct state. Suppose the FSM has four states, i.e., S0,
S1, S2, and S3 which can be encoded as ‘0001’, ‘0010’,
‘0100’, and ‘1000’ respectively. The verifier can choose
to start the attestation from any state by sending the
corresponding one-hot encoded value as the initial state.

b. The sequence of status signals. An FSM’s control
signals and transition between states are dependent on the
received status signals. This enables the Ve to validate the
FSM’s behavior with the received status signals.

The attestation module located in the SecPart then executes
this challenge on the OpenPart of the Pr. Subsequently, the
response to this challenge is given by:
a. The sequence of FSM states. This part of the response

represents the transitions that the FSM undergoes in
response to the received challenge. Any unauthorized
modification to the FSM’s transition logic would result
in an unexpected sequence of states.

b. The sequence of FSM output control signals. This
part of the response represents the control signals that
the FSM issues in response to the received challenge.
Any unauthorized modification to the FSM’s control logic
would result in an unexpected sequence of control signals.

The structures of both the challenge and the response in this
mode of attestation are shown in Figure 5.

Fig. 5: Challenge-response pair for Mode-1.

2) Attestation of the datapath (Mode-2): The design’s
datapath executes a particular functionality during a specific
state and returns a status signal to the FSM. Unauthorized
modifications to the datapath would lead to changes in both the
status signals and/or the response time. The proposed scheme
leverages the validation of the status signals and response time
for attestation of the datapath. Similar to Mode-1, the Ve is
empowered to conduct partial as well as complete attestation.
The Ve also has the flexibility of conducting the attestation of
any state. The elements of the challenge that the Ve generates
for this mode are as follows:
a. The starting state for attestation. Similar to Mode-1,

the starting state enables the Ve to validate the behavior
of the datapath in any given state.

b. The sequence of control signals. The datapath performs
different tasks based on the control signals it receives.
This part of the challenge enables the Ve to validate the
datapath’s behavior in response to the received control
signals.

The attestation module in the SecPart executes the received
challenge on the datapath and computes its response to the
challenge. The response to this attestation also consists of:
a. The sequence of status signals. This part of the response

represents the task it has performed in response to the
given challenge. An unexpected sequence of status signals
in response to a given challenge indicates an unauthorized
modification to the datapath logic.

b. The sequence of response time. This part of the response
represents the execution time of a task. Since functions in

digital design are strictly tied to the clock, each task has
a predetermined execution time. An unexpected sequence
of response times indicates an unauthorized modification
to the datapath logic.

The response is then relayed back to the Ve for comparison
with the anticipated response. The structure of the challenge-
response pair for attestation of the datapath is depicted in
Figure 6.

Fig. 6: Challenge-response pair for Mode-2.

3) Attestation of overall design (Mode-3): This mode of
attestation is designed to validate the overall behavior of the
design by combining the individual attestation of the FSM
and the datapath, i.e., mode 1 and mode 2. The structure of
the challenge is similar to that of Mode-1, while the response
consists of the response of both the FSM and the datapath, as
shown in Figure 7.

Fig. 7: Challenge-response pair for Mode-3.

The number of bits required to encode challenges and
responses for an N -state FSM with the longest path L, Wcs-bit
control signal, and Wss-bit status signal are given as:

• Starting state : X = log2(N).
• Input/status sequence: A = L×Wss.
• State sequence: B = L×X .
• Control sequence: C = L×Wss.
• Time sequence: D = L× log2(T); where T is Maximum

possible time.

C. Attestation Protocol

The proposed attestation protocol has two phases, i.e., the
enrollment phase and the execution phase.

1) Enrollment phase: The enrollment phase is exclusively
performed during the initial configuration of the FPGA and
whenever reconfiguration or hardware design modifications are
executed. In this phase, the Co takes charge and performs the
following tasks:

• Configuration/reconfiguration of the OpenPart.

• Modify the attestation module in the SecPart according
to the updated design.

• Provide the Ve with a copy of the updated design. The
Ve utilize this copy to create challenges and expected
responses.

Once the enrollment phase is complete, all three components,
namely the Co, the Ve, and the Pr are synchronized and
hold the updated structure of the hardware design. It is
important to note that the enrollment phase enables the easy
integration of any permitted upgrades or changes to the design
for different targets. This phase provides a mechanism for
introducing approved changes to preserve alignment between
the attestation scheme and the configurations of the digital
design.

Fig. 8: Attestation protocol.

2) Execution phase: During the execution phase, the Ve
takes the initiative to start attestation by creating a random
challenge. This challenge comprises of an arbitrary starting
state and a sequence of random inputs to the component
being attested. The use of random input sequence enables
the Ve to attest any specific portion of the hardware design.
Additionally, randomness also enhances the security of the
attestation process by making it more robust against replay
attacks. To start attestation, the Ve generates the challenge
and sends it to the Pr. Simultaneously, the Ve computes the
expected response to the sent challenge and retains it as
a reference for subsequent comparison. Within the Pr, the
SecPart receives the challenge and commences the attestation
process. The attestation module in the SecPart then ensures
that the target design assumes the specified starting state
as per the challenge. Subsequently, it sequentially applies
the challenge signal, recording the response of the hardware
design for each input. The SecPart sends the response back to
the Ve. The Ve compares the received actual response with the
stored reference. If any malicious modification has occurred,
the comparison would reveal discrepancies, prompting the
Ve to raise an alarm or take appropriate actions. Figure 8
represents the execution phase of the attestation protocol.

D. Uninterrupted Attestation

We propose to leverage the inherent reconfigurable and
redundant characteristics of FPGAs to design an uninterrupted

run-time attestation scheme. This exploitation involves em-
ploying a redundant replica of the primary design during the
attestation process. In FPGAs, input gating logic is used to se-
lectively activate and deactivate the specific components of the
design [21]–[23]. Our proposed technique utilizes the original
design and a replica. During normal operation, the original
design actively executes the intended tasks, while the replica
remains inactive. To facilitate attestation without disrupting
normal operation, the replica is configured and activated using
input gating logic before starting the attestation process. It is
necessary to synchronize the original design with the replica
before initiating an attestation process. All the contents of the
register, memory, and other relevant variables from the original
design are copied to the replica using the intermediate buffers.
The replica utilizes this information to synchronize with the
original design and resume operation after run-time switching.
The switching process is shown in Figure 9. Upon successful
configuration and synchronization of the replica, the system
seamlessly transitions from the normal mode of operation,
(with only the original design activated) to attestation mode
(with both the original design and the replica design activated).
In attestation mode, the Ve conducts the attestation of the
replica design and compares its behavior to the original design
for validation. This comparison enables the attestation of the
original design without imposing a halt on normal operations.
Upon successful attestation, the system reverts to the normal
mode of operation by deactivating the replica design. This
dynamic mechanism ensures the uninterrupted operation of
the FPGA-based system.

Fig. 9: Switching between the original design and its replica.

V. SECURITY ANALYSIS

This section provides the formal security analysis of the
proposed attestation scheme.

The proposed attestation scheme is based on periodic attes-
tation of the Pr. The periodic attestation of the Pr helps in
improving security by reducing the time window for injection
and execution of attacks while reducing the resources required
to continuously monitor the Pr. However, the frequency of
attestation plays a crucial role and requires careful consid-
eration. We denote the minimum time required to inject an

attack as Tmin, the time available for execution of this injected
attack T depends upon the attestation frequency F . The
attestation frequency required to promptly detect the injected
modification without being executed, Fmax, is mathematically
expressed as Fmax = 1/Tmin. Although adopting a higher
attestation frequency is useful in reducing the time window
available to attackers, it leads to higher resource consumption.
Lowering the attestation frequency is a viable strategy to
reduce resource requirements, but it comes at the risk of
giving potential attackers more time to execute an injected
attack, as depicted in Figure 10. Thus, determining an optimal
attestation frequency becomes critical and requires thoughtful
considerations to strike a balance between effective resource
management and defense against potential threats.

Fig. 10: Tradeoff between the resource utilization and the time
available to execute an attack.

Lemma 1: To detect a modification attack with 100% certainty
before it is executed with minimal resource utilization, the
optimal attestation frequency, Foptimal, is given by the following
equation:

Foptimal =
1

Tinject + Texecution
(2)

Proof : Let the time required for injection of a modification
be Tinject and the time required for its execution be Texecution.
If Tavailable represents the time available for an attack between
consecutive attestation iterations, then the probability of an
attack being successful is given by:

Pattack = min

(
max

(
Tavailable

Tinject + Texecution
− 1, 0

)
, 1

)
(3)

where 0 ≤ Tavailable ≤ 1
Fattestation

. The probability of successfully
detecting an attack can be expressed as:

Pdetection = 1− Pattack

Pdetection = 1−min

(
max

(
Tavailable

Tinject + Texecution
− 1, 0

)
, 1

)
(4)

From Equations (2), (3), and (4) it can be deduced that at
optimal point with Fattestaion = Foptimal we get Pattack = 0 and

Pdetection = 1 with optimal resource utilzation. An attestation
frequency exceeding Foptimal leads to increased resource uti-
lization without enhancing detection capabilities. Conversely,
reducing the attestation frequency below Foptimal diminishes
the probability of detection while lowering resource utilization.
Therefore, setting the attestation frequency as per equation
(2) ensures the maximum detection capability with optimal
resource utilization. This configuration guarantees that an at-
tack can be successfully detected without demanding extensive
computational resources.

Theorem 1: A successful attestation of an FPGA-based
IoT device would ensure that the design is not modified
maliciously.

Proof : The adversary (Ad) may attempt to launch a modifi-
cation attack to disrupt the operation of hardware design. The
following game between a challenger (Ch) and an adversary
(Ad) is used to model this attack.

1) The Ch initiates the proposed attestation protocol between
an FPGA-based IoT device and the Ve.

2) The Ad attempts to introduce a malicious modification in
the FSM or its datapath to disrupt the intended operation
of the design.

3) The Ve, aided by the secure partition (SecPart) of the Pr,
conducts an attestation process to validate the design.

4) The Ad wins the game if it can compromise the integrity
of the design undetected at any point during the game.

The Ad can only successfully execute the modification attack
if it can avoid detection during attestation. We can model the
adversary’s advantage for successfully executing a modifica-
tion attack as αMod1

Ad = Pattack. As per Lemma 1, an attestation
process with Fattestaion ≈ Foptimal would detect any modification
in the design that disrupts the operation of the design with
Pdetection ≈ 1 making Pattack ≈ 0. Thus, αMod1

Ad ≈ 0
Theorem 2: A successful execution of the proposed attesta-

tion for an FPGA-based IoT device would verify the integrity
of both the original design and its replica, ensuring neither has
been compromised.

Proof : The Ad may attempt to compromise either the
original design or the replica design by introducing malicious
modifications. This attack is modeled using the following
game between Ch and Ad.

1) The Ch initiates the proposed attestation protocol between
an FPGA-based IoT device and the Ve.

2) The Ad attempts to introduce a malicious modification in
the original design and/or in the replica design.

3) The Ve performs the attestation of the FPGA-based IoT
device.

4) The Ad wins the game if it successfully introduces a
modification in either of the designs that goes undetected
during attestation.

The Ad can only be successful in introducing a modification
to any of the original or replica designs if the modification is
not detected during attestation. We can model the adversary’s
advantage for successfully executing a modification attack at
any of the designs as αMod2

Ad = max(Pattack-orignal, Pattack-replica).

As per Lemma 1, any modification in the replica design
would be detected during attestation with the probability of
successful attack Pattack-replica ≈ 0. As the original design
is compared against the replica design during attestation, a
modification in the original design would also be detected with
the same probability, i.e., Pattack-original ≈ 0. thus αMod2

Ad =
max(0, 0) =⇒ αMod2

Ad ≈ 0. So, by attesting the replica
design and comparing it with the original design, the proposed
scheme ensures that any modification attack on either design
would be detected.

Lemma 2: The proposed protocol is secure against replay
attacks.

Proof : The Ad may attempt to launch a replay attack
by storing the challenge-response pairs to get insight into
the hardware design. Since the proposed technique enables
the Ve to generate a distinct challenge for each attestation
attempt by creating a unique sequence of inputs and starting
from a random state, the system prevents replay attacks. The
Ad cannot reuse previous challenge-response pairs because
each attestation involves a new, unpredictable challenge. This
ensures the integrity and security of the attestation process by
rendering replay attacks ineffective.

VI. ATTESTATION EXAMPLE

We use the following example to provide a detailed illus-
tration of the attestation process. In this example, we consider
an attack similar to attacks considered in [24], [25] to exploit
the BRAM of an FPGA device. The adversary in this scenario
aims to corrupt the critical AES data being stored in BRAM by
manipulating the control sequence of an FSM that controls the
storing process. The FSM for this design encompasses seven
states, as shown in Figure 11. During attestation, the attestation
module receives a challenge from the Ve and executes the
challenge on this design to validate its behavior. The control
signal corresponding to the store state, originally denoted
as ’100’, undergoes a malicious alteration by the attacker
to ’001’. During the attestation process, a response to any
challenge to the FSM that traverses through the store state may
yield a discrepancy between the expected and actual outcomes.
To show this, we consider a specific challenge where the Ve
conducts the attestation of the FSM by initiating a sequence
that starts in a waiting state and ends in the same state, going
through all the intermediate states in a closed loop. Table
II shows the challenge’s input sequence and the subsequent
expected and actual FSM responses. A discernible discrepancy
manifests between the expected and actual control sequences,
detecting the malicious modification introduced during the
attestation process.

VII. EXPERIMENTS

A high-level implementation of the attestation scheme on an
FPGA is shown in Figure 12. The intended design contains the
actual hardware design to be attested. The attestation module
residing in the secure part of the Pr plays a central role in
the attestation process and is granted access to both the FSM
and the datapath. It receives the challenge as well as the other

Fig. 11: FSM for attestation example.

TABLE II: Comparison of the Challenge, Expected Response,
and Actual Response.

Challenge Expected Response Actual Response
State
Sequence

Control
Sequence

State
Sequence

Control
Sequence

010 Trigger 011 Trigger 011
010 Ready 000 Ready 000
100 Store 100 Store 001
100 Increment 001 Increment 001
100 Maximum 000 Maximum 000
001 Reset 011 Reset 011
001 Waiting 000 Waiting 000

attestation information from the Ve. The attestation module,
after setting up the attestation phase, executes the elements of
the challenge iteratively and stores the corresponding element
of response in the response sequence. We utilize this archi-
tecture to conduct the attestation of the design under test for
simulation as well as implementation purposes.

We leveraged the hardware design of a basic oscilloscope
to simulate the proposed attestation scheme. Various modifi-
cations to the original hardware were simulated to validate the
efficacy of the proposed attestation scheme. The Xilinx Vivado
2019.1 suite was used to simulate and implement the proposed
attestation scheme, accordingly the Ve and attestation module
were developed in VHDL. The list of various separately
simulated modifications to the original design is given as
follows:
i. Insertion of an additional state.
ii. Modification of control signals in a state.
iii. Modification of status signals.
iv. Addition of a transition, i.e., from Waiting state directly

to Store state.
v. Insertion of logic in the datapath.

Each modified design was simulated with the attestation
module by issuing random challenges targeting the affected
portions. The responses to these challenges were compared
against the respective expected responses computed by the Ve.
Table III shows the detection of various modifications with

Fig. 12: A high-level implementation of the attestation scheme.

respective detection modes and response sequences. Every
modification made to the original design was detected success-
fully by the proposed attestation scheme. This shows that the
proposed attestation technique is capable of detecting unau-
thorized or malicious modifications to the hardware design.

TABLE III: Simulation results.

Modification No. Detection Modes Detection Response
i. Mode-1 & Mode-3 State sequence

ii. Mode-1 & Mode-3 Control sequence

iii. Mode-2 & Mode-3 Status sequence

iv. Mode-1 & Mode-3 State sequence & Control
sequence

v. Mode-2 & Mode-3 Time sequence

To demonstrate the resource efficiency of the proposed
attestation scheme, we implemented the prototypes of two
different designs on the ZedBoard from Digilent. This board
features a Xilinx Zynq-7000 AP SoC XC7Z020-CLG484, con-
taining 7-Series programmable logic, Dual-core ARM Cortex-
A9 processor, 512 MB DDR3 memory, and 256 MB Quad-
SPI Flash. The primary objective of this implementation was
to assess the resource utilization required for the attestation
process. Considering that the Ve is not resource-limited, we
did not conduct a resource utilization analysis for it. Therefore,
this study concentrates on the resource utilization analysis for
implementation of the Pr on an FPGA.

Prototype 1. This prototype implements the same hardware
design utilized for simulation. Table IV shows the resource
utilization of the proposed technique for prototype 1 on the
target FPGA. Various resources considered include Look-
Up Tables (LUTs), Flip Flops (FFs), Block Random Access

TABLE IV: Resource utilization of the prototype 1.

LUTs BRAM FFs MMCM Power
(mW)

Available 53200 140 106400 4 —–

Intended Design 583 1 485 2 405

Attestation mod-
ule 39 0 26 0 78

Attestation mod-
ule to system de-
sign percentage

6.68 0 5.36 0 19.26

Memory (BRAM), Mixed-Mode Clock Managers (MMCMs),
and power consumption of the design.

TABLE V: Resource utilization of the prototype 2.

LUTs BRAM FFs MMCM Power
(mW)

Available 53200 140 106400 4 —–

Intended Design 2169 0 551 1 220

Attestation mod-
ule 124 0 41 0 65

Attestation mod-
ule to system de-
sign percentage

5.72 0 9.09 0 29.54

Prototype 2. This prototype implements the hardware de-
sign of a Multi-Layer Perceptron (MLP) classifier. The MLP
classifier has four inputs, two hidden layers, and three outputs.
The first hidden layer is comprised of 10 neurons, whereas the
second layer has 8 neurons. The FSM of the design has 16
states to control one complete cycle of the network. Resource
utilization for prototype 2 is illustrated in Table V.

TABLE VI: Comparison of the proposed technique with
existing attestation techniques in terms of resource overhead.

[1] [26] [8] Prototype 1 Prototype 2

BRAM
overhead 9.6% 12% 1.47% 0% 0%

CLB
overhead 8.9% 26% 8% 6.02% 7.42%

Table VI compares the resource overheard of existing
techniques to the two implemented prototypes of the pro-
posed technique. The proposed technique offers a notable
resource efficiency compared to existing attestation methods,
as highlighted in Table VI. The proposed scheme stands out
when analyzing the utilization of BRAM because it incurs
no additional cost (0%) in both the prototypes, in contrast
to competing methods [1], [26], and [8], which have BRAM
overheads of 9.6%, 12%, and 1.47%, respectively. Similarly,

the proposed strategy retains a minimal utilization of CLB re-
sources with an average overhead of only 6.02% for prototype
1 and 7.42% for prototype 2 as opposed to the larger overheads
of 8.9%, 26%, and 8% incurred by the techniques proposed
in [1], [26], and [8], respectively.

Table VII provides a breakdown of the attestation latency,
focusing on the number of clock cycles, frequency of execu-
tion, and the time taken for various actions within the process.
It’s important to note that the table does not include the time
required for communication and related processing, as these
aspects are typically dependent on external factors such as
network latency and system overhead. The total time required
to generate a response to a challenge of length Lseq is the sum
of the individual times and is given as 0.04 + 0.03× Lseq .

TABLE VII: Attestation latency.

Action Clocks Repeats Time

Challenge receiving 1 Lseq 0.01×Lseq us

Mode selection 1 1 0.01 us

Initialization 3 1 0.03us

Attestation 1 Lseq 0.01×Lseq us

Response sending 1 Lseq 0.01×Lseq us

Total 0.04 + 0.03 ×
Lseq us

VIII. CONCLUSION

In this paper, a novel lightweight attestation technique
was proposed to verify the hardware design deployed into
an FPGA. The proposed scheme enables remote run-time
self-attestation of FPGA devices and is based on using the
challenge-response mechanism to detect any unauthorized
modification in the hardware structure of a design. The pro-
posed technique provides an alternate way to the conventional
techniques employing complicated cryptographic functions to
detect modification in FPGA bitstreams. The effectiveness of
the proposed attestation scheme was validated through sim-
ulations, which successfully identified various unauthorized
modifications introduced into the original hardware design.
The implementation results of the proposed technique on
a Zynq-7000 SoC board show that the proposed technique
is efficient in terms of used resources and outperforms the
existing attestation techniques.

While the effectiveness of the proposed attestation mech-
anism in detecting unauthorized hardware modifications is
evident, there are specific avenues for further enhancing this
research:

• Identification of data-stealing trojans that operate covertly
without causing operational disruptions.

• Assess the viability of utilizing machine learning for
creating intelligent challenge sequences that optimize the
detection of trojans.

• Create a resilient and reliable protocol for intelligently
scheduling the attestation process to meet specific secu-
rity goals.

REFERENCES

[1] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “Sacha: Self-
attestation of configurable hardware,” 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 746–751, 2019.

[2] T. Raikovich and B. Fehér, “Application of partial reconfiguration of
fpgas in image processing,” 6th Conference on Ph.D. Research in
Microelectronics & Electronics, pp. 1–4, 2010.

[3] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat
and defense,” Integr., vol. 55, pp. 426–437, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:12801225

[4] M. N. Aman, M. H. Basheer, S. Dash, J. W. Wong, J. Xu,
H. Lim, and B. K. Sikdar, “Hatt: Hybrid remote attestation for
the internet of things with high availability,” IEEE Internet of
Things Journal, vol. 7, pp. 7220–7233, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:216322415

[5] S. Mal-Sarkar, A. R. Krishna, A. Ghosh, and S. Bhunia, “Hardware
trojan attacks in fpga devices: threat analysis and effective counter
measures,” in ACM Great Lakes Symposium on VLSI, 2014.

[6] S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage,
“Hardware trojan horses in cryptographic ip cores,” 2013 Workshop on
Fault Diagnosis and Tolerance in Cryptography, pp. 15–29, 2013.

[7] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically,” 2010 IEEE Symposium on Security
and Privacy, pp. 159–172, 2010.

[8] R. Chaves, G. K. Kuzmanov, and L. Sousa, “On-the-fly attestation
of reconfigurable hardware,” 2008 International Conference on Field
Programmable Logic and Applications, pp. 71–76, 2008.

[9] C. Basile, S. D. Carlo, and A. Scionti, “Fpga-based remote-code in-
tegrity verification of programs in distributed embedded systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, pp. 187–200, 2012.

[10] P. Kumar and R. Srinivasan, “Detection of hardware trojan in sea using
path delay,” 2014 IEEE Students’ Conference on Electrical, Electronics
and Computer Science, pp. 1–6, 2014.

[11] F. Devic, L. Torres, and B. Badrignans, “Secure protocol implementation
for remote bitstream update preventing replay attacks on fpga,” 2010 In-
ternational Conference on Field Programmable Logic and Applications,
pp. 179–182, 2010.

[12] B. Badrignans, R. Elbaz, and L. Torres, “Secure fpga configuration archi-
tecture preventing system downgrade,” 2008 International Conference
on Field Programmable Logic and Applications, pp. 317–322, 2008.

[13] M. Bach, A. Werner, M. Mrozik, and K. A. Cyran, “A hierarchy of
finite state machines as a scenario player in interactive training of pilots
in flight simulators,” International Journal of Applied Mathematics and
Computer Science, vol. 31, pp. 713 – 727, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:245828440

[14] “AMD Adaptive Computing Documentation Portal.” [Online].
Available: https://docs.xilinx.com/v/u/en-US/xapp1159-partial-reconfig-
hw-accelerator-zynq-7000

[15] Y. Xue, P. Cronin, C. Yang, and J. Hu, “Non-volatile memories in fpgas:
Exploiting logic similarity to accelerate reconfiguration and increase
programming cycles,” in 2015 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), 2015, pp. 92–97.

[16] F. J. Streit, F. Fritz, A. Becher, S. Wildermann, S. Werner,
M. Schmidt-Korth, M. Pschyklenk, and J. Teich, “Secure boot
from non-volatile memory for programmable soc architectures,” 2020
IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 102–110, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:215828348

[17] K. W. Gear, A. Sánchez-Macián, and J. A. Maestro, “An analysis of fpga
configuration memory seu accumulation and a preventative scrubbing
technique,” Microprocess. Microsystems, vol. 90, p. 104467, 2022. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:246744115

[18] D. E. Owen, D. Heeger, C. Chan, W. Che, F. Saqib, M. Areno,
and J. F. Plusquellic, “An autonomous, self-authenticating, and
self-contained secure boot process for field-programmable gate
arrays,” Cryptogr., vol. 2, p. 15, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:52972331

[19] G. Pocklassery, W. Che, F. Saqib, M. Areno, and J. F.
Plusquellic, “Self-authenticating secure boot for fpgas,” 2018
IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 221–226, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:49193478

[20] S. Trimberger and J. Moore, “Fpga security: Moti-
vations, features, and applications,” Proceedings of the
IEEE, vol. 102, pp. 1248–1265, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:207022570

[21] Z. Zhang, L. L. Njilla, C. A. Kamhoua, and Q. Yu, “Thwarting security
threats from malicious fpga tools with novel fpga-oriented moving
target defense,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, pp. 665–678, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:67870623

[22] M. Hosseinabady and J. L. Núñez-Yáñez, “Run-time power gating in
hybrid arm-fpga devices,” 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), pp. 1–6, 2014. [Online].
Available: https://api.semanticscholar.org/CorpusID:16700087

[23] A. A. M. Bsoul and S. J. E. Wilton, “An fpga architecture supporting
dynamically controlled power gating,” 2010 International Conference
on Field-Programmable Technology, pp. 1–8, 2010. [Online]. Available:
https://api.semanticscholar.org/CorpusID:260662378

[24] Y. Zhang, F. Zhang, B. Yang, G. Xu, B. Shao, X. Zhao, and K. Ren,
“Persistent fault injection in fpga via bram modification,” in 2019 IEEE
Conference on Dependable and Secure Computing (DSC), 2019, pp.
1–6.

[25] D. Gnad, “Remote attacks on fpga hardware,” Ph.D. dissertation, Dis-
sertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2020,
2020.

[26] K. Xia, Y. Luo, X. Xu, and S.-H. Wei, “Sgx-
fpga: Trusted execution environment for cpu-fpga heteroge-
neous architecture,” 2021 58th ACM/IEEE Design Automation
Conference (DAC), pp. 301–306, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:243893350

Muhammad Usama is a Ph.D. candidate in the
Computer Science and Engineering Department at
the University of Nebraska, Lincoln, USA. He re-
ceived his bachelor’s degree in Electrical Engineer-
ing from the National University of Computer and
Emerging Sciences, Pakistan, in 2015, followed by
a master’s degree in Electrical Engineering from the
Lahore University of Management Sciences, Lahore,
Pakistan, in 2018. His research interests include the
security of critical infrastructures, hardware security
for reconfigurable devices, and machine learning

applications for improving cyber-physical security.

Muhammad Naveed Aman is an Assistant Profes-
sor at the University of Nebraska-Lincoln (UNL).
Previously, he served as an Assistant Professor with
the Faculty of the National University of Computer
and Emerging Sciences, Pakistan. He also served as
a Senior Research Fellow with the School of Com-
puting, National University of Singapore, Singapore.
He received the B.Sc. degree in computer systems
engineering from the University of Engineering and
Technology, Peshawar, Pakistan, in 2006, the M.Sc.
degree in computer engineering from the Center for

Advanced Studies in Engineering, Islamabad, Pakistan, in 2008, and the
M.Eng. degree in industrial and management engineering and the Ph.D. degree
in electrical engineering from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2012. He heads the Goof-proof Hardware Oriented Security and
Trust (GHOST) lab at UNL. His extensive research spans hardware systems
security in embedded devices, physical layer security for IoT devices, and
trustworthy machine learning. Noteworthy achievements include pioneering
device attestation algorithms, innovative approaches to physical layer security
leveraging transceiver and wireless channel characteristics, and contributions
to understanding privacy attacks on machine learning models. Dr. Aman’s in-
terdisciplinary expertise extends to blockchains, power systems, optimization,
and control systems.

Biplab Sikdar received the B.Tech. degree in elec-
tronics and communication engineering from North
Eastern Hill University, Shillong, India, in 1996,
the M.Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur, India, in
1998, and the Ph.D. degree in electrical engineering
from the Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2001. He was on the faculty of Rensselaer
Polytechnic Institute from 2001 to 2013, first as
an Assistant and then as an Associate Professor.
He is currently a Professor with the Department

of Electrical and Computer Engineering, National University of Singapore,
Singapore. His research interests include wireless network, and security for
IoT and cyber physical systems.

