
1

RAM-Based Firmware Attestation for IoT Security:
A Representation Learning Framework

Asif Iqbal, Member, IEEE, Usman Zia, Muhammad Naveed Aman, Senior Member, IEEE,
and Biplab Sikdar, Senior Member, IEEE

Abstract—With the proliferation of 4G and 5G mobile net-
works in smart cities, the adoption of IoT devices has surged,
emphasizing the critical need for robust security measures.
Existing firmware attestation techniques often require high com-
putational budget or access to the device’s authentic firmware,
posing challenges due to resource and proprietary constraints. To
counter these two fundamental challenges, this paper introduces a
novel software-based attestation framework utilizing RAM traces
from IoT devices for remote verification. In the proposed frame-
work, the need for an authentic firmware copy is eliminated,
and the most computationally intensive task is assigned to the
gateway node of the IoT ecosystem. This approach yields a robust
and highly accurate device attestation strategy, while imposing
minimal computational demands on the verification device itself.
Employing deep learning models trained in a representation
learning paradigm, our framework enables the remote verifier
to authenticate the internal state of IoT devices. Leveraging data
collected from real-world prototype devices, under eight different
applications, our approach achieves a remarkable 100% accuracy
in detecting critical attacks on IoT devices with a false positive
rate of 10−3. Notably, our framework preserves device availabil-
ity and maintains low authentication latency, underscoring its
efficacy and practicality for securing IoT ecosystems.

Index Terms—Device Attestation, Firmware, Internet of
Things, RAM Trace, Variational Autoencoder

I. INTRODUCTION

THE utilization of Internet of Things (IoT) devices is
experiencing exponential growth across various domains

of our daily lives. According to the GSM report published
in 2020, the annual growth rate of IoT devices is estimated at
13%, with the total number of diverse IoT devices projected to
reach approximately 2.46 billion by 2025 [1], [2]. Among the
sectors witnessing a significant induction of IoT devices are
healthcare, smart cities, industrial manufacturing and control,
forest monitoring, traffic monitoring, defense, and more [3].
Many of the deployed devices in these applications are low-
cost, leading to constraints in computational power, memory,
and power consumption.

This work is supported in part by the National Research Foundation,
Singapore and Infocomm Media Development Authority under its Future
Communications Research Development Programme, under grant FCP-NUS-
RG-2022- 019.

A. Iqbal, and B. Sikdar are with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore, e-mail: {aiqbal,
bsikdar}@nus.edu.sg

U. Zia is with the Department of Computer Systems Engineer-
ing, University of Engineering and Technology, Peshawar, Pakistan,
email:usmanzia600@gmail.com

M. N. Aman is with the School of Computing, University of Nebraska-
Lincoln, Nebraska, USA, e-mail:naveed.aman@unl.edu

The rising popularity of IoT devices, coupled with their
integration into critical infrastructure, has drawn attention from
cyber-criminals [4]. Moreover, their distributed nature and
multi-layered architecture make them susceptible to cyber at-
tacks targeting network communications, thereby jeopardizing
device and data integrity [5]. Recent studies indicate that over
90% of the vulnerabilities identified in IoT device-enabled
smart applications are firmware-related [6]. Typically, upon the
addition of a new IoT device or during each power-up cycle,
the device must register itself with a trusted entity, known as
the verifier, through a process called attestation. The verifier
is responsible for validating the authenticity of the device,
examining the firmware or software running on the embedded
device to guard against malicious tampering by third parties.

The verifier serves as a secured and trusted entity capable
of invoking attestation even during normal operation, where
the device in question, referred to as the prover, substantiates
its authenticity. Typically, the verifier initiates a challenge
to the prover, which then computes a hash digest using its
firmware source code and shares it with the verifier. Sub-
sequently, the verifier computes the same checksum using
a locally stored copy of the prover’s firmware to validate
its authenticity. However, the checksum computations, which
necessitate multiple iterations over the device firmware, result
in heightened computational and time requirements, consti-
tuting the primary bottleneck in such strategies and leading
to prolonged verification delays. Additionally, this approach
mandates the verifier to possess a local copy of the prover’s
firmware, which may not be feasible and could potentially
result in intellectual property (IP) violations.

The attestation techniques documented in literature can be
categorized into two distinct types and an additional hybrid
category. The distinct categories include software-based and
hardware-based techniques, while the hybrid category en-
compasses a combination of both. Software-based techniques
rely on the runtime execution of an algorithm on the device
under test, comparing it with the expected value stored at
the verifier. Given the limited computational resources of IoT
devices, this runtime may vary depending on the device’s
current state or configuration, and can be useful for attestation
purposes. These techniques are computationally intensive yet
are well-suited for low-cost embedded devices, necessitating
no additional hardware for execution. Conversely, hardware-
based techniques, as implied by their name, necessitate ad-
ditional hardware such as secure co-processors or Trusted
Platform Modules (TPM) [7], and entail low computational
requirements. However, owing to the advanced hardware pre-

2

requisites, these methods are unsuitable for the majority of IoT
devices. Hybrid techniques aim to strike a balance between
the two extremes by minimizing computational complexity
while requiring minimal additional hardware. Nonetheless,
owing to the inherent nature of these hybrid techniques and
their strict architectural requirements, their usability remains
severely limited [8].

IoT devices are typically designed for specific tasks, with
their computational resources tailored to meet the demands of
those tasks. Introducing additional tasks or security routines
on IoT devices may impede their routine operations to some
extent, commonly referred to as affecting the availability. Ide-
ally, executing a security protocol on a device should not com-
promise its availability, particularly for devices responsible for
real-time or safety-critical applications. However, the majority
of attestation techniques necessitate uninterrupted execution
of their security routines, which often consume significant
time to complete. Consequently, this results in diminished
availability of an IoT device. Furthermore, beyond concerns
regarding availability, computational resources, and hardware
requirements, many of these techniques mandate access to a
genuine copy of a device’s firmware. However, this may not
always be feasible as most manufacturers and service providers
consider their device firmware as IP. Consequently, if the
firmware is inaccessible, most existing attestation techniques
become impractical.

In recent years, machine learning (ML) based techniques
have found successful applications across various fields, in-
cluding medical, industrial, military, and social sciences. These
techniques have also been leveraged for IoT device authen-
tication [8], [9]. The majority of ML methods employed
thus far operate within the supervised learning framework,
wherein training a model requires samples from all expected
classes. During testing, the model determines the closest class
distribution for a new sample and classifies it accordingly.
While supervised ML-based methods have been effective for
device attestation [8], [9], they exhibit a significant limita-
tion: acquiring and labeling training datasets comprehensively
covering the various attack vectors encountered by devices
during their operation. This task is exceptionally challenging
due to the emergence of new attack vectors regularly, making
comprehensive coverage unfeasible. Consequently, if a model
encounters a test sample significantly different from all trained
classes, its decision may be unreliable.

To tackle the aforementioned challenges, this paper in-
troduces a software-based device attestation framework em-
ploying unsupervised deep learning (DL) methods. Unlike
traditional approaches, our method imposes no additional com-
putational requirements on the device under scrutiny, thereby
preserving device availability. Additionally, instead of relying
on the genuine firmware of the prover, our framework trains
a Conditional Variational Autoencoder (C-VAE) model [10]
using features extracted from an IoT device’s main memory.
This approach enables the detection of even subtle alterations
to a device’s firmware.

To summarize, our major contributions are:
1) A software based attestation framework which uses the

preprocessed and reduced RAM trace features without

requiring expensive computations on the device under
test.

2) Two device tampering detectors using the C-VAE model
trained under the representation learning paradigm.

3) Evaluation of the proposed framework on actual proto-
type devices, with eight different applications, affected
by three different attack types.

The rest of the paper is organized as follows: In Section II
we provide a discussion on related works. The preliminary
information about the system model and information flow
through different entities discussed in the model are provided
in Section III. The proposed detection framework is presented
in Section IV. Data acquisition and prototype setup for testing
the proposed framework is discussed in Section V, followed by
experimental evaluation in Section VI. Section VII concludes
the paper.

II. RELATED WORK

The classical software-based attestation approaches include
SWATT [11], SCUBA [12], and SAKE [13]. SWATT com-
putes a hash through multiple iterations on the prover’s
memory, imposing substantial computational demands on the
device. Typically, around 50,000 iterations are necessary
for effective adversary detection. Similarly, SCUBA utilizes
a comparable technique for device authenticity verification.
SAKE, proposed in [13], presents an alternative protocol
for attestation, offering a means to establish a shared key
across neighboring sensor nodes, even in the event of de-
vice compromise. These approaches share the assumption
of computationally-limited devices and require precise time
measurement and sophisticated procedures. In contrast, [14]
suggests using partial memory checksum for attestation to
reduce computational costs. However, this method necessitates
full control of the device to execute the attestation routine
uninterrupted, requiring a large number of cycles and re-
sulting in poor availability. In [15], the authors propose a
software-based remote attestation. They introduce a delayed
observation mechanism to mitigate inherent limitations and
propose a “filling memory at attestation-time” approach to
counteract potential exploitation by attackers. Additionally, the
implementation of a reputation mechanism and load balanc-
ing principle significantly enhances attestation efficiency and
system security. Similarly, authors in [16] utilize side-channel
observables such as light and sound to attest the IoT device.

Most of the techniques discussed above require a genuine
copy of the firmware stored in the flash memory of the
devices, which is not ideal in many cases, as discussed in
the previous section. The features utilized in the proposed
framework are computed using device RAM traces, which are
not only smaller than the respective flash memory but also
computed outside the device, requiring only a single trace
sample instead of multiple iterations over the entire trace. This
results in minimal computational and communication overhead
on the device itself.

Hardware-based attestation techniques, such as those de-
scribed in [17]–[21], do not impact device availability. How-
ever, these methods necessitate the presence of a Trusted Plat-
form Module (TPM) in sensor nodes, which may not always

3

be feasible in resource-constrained IoT devices. Protocols out-
lined in [17], [18] designate the node with the TPM as a cluster
head to form multiple node clusters, delegating node integrity
verification within a specific cluster to its cluster head. The
on-board TPM within the cluster head is tasked with verifying
the integrity of the cluster head node and serves as the trusted
root. Nevertheless, in this scenario, the failure of the cluster
head can result in attestation failure for all nodes encompassed
in the managed cluster. In [22], the authors introduce a novel
attestation technique leveraging Quantum Physical Unclonable
Functions (QPUFs) to enhance security. By exploiting the
unique properties of quantum mechanics, it offers heightened
security measures. It utilizes quantum superposition to simulta-
neously attest multiple memory locations, effectively guarding
against mobile malware. Meanwhile, our proposed attestation
framework does not necessitate any specialized hardware and
only uses a single memory trace to authenticate the IoT device.

The methodologies proposed in [23]–[29] fall into the
hybrid category for IoT device attestation. However, not only
do they fail to ensure high availability, but they are also
highly vulnerable to the threat posed by roaming malware.
Authors in [26] introduce a hybrid attestation protocol by
incorporating roaming malware into their threat model. This
protocol is closely related to the architecture proposed in
[23], albeit it relaxes the atomicity constraint of [23] to
enable uninterrupted attestation routines, computing the hash
digest of the device’s full memory. Consequently, this leads to
heightened computational requirements and execution times.
Furthermore, it diminishes device availability, and its unique
architectural requirements make it is unsuitable for low-cost
devices. In contrast, our proposed framework does not neces-
sitate disabling interrupts and requires only a single copy of
the RAM trace instead of flash memory to conduct attestation.
Furthermore, as our framework relies solely on RAM traces,
it can detect roaming malware, which may alter its presence
within the infected device’s flash memory [26].

The closest work to our proposed framework is [8], where
the introduction and feasibility of utilizing IoT device RAM
traces for device attestation were presented. They utilized
RAM traces to generate two distinct features, subsequently
training several binary classifiers under a supervised learning
setting and demonstrating excellent detection performance.
However, in our experimental section, we illustrate that even
without feature engineering, several supervised learning-based
ML methods trained on raw RAM traces are able to achieve
99 - 100% detection accuracy. However, we elucidate why this
can be misleading and argue that supervised learning may not
be the optimal detection criterion for any detection problem,
unless all potential classes a test sample can belong to are
included in the training set.

To summarize, currently available methods for device at-
testation face several limitations: a) the need for a genuine
firmware copy, b) the requirement of additional hardware,
c) significant computational overhead, and d) the necessity
to cover all possible attack vectors for training ML classi-
fiers. The proposed device attestation framework addresses
the issues a) and b) by utilizing on-device RAM to generate
features, c) by offloading the computational work associated

Gateway (Rpi3)

Internet

Verifier

IOT Device

IOT Device

IOT Device

Fig. 1. The proposed system model.

with the novel feature preprocessing pipeline to the gateway
node of the IoT ecosystem, and d) by employing a representa-
tion learning-based detector trained solely on genuine device
RAM features. This approach results in a detector capable of
classifying tampered devices with 100% accuracy. A summary
of the techniques discussed above and their requirements are
presented in Table I.

III. PRELIMINARIES

In this section we first introduce the underlying system
model requirements of the proposed attestation mechanism,
followed by discussion about the overall flow of information
between the system’s entities.

A. System Model

The system model at the heart of our framework is shown
in Fig. 1, consisting of the following three entities:

1) The IoT Device: A number of IoT devices are interfaced
with a gateway node using wired or wireless connections.
These devices are characterized by limited battery life,
memory, and computational capabilities, serving as the
provers in an attestation query.

2) The Gateway: Typically, IoT devices, constrained by
resources, lack a complete TCP/IP protocol stack and rely
on an intermediary node for routing and internet connec-
tivity, known as a Gateway. In our system model, this
comparatively more powerful node fulfills two primary
functions: (i) serving as a router and device manager
for connected IoT devices, facilitating communication
between IoT devices and a central entity (verifier), (ii) ex-
tracting features by applying the proposed preprocessing
pipeline to incoming binary RAM trace dumps (details
in Section IV). The gateway node connects to the verifier

4

TABLE I
COMPARATIVE ANALYSIS OF EXISTING LITERATURE

Requirements [11]–[13] [14] [17] [18], [26] [23] [24], [25] [27] [15] [16], [21], [22], [30] [29] [31] [8] Proposed

Checksums? ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗
Precise Time Stamps? ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Disable Interrupts? ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Additional Hardware? ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗
Low Availability? ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗
Genuine Firmware? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Attack Data? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

RAM Trace Request
Prover Verifier

Rpi 3

Gateway

Internet

RAM Trace Response Feature Response

Attestation Request

Fig. 2. Overall data flow under the proposed attestation framework.

system via the internet and operates in either train or test
mode.

3) The Verifier: Represents a trusted remote server tasked
with IoT device attestation during bootup or normal
operation. It maintains records of all connected gateway
nodes along with the device IDs of all subsequent IoT
devices linked under each gateway node. Additionally,
it is responsible for maintaining the detection models
for device attestation and operates in either train or test
mode.

B. Information Flow

The flow of information, whether the mode of operation
is train or test, is depicted in Fig. 2. Beginning with the
prover, upon receiving an attestation request, it captures a
snapshot of its current working memory and transmits it to the
gateway node. This RAM trace dump is composed of a 1D
array of binary values saved in HEX format. By combining
consecutive HEX digits, each representing 1 byte, the data
is encoded into decimal values within the range of [0, 255]
(8-bit unsigned integers), followed by normalization through
division by 255.0. This process transforms the 1D array of
binary values into a 1D array where each entry falls within
the range of [0, 1.0]. Depending on the operation mode, this
trace undergoes one of the two preprocessing pipelines at the
gateway node to generate a feature vector (detailed in Section
IV-A). Subsequently, the resulting feature vector is transmitted
to the verifier system. In training mode, the verifier utilizes the
received feature set to initiate model training. Conversely, in
testing mode, the received feature is subjected to detection
algorithms and thresholding to classify the device as genuine
or tampered with. Further details on each step discussed above
are elaborated in Section IV.

C. The RAM Trace

The contents stored in a device’s RAM at any given point
during its execution are directly correlated with its ongoing

operations. Typically, the RAM of an embedded device can
be categorized into the following four main sections:

i. .text: This section contains the executable code.
ii. .data: Global and initialized static variables are stored

here.
iii. .bss: Memory allocation for uninitialized static and

global variables is managed in this section.
iv. Heap/Stack: Reserved for dynamic memory alloca-

tion, return from function calls, interrupts, and storage of
local variables.

The premise is that modifications to a device’s firmware
will be reflected in that device’s RAM trace. Depending on
the magnitude of firmware changes, these alterations can range
from minor to significant and may manifest in various sections
of the RAM. For instance, the introduction of new pointers
into the control dependency graph of the executable code
can impact all four memory areas of a device. Furthermore,
the detectability of changes reflected in the main memory
is influenced by the nature of tampering. While substantial
alterations are generally easier to detect, subtle tampering may
result in minimal or localized variations in the RAM trace,
posing greater difficulty in detection.

D. The Attack Model

In this work, we consider a sophisticated and resourceful
adversary (Adv) whose goal is to remain undetected within an
IoT device’s memory. The following assumptions are made
regarding the capabilities and limitations of the Adv:

• Physical Access and Firmware Modification: The Adv
possesses physical access to the IoT device and can
modify its firmware. This allows for a wide range of
malicious activities, such as injecting unauthorized code
or altering operational parameters.

• Packet Manipulation: The Adv has the ability to replay,
tamper with, and eavesdrop on packets transmitted by the
IoT device. This capability enables the attacker to ma-
nipulate communication and possibly disguise malicious
activity as legitimate traffic.

• Memory Access and Manipulation: The Adv can inter-
rupt and alter the device’s memory at any time, providing
opportunities to modify data and control the device’s
behavior dynamically.

• Persistence in Memory: Despite its capabilities, the Adv
cannot remove itself from the device’s memory. It re-
mains persistently embedded in the system, which makes
detecting its presence crucial for effective attestation.

5

• Immutable Attestation Routine: The attestation process
on the IoT device is secure and immutable. When the
gateway node issues an attestation query to request the
device’s runtime RAM contents, the Adv is unable to
modify the state of the RAM to evade detection. This
ensures the integrity of the attestation process.

• Secure Communication: The gateway node and IoT
device communicate through a secure channel, safe-
guarded by standard security protocols [32]. This secure
communication prevents the Adv from compromising the
attestation exchange and ensures the authenticity and
confidentiality of the data being transmitted.

IV. THE PROPOSED FRAMEWORK

In this section, we present our proposed framework, begin-
ning with the introduction of a preprocessing pipeline designed
to mitigate redundancy across training samples, thereby facil-
itating effective model training. Subsequently, we discuss the
core component of our framework: a Conditional Variational
Autoencoder (C-VAE) model. Leveraging a trained C-VAE
model, we setup two detectors and derive two decision metrics
capable of flagging input samples as genuine or tampered.
Further details regarding these aspects are provided in the
subsequent subsections.

A. Feature Generation

Our primary aim is to devise an IoT device attestation
framework that utilizes the RAM trace acquired from the
device under test as its primary fingerprint for detection.
During normal device operation, the majority of RAM content
remains unchanged, with only a few locations potentially being
updated depending on the application. Consequently, in the
event of device firmware tampering, the resulting variations
in RAM content are expected to differ from those observed
during normal operation. However, in both scenarios—whether
with genuine firmware or tampered—most entries in the
RAM traces are anticipated to remain unaltered. To facilitate
effective downstream model training, these RAM traces must
undergo preprocessing to reduce redundancy while preserving
distinctive information as much as possible. This approach
enables the models to focus on data variations rather than
baseline trends that may be present across training samples.

Consider a dataset X ∈ Rm×n comprised of m RAM traces
containing n samples each. For a rectangular X with dimen-
sions m ̸= n (or square with m = n) and rank r ≤ min(m,n),
we can decompose this matrix into three component matrices
using the reduced singular value decomposition (r-SVD) [33]
as follows:

X = U S V⊤, (1)

where U ∈ Rm×r and V ∈ Rn×r are semi-unitary matrices,
i.e., U⊤U = V⊤V = Ir, S ∈ Rr×r is the diagonal matrix
containing the unique singular values σ1 ≥ σ2 ≥ . . . σr > 0
on its main diagonal, and r is the matrix rank. The left
singular vectors of U form an orthonormal basis of column-
space of X (C(X)) and the right singular vectors of V form
the orthonormal basis of the row-space of X (R(X)). The

Fig. 3. Initial 200 singular values from different firmware datasets.

computed singular values are unique for X and represent
the amount of variance explained by each corresponding left
and right singular vectors across the entire dataset X. This
relationship can be clearly observed through the outer product
form of the SVD, given as:

X =

r∑
i=1

σiuiv⊤i , (2)

where ui and vi are the ith left and right singular vectors,
respectively. For visualization, we present the first 200 singular
values computed from the RAM traces obtained from various
applications (details in Section V) in Fig. 3. Examination of
the very first singular value reveals that it alone is capable of
representing over 82% of the total variation present in their
respective RAM trace datasets.

Aligning with the intuition prevalent in machine learning,
which suggests removing common information across all
training samples before training, we choose to eliminate the
first rank-1 outer product from our dataset X. Additionally,
as depicted in Fig. 3, we observe that more than 99.5% of
the data variation is already explained by the initial γ = 175
components. Hence, we can reduce the feature size of the
RAM trace without significant loss of information. Conse-
quently, the removal of the first component will primarily
reduce redundancy within X, while eliminating components
beyond γ will enable us to focus on directions capturing the
remaining data variation and removing noisy components. As
the individual RAM traces are kept as row vectors in X, we
use V̂ = V2:γ ∈ Rn×(γ−1), containing [2 : γ] right singular
vectors of V, as the projector to reduce X as:

X̂ = X V̂ = U S V⊤ V̂ = U2:γ S2:γ . (3)

We call the subspace spanned by the rows of V̂ as the
training subspace, where all our training data is mapped. With
the above transformation, the reduced matrix X̂ can be used to
train the ML models effectively. In the proposed framework,
feature generation is the responsibility of the gateway node
shown in Fig. 2. However, the computations carried out are
different when operating in the training mode or testing mode
(inference). The difference is discussed below:

6

1) Training Mode: The gateway node assumes responsibil-
ity for acquiring and processing the data required for training
the model, while the actual model training takes place at
the verifier node. During the training mode of operation, the
gateway node gathers a set of RAM traces from all connected
IoT devices, storing them as Xi ∈ Rm×n matrices, with i
representing the index of the respective IoT device. Once
the necessary number of traces have been acquired and the
matrices are configured, the gateway computes the r-SVD
of each dataset Xi individually. Subsequently, it utilizes the
corresponding projection matrix V̂i to generate the feature
matrix X̂i, as described in Equation (3). The gateway stores
the projection matrices corresponding to each IoT device for
future use and forwards the processed feature matrices from
all devices to the verifier system.

2) Testing Mode: In testing mode, the gateway node re-
ceives a RAM trace, call it xi ∈ Rn, from the ith device.
It then uses the projection matrix V̂i to project xi onto the
subspace spanned by the rows of V̂i (the training subspace) to
generate the feature vector x̂i = V̂

⊤
i xi, existing in the training

subspace. By doing so, we remove the redundant information
and keep the variations along those directions which were used
to train the model. This transformed feature vector is then
forwarded to the verifier for attestation.

Algorithm 1: Preprocessing at the Gateway node.
Training Mode:
Input: RAM traces: Xi, highest component to keep: γ,

total number of devices: I .
1 Create two empty datasets X and V .
2 for i in I do
3 Compute r-SVD of Xi as
4 [Ui,Si,Vi] = r-SVD(Xi)

5 Create V̂i = Vi,2:γ

6 Generate X̂i using (3)
7 Append X̂i to the training dataset X
8 Append V̂i to the projection dataset V

Output: Training dataset: X forwarded to the Verifier.
Projection dataset: V saved at the gateway.

Testing Mode:
Input: A RAM trace: xi from ith device, projection

dataset: V .
9 Compute x̂i = V̂

⊤
i xi

Output: Forward x̂i to verifier for inference.

The operations performed at the gateway node are summa-
rized in Algo. 1 covering both training and testing modes.

B. Proposed Detection Model

As previously discussed, supervised learning necessitates
training data comprising samples from all the different classes
that the model might encounter during its operations. Models
trained on such comprehensive datasets can effectively recog-
nize test samples that share similar features with their training
counterparts. However, these models often struggle when

C

Input
Output

Device ID

Encoder

C

Device ID

Noise

Decoder

z

Latent Variable

Fig. 4. The Conditional Variational Autoencoder model architecture.

confronted with test samples dissimilar to any of the class
samples they were trained on. For the IoT device attestation
problem, our objective is to train a model capable of not only
performing well on samples (RAM traces) seen during training
but also robustly recognizing previously unseen samples. In
the event of a novel attack, our model should be capable of
flagging it as potentially malicious.

Representation learning-based training frameworks, such as
Variational Autoencoders (VAE) [34], Generative Adversarial
Networks (GAN) [35], and Deep Belief Networks (DBN) [36],
offer a promising approach in this context. These models
rely on profiling techniques, where they are trained solely on
normal data samples. Once trained, they evaluate whether a
test sample conforms to the learned distribution of normal data.
If the test sample deviates significantly from this distribution, it
is flagged as potentially anomalous. This characteristic makes
these models valuable tools for identifying previously unseen
attack instances.

This work harnesses the capabilities of a VAE, a deep learn-
ing model, for detecting firmware tampering in IoT devices. By
training the VAE with data gathered from genuine IoT devices,
the model acquires insights into the inherent latent patterns
and characteristics defining these devices. Consequently, the
VAE becomes effective at distinguishing between test samples
similar to genuine patterns and those exhibiting anomalies,
facilitating the identification of previously unseen test samples.
Using the Artificial Neural Networks (ANNs) as the base
learners, our model architecture comprises an Encoder (Eϕ)
and a Decoder (Dθ) network, implemented through two ANNs
interconnected and operating within the VAE configuration
[34].

1) The Encoder: The encoder model receives the feature
vector x, containing the preprocessed RAM trace sample
outlined in Section IV-A, alongside a one-hot-encoded device
ID c as the auxiliary information. The device ID c serves a dual
function: it mitigates mode collapse and guides the encoder
to map samples from diverse classes symmetrically closer to
the origin of the latent space. This mechanism ensures that
the encoder’s output can serve as a robust decision metric
(discussed further in Section IV-C). The encoder generates two
output vectors of equal dimensions: a mean vector µz and a
variance vector Σz, tailored to the latent space’s dimensions.
These vectors collectively define a latent probability distribu-
tion qϕ(z|x, c), parameterized by the encoder. During training,
the objective is to enable the encoder to map its inputs into
a continuous latent space, where each input corresponds to
a region in the latent space rather than a single point [34].

7

This facilitates the subsequent generation of samples by the
decoder, ensuring they are not mere replicas of their input
counterparts.

2) The Decoder: The primary objective of the decoder
model is to regenerate the input to the encoder model using
solely the latent variable as its input. The decoder accepts
the latent variable z, sampled from the latent probability
distribution qϕ(z|x, c), utilizing the reparameterization trick as
proposed by [34]:

z = µz +Σz ⊙ ϵ, (4)

where ϵ ∼ N (0, I) and ⊙ denotes element-wise multiplication.
This technique facilitates gradient backpropagation through the
sampling process into the encoder model, ensuring the preser-
vation of the probabilistic nature of the sampling. Leveraging
z and the device ID c, the decoder is trained to reconstruct the
original input x by sampling from the distribution pθ(x|z, c)
(parameterized by the decoder). Training exclusively on gen-
uine data enhances the proficiency of both the encoder and
decoder in reconstructing samples that conform to the training
data distribution.

3) The Loss Function: Consider a data vector denoted as x
and its corresponding label c. Initially, a probabilistic encoder
transforms these inputs into a latent vector z according to the
distribution qϕ(z|x, c). Subsequently, a probabilistic decoder
reconstructs z to yield x̂ using pθ(x|z, c). The encoder and
decoder networks are trained concurrently by maximizing the
ensuing loss function:

LV AE(θ,ϕ; x, z, c) = Ez∼qϕ(z|x,c)(log pθ(x|z, c)) (5)

−DKL(qϕ(z|x, c)||pz(z)).

Equation (5) denotes the variational lower bound [34]. The ini-
tial term in (5) represents the log likelihood function, while the
subsequent term signifies the latent loss employing Kullback-
Leibler Divergence (KLD) between the learned latent distribu-
tion qϕ(z|x, c) and a prior distribution pz(z). The KLD serves
as a regularizer to impart structure onto the latent distribution.
In its current form, qϕ(z|x, c) is intractable, necessitating the
estimation of the KLD between the latent and the selected
prior [34]. However, assuming qϕ(z|x, c) as Gaussian with
an approximately diagonal covariance, and pz(z) as a unit
Gaussian, facilitates the computation of the KLD without
estimation [34]. Furthermore, assuming a Gaussian pθ(x|z, c),
(5) can be written as

LV AE(θ,ϕ; x, c) ≃ 1

2

N∑
i=1

J∑
j=1

(1 + log(σ2
ij)− µ2

ij − σ2
ij)

− 1

N

N∑
i=1

∥xi − x̂i∥2, (6)

here N is the total number of batch samples, J is the
dimension of z, µij is the jth element of µi, σij is the jth

element of Σi, and ∥ · ∥2 is the vector ℓ2−norm. The model
is trained by maximizing the loss function given in (6).

0.10 0.05 0.00 0.05 0.10 0.15
z(1)

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

z(
2)

Latent Rep of Training Data
F1: AES128
F2: Interrupt
F3: LED
F4: Random
F5: Shake
F6: Temperature
F7: Vibration
F8: XTS

Fig. 5. Latent representation for all training samples with α = 2.

C. Detection Methods

In this section, we present two detection methods leveraging
the trained C-VAE model. The concept is straightforward:
these methods calculate test statistics by measuring the similar-
ity between the test sample and the training data. By carefully
selecting thresholds, these test statistics determine whether
samples are classified as genuine or tampered. Subsequent
sections detail the computation of these test statistics and
thresholds.

1) The Latent Variable based Detector DLV : The encoder
network, denoted as Eϕ, plays a crucial role in our initial detec-
tion approach. Its primary aim is to map genuine input features
into a latent space centered at the origin and symmetrically
distributed around it. This constraint is enforced through the
KLD in (5). Consequently, RAM trace samples obtained from
tampered devices would display significant deviations from the
origin of latent space. To establish a baseline for our detection,
denoted as E[µzg], we compute the expected value of the mean
vector µzg , where µzg ,Σzg = Eϕ(Xg,Cg), illustrated in Fig.
4. Here, Xg represents the genuine training samples, and Cg

denotes their corresponding device ID labels.
Our test statistic for a given test sample x̄ is computed

as ζLV (x̄) = ∥µzx̄ − E[µzg]∥2. For visualization, we show
an example of the 2D latent representation generated by the
trained encoder for all training samples in Fig. 5 which shows
that E[µzg] closely approximates to the origin. Subsequently,
for a predefined threshold ρ, if ζLV < ρ, the sample is
classified as genuine; otherwise, it is classified as tampered.
This detection method, is termed as DLV .

2) The Reconstruction Error based Detector DRE: The
decoder network, denoted as Dθ, serves a crucial role in our
alternative detection model. Its objective is to generate samples
that resemble those from the genuine sample distribution,
accomplished by maximizing the objective functions in (6).
When a test sample x, along with its corresponding test device
ID c, passes through the Eϕ model, it produces a latent variable
z (computed using (4)). Then, z and c are fed into Dθ to
generate the reconstructed sample x̂. For genuine test samples,

8

the model should accurately reconstruct them. However, when
dealing with samples from tampered devices, the model may
struggle to replicate them due to its lack of exposure to such
samples during training.

Under this premise, we calculate a test statistic for a given
test sample x̄ and its reconstruction ˆ̄x as ζRE = ∥x̄ − ˆ̄x∥2.
Subsequently, employing a predefined threshold ρ, if ζRE <
ρ, the test sample is classified as genuine; otherwise, it is
designated as tampered. This detection method is termed DRE .

3) Threshold Computation: Determining an appropriate
threshold is pivotal to ensure the effectiveness of the detec-
tors outlined above. The threshold ρ is selected based on
a predefined acceptable False Positive Rate (FPR) tolerance.
Post model training, we compute the two test statistics (ζLV

and ζRE) for the entire training dataset and establish their
respective thresholds. These thresholds are calibrated to align
with the specified FPR for the training dataset. Upon receiving
a test sample x̄, each detection criterion independently marks
it as tampered if it surpasses its assigned threshold.

V. EXPERIMENTAL SETUP

A. Hardware Description

Our experimental setup for evaluating the proposed detec-
tion framework consists of three main components: an IoT
device, a gateway node, and a remote verifier system. We
setup a Raspberry Pi 3 (Rpi3) as the gateway, equipped with a
Broadcom BCM2837 64-bit CPU operating at 1.2 GHz. This
gateway features 4 onboard USB ports, supporting connections
to up to 4 individual IoT devices simultaneously. For wireless
communication, the gateway employs the BCM43438 WLAN
board to establish TCP/IP connectivity with the remote verifier.
The Rpi3 operates on a 32 GB micro SD card and runs the
ARM port of the Debian Stretch operating system. In our
prototype, the gateway node is responsible for three primary
functions:

i. Collection of RAM traces from the IoT device for training
or attestation upon the verifier’s request.

ii. Execution of the preprocessing routine on the received
traces, as outlined in Algorithm 1 and Section IV-A,
followed by forwarding the processed features to the
verifier.

iii. Maintenance of a wired connection (via serial port) or
wireless connection with the IoT devices and the TCP/IP
connection with the remote verifier.

To ensure the representativeness of a diverse array of IoT
devices, our prototype setup incorporates a widely utilized
microcontroller-based device package, namely the Arduino
Uno. This selection is motivated by the versatility of the
Arduino platform, which supports analog-to-digital converter
(ADC) inputs, facilitating the integration of various sensing
modules such as sound, temperature, or light sensors. These
modules can be interfaced using serial peripheral interface
(SPI) or inter-integrated circuit interface (I2C), thereby en-
compassing a significant portion (upto 99%) of the application
market [37]. The Arduino Uno used in our setup features an
8-bit ATmega328P AVR-based microcontroller with 32 KB

of flash memory and 2 KB of RAM. Serial communica-
tion with the gateway node is established via the Universal
Asynchronous Receiver Transmitter (UART) TTL, with data
exchange occurring at a baud rate of 115, 200. Moreover,
the direct addressing mode is employed to capture the RAM
content from addresses 0x0101 to 0x08FF.

B. Firmware Description

To cover a large number of IoT use cases, we test our pro-
posed framework against eight different application types with
diverse task objectives, ranging from sensing to cryptography.
For notational ease, the developed firmware are represented
as Fi, with i = 1, 2, . . . , 8. The specific operations coded in
these firmware are discussed below:

F1: A given input data block is first encrypted and then
decrypted to retrieve the original data. The AES128
algorithm is used in this process and both encryption and
decryption is performed in different functions, executed
iteratively.

F2: Push-button interrupts are linked to the built-in button’s
IO PIN-2. An Interrupt Service Routine (ISR) function
is designated to toggle the state of the built-in LED on
PIN-13 according to the button pin’s state. The button’s
state is stored in a variable and then transmitted to the
LED pin. Interrupts are sampled every 3 seconds before
capturing the trace data.

F3: Based on the analog value read from the sensor at PIN-3,
it changes the brightness of the built-in LED connected
to PIN-13. The LED control method is defined separately
and invoked in the Arduino loop method followed by
capturing the trace data.

F4: Based on the serial seed received from the gateway, a
pseudo random number is generated.

F5: The distance between an ultrasound sensor and an obsta-
cle is measured while the device is moved laterally.

F6: The voltage is read at the temperature sensor’s input PIN-
and converted to the respective Celsius value. The loop
method of the Arduino is used to call a method to read
the temperature and store the read value.

F7: The vibration sensor application activates the built-in
LED (PIN-13) upon detecting vibrations. A function is
defined to read digital values from the vibration sensor
(PIN-7) and feed them as input to the LED. This func-
tion is invoked within the Arduino loop method before
initiating trace collection.

F8: The XTS-AES block cipher with a variable block cipher
encryption is used here. The plain text, key, and tweak
modules are used for encryption. For simplicity, the read
input, key, and tweaks are sent from the gateway node.

We observe that F1 and F8 are cryptography-based applica-
tions and the rest are variations of sensor based applications.
By including such wide spectrum of applications, we aim to
evaluate our proposed framework against various real-world
application scenarios.

With the baseline firmware applications established, we
proceed to introduce specific attacks on these applications.

9

F1 F2 F3 F4 F5 F6 F7 F8

F 1
F 2

F 3
F 4

F 5
F 6

F 7
F 8

1 0.67 0.69 0.14 0.97 0.68 0.68 0.67

0 1 0.73 0.19 0.67 0.92 0.91 0.96

0 0 1 0.23 0.69 0.75 0.75 0.73

0 0 0 1 0.14 0.21 0.21 0.19

0 0 0 0 1 0.68 0.68 0.67

0 0 0 0 0 1 0.98 0.92

0 0 0 0 0 0 1 0.91

0 0 0 0 0 0 0 1

Cross-correlation Matrix for RAW Traces

0.0

0.2

0.4

0.6

0.8

1.0

F1 F2 F3 F4 F5 F6 F7 F8

F 1
F 2

F 3
F 4

F 5
F 6

F 7
F 8

1 0.018 -0.92 0.39 0.98 0.9 0.78 0.018

0 1 0.23 0.79 0.018 -0.025 -0.078 0.97

0 0 1 -0.095 -0.92 -0.87 -0.75 0.23

0 0 0 1 0.39 0.14 -0.02 0.79

0 0 0 0 1 0.9 0.78 0.018

0 0 0 0 0 1 0.97 -0.025

0 0 0 0 0 0 1 -0.078

0 0 0 0 0 0 0 1

Cross-correlation Matrix for Processed RAM Traces

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) (b)
Fig. 6. Correlation matrix for both (a) raw and (b) processed genuine firmware datasets.

The following outlines three distinct attack variations we
implemented to test the system’s effectiveness:
A1: Attack via Control Dependency Graph: Under this

attack scenario, we introduce new pointers to alter the
control dependency graph of the device. This attack
mainly affects the .data section of the RAM.

A2: Attack via Functional Dependency: Here we setup a
new stack frame which affects the stack section of the
RAM.

A3: Attack via Variable Initialization: Here we alter the
code for variable initialization which results in changes
in .bss section of the RAM.

With the attacks discussed above, we have tried to cover
the most critical and fundamental attacks considering the
three types of dependencies when it comes to good software
engineering practices [38]. In doing so, we cover majority of
the tampering attacks carried on embedded devices.

TABLE II
ACRONYMS AND THE NUMBER OF ATTACK AND GENUINE SAMPLES

ACQUIRED FOR EACH FIRMWARE TYPE.

−−−−−−→
Acronym F1 F2 F3 F4 F5 F6 F7 F8

Type ↓ AES128 Interrupt LED Random Shake Temperature Vibration XTS

Genuine 1500 1500 1500 500 1500 1500 1500 1500

A1 500 1500 500 100 500 500 500 1500

A2 500 500 500 100 500 500 500 500

A3 500 500 500 100 500 500 500 500

Total 3000 4000 3000 800 3000 3000 3000 4000

C. Dataset Generation

The next step involves capturing RAM traces from the
prototype IoT device while it executes one of the specified
firmware variants (Fi). Initially, we upload the firmware Fi

onto the IoT device and allow it to operate for a prede-
fined time period of 300 seconds. Throughout the device’s
normal operation, we utilize the gateway node to collect
numerous RAM trace samples, each comprising 2048 bytes,
with randomized intervals between consecutive samples. These
samples are labeled as genuine and preserved for subsequent
analysis. Once genuine RAM traces are obtained for all eight

device firmware Fi, we proceed by uploading each attack
variant of a particular firmware to obtain their corresponding
tampered RAM traces. Consequently, we obtain three distinct
sets of tampered RAM traces (A1, A2, A3) for each firmware
variant Fi. The specific count of samples acquired in this
process is detailed in Table II.

To highlight the diversity of the genuine RAM trace data
utilized for training the detection model, we computed the
cross-correlation between all 8 application firmware using
mean traces from both raw and processed datasets. The re-
sulting scores are presented in Fig. 6. For raw RAM traces,
only 7 out of 28 cross-correlation pairs exhibited scores above
0.9. Similarly, for processed RAM traces, 5 out of 28 cross-
correlation pairs had scores above 0.9, while only 2 out of
28 had correlation scores below −0.9. It’s important to note
that these reported scores are based on mean RAM traces.
Therefore, the prevalence of cross-correlation pairs with low
scores highlights the diversity of the data employed in our
analysis.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct a detailed analysis of our
proposed firmware attestation framework. Following the acqui-
sition of RAM traces, as outlined in Section V, all subsequent
training and evaluations are conducted using Python v3.9
with the Scikit-Learn [39] and PyTorch [40] libraries. Before
proceeding with the preprocessing pipeline detailed in Section
IV-A, the RAM traces, initially ranging from [0, 255], are
normalized by dividing each value by 255.0, thereby scaling
them to a range of [0, 1.0].

The performance metrics presented in our analysis are
classification-based, including Accuracy (ACC), True Positive
Rate (TPR), also known as detection rate, and False Positive
Rate (FPR), commonly referred to as the false alarm rate.
Moreover, in the context of tampering detection, we designate
tampered data as the positive class and genuine data as the
negative class.

A. Binary Classification
To establish a baseline for our evaluation, we initially

address the classic binary classification problem. Five com-
monly employed ML classifiers—Random Forest Classifier

10

TABLE III
TRUE POSITIVE RATES FOR EACH ML CLASSIFIER TRAINED ON RAW RAM TRACES FROM EACH FIRMWARE.

F1 F2 F3 F4 F5 F6 F7 F8

Test DS ↓ AES128 Interrupt LED Random Shake Temperature Vibration XTS MEAN

RFC

A1 100.0 0.2 100.0 100.0 100.0 100.0 100.0 0.1 75.0

A2 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 62.5

A3 0.2 0.0 0.4 100.0 0.0 100.0 0.0 0.0 25.1

SVM

A1 100.0 77.1 100.0 49.0 100.0 100.0 100.0 77.1 87.9

A2 100.0 100.0 100.0 0.0 100.0 1.0 100.0 100.0 75.1

A3 1.0 0.4 100.0 100.0 1.0 100.0 0.4 0.4 37.9

KNN

A1 100.0 0.1 99.8 100.0 100.0 100.0 87.0 0.1 73.4

A2 0.0 100.0 75.0 100.0 0.0 0.0 100.0 100.0 59.4

A3 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 25.0

DTC

A1 100.0 43.1 100.0 100.0 100.0 100.0 100.0 99.7 92.9

A2 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 62.5

A3 100.0 0.0 0.0 100.0 100.0 100.0 100.0 0.0 62.5

GBC

A1 100.0 42.9 100.0 100.0 100.0 100.0 98.6 42.9 85.6

A2 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 62.5

A3 100.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 50.0

(RFC), Support Vector Machine (SVM), K-Nearest Neigh-
bours (KNN), Decision Tree Classifier (DTC), and Gradient
Boost Classifier (GBC) utilized. Each of the eight RAM trace
datasets (Fi), along with their corresponding attack samples,
is included in this analysis. The models are trained using their
default parameters on each Fi individually, employing a train-
test split of 75-25 without executing the preprocessing steps
proposed in Section IV-A. Notably, the accuracy scores from
this evaluation are remarkable, with RFC, DTC, and GBC
achieving as high as 99.5% accuracy (on average) over the
entire test set. Conversely, SVM and K-NN achieve an average
accuracy of 95%. However, upon closer examination, it was
evident that the test set contained samples closely resembling
those in the training set. This outcome was expected as the
samples were acquired while the device executed the same
task, resulting in most features showing slight variations.
Hence, we underscore that simple train-test split-based classi-
fication tests are unsuitable for such data.

To establish a robust baseline for our analysis, we evaluated
the generalization capabilities of the ML classifiers using
the Leave-One-Out (LOO) training strategy. This approach
involved using the genuine and two attack datasets from a
single firmware type to train the models, while reserving the
remaining attack dataset as the test set. Consequently, we could
assess the generalization capacity of each classifier by testing it
on a fully unseen dataset, thus surpassing mere memorization
of the training data and evaluating the models’ ability to
generalize effectively across diverse attack scenarios. Initially,
we utilized the raw RAM traces from all datasets separately
to train the classifiers 10 times, presenting their average TPR
scores in Table III.

Analyzing the TPR reported in Table III reveals the incon-

sistent performance of the classifiers across different firmware
types and attack datasets. Taking the DTC as an example, it
achieved the highest average TPR across all firmware datasets.
Notably, it successfully detected all three attack datasets for
F4 and F7 at 100% accuracy. Moreover, its detection rates
for A1 and A3 attack datasets were the highest on average.
Conversely, the SVM classifier demonstrated the most accurate
detection of the A2 attack samples, averaging a 75% accuracy
rate. Across different firmware types, all classifiers except the
SVM classifier successfully identified all attacks against F4.
Conversely, attacks on F2 and F8 posed the greatest challenge,
with these firmware types proving the most difficult to flag
for all included classifiers. Notably, the A3 attack on F2 and
F8 presented the most significant challenge, as all classifiers
failed to detect it. In summary, no single classifier emerged
as the clear winner, underscoring the challenge classifiers
face when tested against samples they have not been trained
on. This highlights the limitations of classifiers trained under
supervised learning, particularly when faced with previously
unseen samples.

To assess the impact of training the classifiers on prepro-
cessed and reduced features, as discussed in Section IV-A,
we conducted a similar test using the reduced datasets with
γ = 200 (selected empirically). The TPR results under this
setting are presented in Table IV. We observed notable im-
provements in the scores reported by the SVM, which achieved
100% accuracy in detecting the A1 attack across all firmware
datasets. The DTC followed closely with a 95% accuracy.
Moreover, all classifiers successfully detected all three attacks
performed against the F4 firmware dataset. However, similar
to the results on raw data, all classifiers failed to detect the
A3 attack against F2, F7, and F8 using the preprocessed data.

11

TABLE IV
TRUE POSITIVE RATES FOR EACH ML CLASSIFIER TRAINED ON PREPROCESSED RAM TRACES FROM EACH FIRMWARE.

F1 F2 F3 F4 F5 F6 F7 F8

Test DS ↓ AES128 Interrupt LED Random Shake Temperature Vibration XTS MEAN

RFC

A1 100.0 0.1 100.0 100.0 100.0 100.0 50.2 0.0 68.8

A2 0.0 100.0 30.4 100.0 0.0 0.0 3.0 100.0 41.7

A3 100.0 0.0 0.0 100.0 100.0 99.8 0.0 0.0 50.0

SVM

A1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

A2 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0 62.5

A3 100.0 0.0 99.4 100.0 100.0 100.0 0.0 0.0 62.4

KNN

A1 100.0 76.8 100.0 100.0 100.0 100.0 100.0 76.8 94.2

A2 0.0 100.0 0.0 100.0 0.0 0.0 100.0 100.0 50.0

A3 100.0 0.0 99.4 100.0 100.0 100.0 0.0 0.0 62.4

DTC

A1 99.8 99.9 100.0 100.0 100.0 100.0 60.6 100.0 95.0

A2 0.0 0.0 98.8 98.0 0.0 0.0 58.8 0.0 32.0

A3 100.0 0.0 99.4 100.0 100.0 98.8 0.0 0.2 62.3

GBC

A1 100.0 100.0 100.0 100.0 100.0 100.0 98.8 23.3 90.3

A2 0.0 100.0 99.8 100.0 0.0 0.0 13.6 100.0 51.7

A3 100.0 0.0 99.4 100.0 100.0 98.6 0.0 0.0 62.3

Similarly, for the A2 attack against F1, F5, and F6 datasets,
all classifiers failed to detect it. These results from Table IV
do not imply that the preprocessing of the RAM traces failed
to enhance the results. Instead, they underscore the inherent
limitations of supervised learning when the models are not
trained on all possible sample classes they might encounter
during operation. Furthermore, in the subsequent section, we
demonstrate that by utilizing preprocessed genuine samples,
our C-VAE-based detectors achieved exceptional (100%) de-
tection accuracy across all firmware types and their respective
attack datasets.

B. Analysis using the Proposed C-VAE based detectors

In the preceding section, we highlighted the primary chal-
lenge encountered by supervised learning-based ML classi-
fiers, which exhibit markedly reduced performance when con-
fronted with test samples possessing distributions significantly
different from the training data. This limitation underscores the
advantage of representation learning-based methods. Hence,
in this section, we employ the Conditional Variational Au-
toencoder (C-VAE) framework to train a model exclusively
using genuine training features. Our objective is to train a
model that extracts all distinctive information from the training
set and subsequently utilizes this knowledge to classify test
samples, regardless of their class distribution. This approach
holds promise for enhancing the model’s detection perfor-
mance when confronted with novel and previously unseen
data samples, a critical requirement in our firmware attestation
framework where attack scenarios may vary widely.

In our attestation framework, model training is conducted
at the verifier system in the training mode of operation. As
discussed in Section IV-A1, the gateway node aggregates a

Fig. 7. Convergence graph for the trained model.

number of RAM traces from the IoT devices, preprocesses
them, and shares the processed feature dataset with the verifier.
Subsequently, the verifier assumes responsibility for training
the model and, in testing mode, classifies a given feature
sample as genuine or not. In the following sections, we
provide detailed model implementation details and analyze
the performance of the proposed detectors under various
hyper-parameter configurations. It is worth noting that un-
der a fixed model architecture, the resulting trained model
demonstrates robustness across a range of hyper-parameter
selections, exhibiting consistent and stable performance. For
results reproducibility, we have made our dataset1 and code
available at GitHub2.

1https://dx.doi.org/10.21227/0nze-r023
2https://github.com/AsifIqbal8739/Firmware-Attestation-for-IoT.

https://dx.doi.org/10.21227/0nze-r023
https://github.com/AsifIqbal8739/Firmware-Attestation-for-IoT.

12

0 2000 4000 6000 8000 10000
Input Samples

0.00

0.05

0.10

0.15
Eu

cli
de

an
 D

ist
an

ce
Distance from Origin: Training Dataset

F1: AES128
F2: Interrupt
F3: LED
F4: Random
F5: Shake
F6: Temperature
F7: Vibration
F8: XTS

0 1000 2000 3000 4000 5000
Input Samples

0

1

2

3

4

Eu
cli

de
an

 D
ist

an
ce

Distance from Origin: A1 Dataset
F0
F1
F2
F3
F4
F5
F6
F7

(a) (b)

0 500 1000 1500 2000 2500 3000 3500
Input Samples

0

1

2

3

Eu
cli

de
an

 D
ist

an
ce

Distance from Origin: A2 Dataset
F0
F1
F2
F3
F4
F5
F6
F7

0 500 1000 1500 2000 2500 3000 3500
Input Samples

0

1

2

3

Eu
cli

de
an

 D
ist

an
ce

Distance from Origin: A3 Dataset
F0
F1
F2
F3
F4
F5
F6
F7

(c) (d)

Fig. 8. Test statistic ζLV based on latent representation of all training and attack samples under 0.1% Input FPR and α = 5.

1) Model Implementation Details: The proposed C-VAE
model, illustrated in Fig. 4, consists of two ANNs, each com-
posed of three layers. First input to the encoder model Eϕ is a
vector x ∈ Rk, where k is 2048 for raw RAM trace features,
and k = γ − 1 for the processed features. The device ID
associated with x is used as the second input for Eϕ. This input
is encoded as a one-hot vector to generate c ∈ R8, aligning
with the utilization of eight distinct firmware classes employed
for training the model. The encoder model is structured as an
ANN with a node configuration of 100 − 50 − 2α, where
α denotes the dimension of the learned latent distribution.
As discussed in Section IV-B, the encoder models a latent
distribution characterized by µz and Σz vectors, which are
provided at its output. Utilizing (4), these outputs are used to
generate a latent variable z ∈ Rα. Subsequently, the variable z
and device ID c are fed into the decoder model Dθ, which is
likewise an ANN with a node configuration of 50− 100− k,
where k represents the size of the input feature x. The Rectified
Linear Unit (ReLU) activation function is applied at all inner
nodes, with linear (no) activation utilized at the output layer
for both encoder and decoder networks.

Before the training is initialized, the full matrix containing
the concatenation of training features from all firmware classes
is scaled such that each feature is mapped to a range of [0, 1]
using the MinMaxScaler from the Scikit-Learn library. This
ensures that all features are kept within a similar scale, thereby
facilitating stable learning. The parameters of this scaler will
subsequently be employed during test mode to scale incoming
test samples as well, thereby avoiding any information leakage
between training and testing samples.

The model underwent exclusive training on genuine RAM
trace features sourced from all eight firmware classes provided
by the gateway node. A batch size of 512 was employed
to train the model across 200 epochs. Following gradient
computation, the Adam optimizer was utilized to update the
parameters, with a learning rate that gradually decreased after
the initial 100 epochs, at intervals of every 50 epochs, adopting
the sequence [1e−4, 5e−5, 1e−5]. Uniform-Glorot initialization

was employed to initialize the model weights, ensuring stable
training [41]. To visualize the convergence behavior of the
proposed model, we present the reconstruction error and KLD
(refer to (6)) in Fig. 7 after the initial 5 iterations, demon-
strating stable convergence. Additionally, as an example, the
learned latent distribution for all training samples, with α = 2,
is shown in Fig. 5, highlighting the encoder model’s capability
to symmetrically map all training samples in close proximity
to the origin of the latent space.

While our model was trained using data from eight distinct
firmware variants, it allows integration of data from new
devices without necessitating a complete retraining process.
In order to mitigate the catastrophic forgetting phenomenon
commonly observed in ANNs, we can use continual learning
strategies to facilitate this integration by enabling the model
to progressively accumulate knowledge from newly acquired
data classes, thus avoiding the need for training from scratch
[42].

2) Detector Performance: With the trained model in hand,
the verifier can attest any device by requesting the gateway
node to acquire and process a RAM trace sample from the
target device. Let’s denote this received test sample as x̄ and
its encoded device ID vector as c̄. Initially, the verifier employs
the scaler fitted to the training data to scale this test sample.
To prevent individual features from assuming arbitrarily large
values due to scaling, their values are clamped to the range of
±2.0. Subsequently, utilizing the test sample and its encoded
label, we calculate the two test statistics, ζLV and ζRE ,
using the detectors based on latent distribution (DLV) and
reconstruction error (DRE), as discussed in Section IV-C.

To facilitate classification into genuine and tampered
classes, each detector requires a threshold ρ. We determine
these thresholds for both detectors by computing their respec-
tive ζLV and ζRE over all the training data. Specifically, for
an input False Positive Rate (FPR) of 1e−3, we compute ρLV

and ρRE . These thresholds are then used by each detector to
perform classification. For visual inspection, the test statistics
on training data and the corresponding thresholds for a latent

13

0 2000 4000 6000 8000 10000
Input Samples

0.00

0.01

0.02

0.03

M
SE

Recon Error on Training Dataset
F1: AES128
F2: Interrupt
F3: LED
F4: Random
F5: Shake
F6: Temperature
F7: Vibration
F8: XTS

0 1000 2000 3000 4000 5000
Input Samples

0

1

2

3

4

M
SE

Recon Error on A1 Dataset
F0
F1
F2
F3
F4
F5
F6
F7

(a) (b)

0 500 1000 1500 2000 2500 3000 3500
Input Samples

0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
SE

Recon Error on A2 Dataset
F0
F1
F2
F3
F4
F5
F6
F7

0 500 1000 1500 2000 2500 3000 3500
Input Samples

0

1

2

3

M
SE

Recon Error on A3 Dataset

F0
F1
F2
F3
F4
F5
F6
F7

(d) (d)

Fig. 9. Test statistic ζRE based on reconstruction error of all training and attack samples under 0.1% Input FPR and α = 5.

TABLE V
THE ACCURACY OF THE C-VAE MODEL TRAINED AND TESTED ON THE PROCESSED RAM TRACE DATASETS UNDER 0.1% INPUT FPR AND α = 5.

F1 F2 F3 F4 F5 F6 F7 F8

Test DS ↓ AES128 Interrupt LED Random Shake Temperature Vibration XTS MEAN

DRE

A1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

A2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

A3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

DLV

A1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

A2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

A3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

distribution size α = 5 are shown in Fig. 8 (a) and Fig. 9 (a)
for DLV and DRE , respectively.

The detection accuracy across all firmware attack classes
for an input FPR of 1e−3, evaluated using both detectors,
is summarized in Table V. These results are averaged over
10 trials with the model’s latent size set to α = 5 with
γ = 200 components kept. From the table, we observe
that both detectors achieved 100% accuracy in detecting all
attack types across all firmware samples, underscoring the
effectiveness of the overall detection framework. To provide
visual insight, we present the ζLV test statistic generated by
DLV for all attack datasets in Fig. 8 which represents the
distance from the origin of the latent space. As evident from
the values on the training dataset in Fig. 8 (a), the model
successfully mapped all eight firmware class samples close to
the origin, with minimal deviations. However, when the attack
samples pass through the encoder network, they are mapped
at a significant distance away from the origin, facilitating their
classification as tampered samples. This trend persists across
all attacks on all firmware datasets, as depicted in Figs. 8 (a),
(b), and (c).

To further illustrate this phenomenon, we present the γLV

for all attack samples with α = 2 in Fig. 10, showcasing the
divergence of attack samples from the origin. Although some
attack samples may be mapped closer to the origin, particularly

with α = 2 (used here for visualization purposes), however,
in a high-dimensional latent space (e.g., α = 5), the encoder
network possesses adequate capacity to ensure that all attack
samples are mapped away from the origin, as highlighted in
Fig. 8.

Similarly, the discussion extends to the ζRE , test statistic
computed by the DRE detector. Looking at Fig. 9 (a), we ob-
serve the C-VAE model’s ability to reconstruct input samples
with high precision. While the decoder network effectively
maps samples closer to the latent space origin back to their
original shape, it struggles to accurately reconstruct attack
samples, resulting in large reconstruction errors. Consequently,
all attack samples are confidently classified as tampered. More-
over, due to the substantial disparity between the genuine and
attack test statistics, both detectors maintain 100% detection
accuracy even for input FPRs as low as 1e−6.

Although the proposed detectors achieved 100% accuracy
in detecting tampered samples when trained using genuine
preprocessed RAM traces, we conducted another experiment
using raw genuine RAM traces for training the C-VAE
model. Keeping the parameters consistent, we tested two
network node architectures: one identical to the previous
section and another with an encoder node architecture of
200 − 100 − 50 − 10 (α = 5) and a decoder architecture of
50−100−200−k, where k = 2048 for raw RAM traces. Out

14

TABLE VI
THE ACCURACY OF THE C-VAE MODEL TRAINED AND TESTED ON THE RAW RAM TRACE DATASETS.

F1 F2 F3 F4 F5 F6 F7 F8

Test DS ↓ AES128 Interrupt LED Random Shake Temperature Vibration XTS MEAN

DRE

A1 100.0 0.4 7.8 100.0 100.0 9.3 99.9 0.4 52.2

A2 2.2 2.8 99.0 100.0 2.0 0.3 22.5 2.9 29.0

A3 100.0 0.0 1.4 100.0 100.0 9.7 1.0 0.0 39.0

DLV

A1 100.0 40.0 77.1 100.0 100.0 77.5 88.3 40.5 77.9

A2 46.7 70.1 86.8 100.0 52.5 0.3 80.5 75.4 64.0

A3 100.0 0.5 49.1 100.0 100.0 76.0 1.8 0.5 53.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z(1)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

z(
2)

Latent Rep of A1 Dataset

F1: AES128
F2: Interrupt
F3: LED
F4: Random
F5: Shake
F6: Temperature
F7: Vibration
F8: XTS

1.0 0.5 0.0 0.5 1.0 1.5
z(1)

1.5

1.0

0.5

0.0

0.5

z(
2)

Latent Rep of A2 Dataset
F1: AES128
F2: Interrupt
F3: LED
F4: Random
F5: Shake
F6: Temperature
F7: Vibration
F8: XTS

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z(1)

1.5

1.0

0.5

0.0

0.5

1.0

z(
2)

Latent Rep of A3 Dataset

F1: AES128
F2: Interrupt
F3: LED
F4: Random
F5: Shake
F6: Temperature
F7: Vibration
F8: XTS

(a) (b) (c)

Fig. 10. Latent representation for all attack firmware samples with α = 2.

of the two architectures, the one used in the previous section
demonstrated superior performance, which is shown in Table
VI.

From the results, we observe significant performance degra-
dation for both detectors. They only achieved 100% accuracy
in detecting attacks on firmware F4, along with A1 and A3

attacks on F1 and F5 firmware. However, DRE detector
completely failed to detect any attacks against F2, F6, and
F8, while DLV detected only 37%, 51%, and 57% of the re-
spective attacks. Overall, the performance of the DLV detector
was relatively better. This outcome can be attributed to the bias
of the C-VAE model towards reconstructing the training data
accurately. Failure to remove the most dominant component
(analogous to mean) from both the training and testing data
leads the model to overlook minute details during training,
resulting in reduced class separation in the test statistics when
tested on the attack samples.

3) Hyper parameter Analysis: To analyze the impact of the
latent distribution size α on the detection performance of our
attestation framework, we conducted the experiment outlined
in the previous section, varying α ∈ [1, 2, 5, 10]. The average
detection scores across all firmware and over 10 trials are
summarized in Table VII which shows that the reconstruction
error-based detector DRE consistently maintained a 100%
detection score across all values of α. However, the detection
accuracy of the latent variable-based detector DLV reached
100% at α ≥ 5. For α = [1, 2], the model encountered
difficulty in mapping the A1 attack samples away from the
latent space origin. This difficulty is evident in Fig. 10 (a),
where several samples from A1 were mapped very close to
the origin.

TABLE VII
TPR SCORES FOR BOTH DETECTORS OVER A RANGE OF LATENT

DISTRIBUTION SIZES α.

α 1 2 5 10

DRE

A1 100 100 100 100

A2 100 100 100 100

A3 100 100 100 100

DLV

A1 77.18 87.35 100 100

A2 83.7 95.52 100 100

A3 98.93 99.93 100 100

To examine the impact of γ, the number of singular com-
ponents retained during the preprocessing pipeline conducted
by the gateway node, we replicated the experiment detailed in
Section VI-B2 across various γ values. The average detection
scores over all firmware and 10 trials are presented in Table
VIII. From the table, it’s evident that the accuracy reported by
both detectors improves with increasing γ, reaching a detection
rate of over 50% across all three attack types when γ ≥ 125.
Furthermore, for γ ≥ 175, both detectors achieve 100%
accuracy, indicating that retaining all relevant information
necessary for effective classification does not require keeping
all components, thus achieving feature reduction. Addition-
ally, as shown in Fig. 3, approximately 99.5% of the data
variation is already captured by the first 175 components for
all firmware. We would like to emphasise that both detectors
consistently maintain a detection rate of 100% even when γ
is set to its maximum value. Thus, while feature reduction is

15

TABLE VIII
TPR SCORES FOR BOTH DETECTORS OVER A RANGE OF γ COMPONENTS

KEPT.

γ 10 20 30 50 75 100 125 150 175 200

DRE

A1 0.1 0.1 0.4 13.6 29.7 57.1 90.9 100 100 100

A2 0.3 0.3 0.5 10.8 25.7 37.5 62.3 62.9 100 100

A3 0.3 0.3 0.5 0.7 10.2 49.7 57.5 65.3 100 100

DLV

A1 2.3 14.1 11.4 13 10.3 52 79.6 100 100 100

A2 1.8 7.4 5.6 0.7 6.1 28.9 51 53.7 100 100

A3 1.8 7.7 11 0.9 2.4 43 50.8 74.6 100 100

not mandatory for the model, its computational benefits make
it a worthwhile step to undertake.

C. Time Complexity of the Framework

The proposed framework assigns specific responsibilities
for each of the three system entities. The prover’s role is
to transmit a single RAM trace dump to the gateway node
upon request. The gateway node, in turn, is tasked with sample
preprocessing based on the operational mode and subsequently
relaying the processed samples to the verifier. Throughout
this process, the prover is solely responsible for transmitting
its RAM trace and is not burdened with additional tasks.
Consequently, the availability of the device under test remains
relatively unaffected. This holds true even during the frame-
work’s training mode, wherein the IoT device can continue its
operations while the gateway node acquires data. However, in
the test mode, the device may need to pause its operations until
authentication is complete. Therefore, it’s imperative that the
overall latency associated with the attestation process remains
sufficiently low to prevent any disruption to device availability.

The attestation latency of our proposed detector framework
is primarily governed by the performance of the gateway
and verifier nodes, since the device under test only needs
to transmit the RAM snapshot upon request. To provide a
comprehensive comparison, we report the attestation latency
of our framework alongside existing techniques, ensuring a
probability of miss less than 5%, as shown in Table IX.
Our detectors, especially DLV , demonstrate the lowest latency
among all the compared methods, highlighting the efficiency
of our approach.

Let n represent the size of the IoT device’s RAM. Then,
the computational complexity of forwarding the RAM trace
by the prover is O(1). During the training mode, the gateway
node acquires m RAM traces from a single device, creating a
matrix X ∈ Rm×n and computes its SVD. The computational
complexity of this operation is O(mn × min(m,n)), which
simplifies to O(m2n) as, according to Table II, the maximum
value of m = 1500. The projection computation in (3) has a
complexity of O(mn(γ − 1)), making the overall complexity
at the gateway node during the training mode O(m2n). In the
test mode, the gateway only performs a single projection (for
a single RAM trace) using the appropriate projection matrix
for the firmware in question, with a complexity of O(nγ).

At the verifier’s end, in testing mode, we have access to the
two detectors: DLV requires only passing the input through the

encoder network, making it less computationally taxing than
DRE , which requires passing through both the encoder and
decoder networks. Additionally, the inference time through the
detector to generate the test statistic can be reduced by utilizing
a GPU. Thus, if the reduction of overall attestation latency is
critical, infrastructure changes can be implemented to achieve
this. Furthermore, our framework is easily scalable to a large
number of IoT devices with a powerful enough gateway node,
as the computational complexity of processing a RAM trace
at test time is a low O(nγ) and the communication overhead
over a single link is only O(n) bytes.

TABLE IX
ATTESTATION LATENCY FOR DIFFERENT FRAMEWORKS

Method Latency (sec)

[11] 81.02
[26] 52.97
[14] 0.846
[25] 0.122
[31] 0.098
[8] 0.0042

DRE 0.0032
DLV 0.0013

VII. CONCLUSION

In conclusion, this paper introduced a novel software-based
IoT device attestation framework leveraging RAM traces to
authenticate the internal state of IoT devices. The framework
operates in two modes: training and testing. During training,
the gateway node aggregates RAM traces, preprocesses them
to eliminate redundancy, and transmits them to the verifier
node for training a C-VAE model. In testing mode, the verifier
employs two detectors derived from the trained model to
verify the authenticity of incoming RAM traces. Through
extensive experimentation with eight distinct IoT applications,
each subjected to three distinct attack types, our proposed
detectors demonstrated robustness by successfully identifying
all attacks on the IoT firmware. Notably, our framework’s
design ensures minimal impact on the IoT device availability,
as computational tasks are primarily handled by the gateway
and verifier nodes. During testing, the gateway node performs
efficient computations on the input RAM trace, followed by
inference through the detector models at the verifier. This
streamlined process results in low authentication latency, mak-
ing the framework suitable for real-time deployment in IoT
ecosystems.

A potential avenue for future research stemming from our
current work involves exploring the scenario of a sophisticated
adversary capable of gaining full control over the IoT device
under test. In such a scenario, the adversary could contin-
uously transmit a pre-saved copy of genuine RAM trace in
response to authentication requests. To mitigate such active
attacks, incorporating encryption or hashing algorithms into
the proposed authentication protocol presents an intriguing
research direction. This approach could enhance the security
of the authentication process, safeguarding against adversarial

16

manipulation and ensuring the integrity of the authentication
mechanism.

REFERENCES

[1] G. Association et al., “The mobile economy 2020,” GSM Association,
2020.

[2] B. Mbarek, M. Ge, and T. Pitner, “An efficient mutual authentication
scheme for internet of things,” Internet of things, vol. 9, p. 100160,
2020.

[3] T. N. Alrumaih, M. J. Alenazi, N. A. AlSowaygh, A. A. Humayed, and
I. A. Alablani, “Cyber resilience in industrial networks: A state of the
art, challenges, and future directions,” Journal of King Saud University-
Computer and Information Sciences, p. 101781, 2023.

[4] J. Lee, L. Kim, and T. Kwon, “Flexicast: Energy-efficient software in-
tegrity checks to build secure industrial wireless active sensor networks,”
IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 6–14,
2015.

[5] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019.

[6] Y. Shi, W. Wei, F. Zhang, X. Luo, Z. He, and H. Fan, “Sdsrs: A novel
white-box cryptography scheme for securing embedded devices in iiot,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1602–
1616, 2019.

[7] T. C. Group, “TPM main specification level 2 version 1.2.”
[8] M. N. Aman, H. Basheer, J. W. Wong, J. Xu, H. W. Lim, and B. Sikdar,

“Machine-learning-based attestation for the internet of things using
memory traces,” IEEE Internet of Things Journal, vol. 9, no. 20,
pp. 20431–20443, 2022.

[9] K. Istiaque Ahmed, M. Tahir, M. Hadi Habaebi, S. Lun Lau, and
A. Ahad, “Machine learning for authentication and authorization in iot:
Taxonomy, challenges and future research direction,” Sensors, vol. 21,
no. 15, p. 5122, 2021.

[10] B. Zhang, D. Xiong, J. Su, H. Duan, and M. Zhang, “Variational neural
machine translation,” 2016.

[11] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt: Software-
based attestation for embedded devices,” in IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004, pp. 272–282, IEEE, 2004.

[12] A. Seshadri, M. Luk, A. Perrig, L. Van Doorn, and P. Khosla, “Scuba:
Secure code update by attestation in sensor networks,” in Proceedings
of the 5th ACM workshop on Wireless security, pp. 85–94, 2006.

[13] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” in Distributed Computing in Sensor
Systems: 4th IEEE International Conference, DCOSS 2008 Santorini
Island, Greece, June 11-14, 2008 Proceedings 4, pp. 372–385, Springer,
2008.

[14] B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
efficient software-based attestation for industrial control devices with
arm processors,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, pp. 425–436, 2017.

[15] J. Cao, T. Zhu, R. Ma, Z. Guo, Y. Zhang, and H. Li, “A software-
based remote attestation scheme for internet of things devices,” IEEE
Transactions on Dependable and Secure Computing, vol. 20, no. 2,
pp. 1422–1434, 2023.

[16] S. Surminski, C. Niesler, S. Linsner, L. Davi, and C. Reuter, “Scatt-man:
Side-channel-based remote attestation for embedded devices that users
understand,” in Proceedings of the Thirteenth ACM Conference on Data
and Application Security and Privacy, pp. 225–236, 2023.

[17] C. Krauß, F. Stumpf, and C. Eckert, “Detecting node compromise in
hybrid wireless sensor networks using attestation techniques,” in Security
and Privacy in Ad-hoc and Sensor Networks: 4th European Workshop,
ESAS 2007, Cambridge, UK, July 2-3, 2007. Proceedings 4, pp. 203–
217, Springer, 2007.

[18] S. Agrawal, M. L. Das, A. Mathuria, and S. Srivastava, “Program
integrity verification for detecting node capture attack in wireless sensor
network,” in Information Systems Security: 11th International Confer-
ence, ICISS 2015, Kolkata, India, December 16-20, 2015. Proceedings
11, pp. 419–440, Springer, 2015.

[19] H. Tan, W. Hu, and S. Jha, “A tpm-enabled remote attestation protocol
(trap) in wireless sensor networks,” in Proceedings of the 6th ACM work-
shop on Performance monitoring and measurement of heterogeneous
wireless and wired networks, pp. 9–16, 2011.

[20] W. Yan, A. Fu, Y. Mu, X. Zhe, S. Yu, and B. Kuang, “Eapa: Efficient
attestation resilient to physical attacks for iot devices,” in Proceedings
of the 2nd International ACM Workshop on Security and Privacy for the
Internet-of-Things, pp. 2–7, 2019.

[21] T. Van Strydonck, J. Noorman, J. Jackson, L. A. Dias, R. Vanderstraeten,
D. Oswald, F. Piessens, and D. Devriese, “Cheri-tree: Flexible enclaves
on capability machines,” in 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), pp. 1143–1159, IEEE, 2023.

[22] M. A. Khan, M. N. Aman, and B. Sikdar, “Soteria: A quantum-based
device attestation technique for the internet of things,” IEEE Internet of
Things Journal, pp. 1–1, 2023.

[23] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure
and minimal architecture for (establishing dynamic) root of trust.,” in
NDSS, vol. 12, pp. 1–15, 2012.

[24] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A
security architecture for tiny embedded devices,” in Proceedings of the
Ninth European Conference on Computer Systems, pp. 1–14, 2014.

[25] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings of the
52nd annual design automation conference, pp. 1–6, 2015.

[26] X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation of
iot devices via smarm: Shuffled measurements against roving malware,”
in 2018 IEEE international symposium on hardware oriented security
and trust (HOST), pp. 9–16, IEEE, 2018.

[27] M. N. Aman and B. Sikdar, “Att-auth: A hybrid protocol for industrial
iot attestation with authentication,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 5119–5131, 2018.

[28] M. N. Aman, M. H. Basheer, S. Dash, A. Sancheti, J. W. Wong, J. Xu,
H. W. Lim, and B. Sikdar, “Prom: Passive remote attestation against
roving malware in multicore iot devices,” IEEE Systems Journal, vol. 16,
no. 1, pp. 789–800, 2021.

[29] M. Zhang, Y. Zhang, S. Li, and Q. Wan, “Software trusted startup
and update protection scheme of iot devices,” in 2023 IEEE 9th Intl
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl
Conference on High Performance and Smart Computing, (HPSC) and
IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 147–
152, 2023.

[30] I. Makhdoom, M. Abolhasan, J. Lipman, D. Franklin, and M. Piccardi,
“I2map: Iot device attestation using integrity map,” in 2023 IEEE 22nd
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pp. 1900–1907, 2023.

[31] M. N. Aman, M. H. Basheer, S. Dash, J. W. Wong, J. Xu, H. W. Lim,
and B. Sikdar, “Hatt: Hybrid remote attestation for the internet of things
with high availability,” IEEE Internet of Things Journal, vol. 7, no. 8,
pp. 7220–7233, 2020.

[32] Y. Harbi, Z. Aliouat, S. Harous, A. Bentaleb, and A. Refoufi, “A review
of security in internet of things,” Wireless Personal Communications,
vol. 108, pp. 325–344, 2019.

[33] A. Roy and S. Banerjee, Linear algebra and matrix analysis for
statistics. Chapman and Hall/CRC, 2014.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[36] Y. Hua, J. Guo, and H. Zhao, “Deep belief networks and deep learn-
ing,” in Proceedings of 2015 International Conference on Intelligent
Computing and Internet of Things, pp. 1–4, IEEE, 2015.

[37] A. Zola, “Iot platforms overview: Arduino, raspberry pi, intel galileo
and others,” June 2017.

[38] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software compo-
nents with dependency graphs,” in Proceedings of the 6th International
Workshop on Security Measurements and Metrics, pp. 1–8, 2010.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[41] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp. 249–
256, JMLR Workshop and Conference Proceedings, 2010.

[42] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.

17

Asif Iqbal received the BS degree in Telecommuni-
cation Engineering from NUCES-FAST, Peshawar,
Pakistan, MS degree in Wireless Communications
from LTH, Lunds University, Sweden, and Ph.D
in Electrical & Electronics Engineering from The
University of Melbourne, Melbourne, Australia in
2008, 2011, and 2019 respectively.
He is currently working as a Research Fellow with
the Department of Electrical & Computer Engi-
neering at the National University of Singapore,
Singapore. Dr. Iqbal previously served on the faculty

of National University of Computer and Emerging Sciences Pakistan as
an Assistant Professor. His research interests include signal processing,
deep learning, sparse signal representations, and privacy preserving machine
learning.

Usman Zia is an undergraduate student of Com-
puter Systems Engineering at the University of En-
gineering & Technology Peshawar, Pakistan. His
research interests include security of embedded de-
vices.

Muhammad Naveed Aman (S’12-M’17-SM’23) is
an Assistant Professor in the University of Nebraska-
Lincoln. He received the B.Sc. degree in Computer
Systems Engineering from KPK UET, Peshawar,
Pakistan, M.Sc. degree in Computer Engineering
from the Center for Advanced Studies in Engi-
neering, Islamabad, Pakistan, M.Engg. degree in
Industrial and Management Engineering and Ph.D.
in Electrical Engineering from the Rensselaer Poly-
technic Institute, Troy, NY, USA in 2006, 2008, and
2012, respectively. His research interests include IoT

and network security, hardware systems security and privacy, wireless and
mobile networks and stochastic modelling.

Biplab Sikdar (S’98-M’02-SM’09) received the
B.Tech. degree in electronics and communica-
tion engineering from North Eastern Hill Univer-
sity,Shillong, India, in 1996, the M.Tech. degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, India, in 1998, and the Ph.D.
degree in electrical engineering from the Rensse-
laer Polytechnic Institute, Troy, NY, USA, in 2001.
He was on the faculty of Rensselaer Polytechnic
Institute from 2001 to 2013, first as an Assistant
and then as an Associate Professor. He is currently

a Professor with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore. His research interests include
wireless network, and security for IoT and cyber physical systems.

	Introduction
	Related Work
	Preliminaries
	System Model
	Information Flow
	The RAM Trace
	The Attack Model

	The Proposed Framework
	Feature Generation
	Training Mode
	Testing Mode

	Proposed Detection Model
	The Encoder
	The Decoder
	The Loss Function

	Detection Methods
	The Latent Variable based Detector DLV
	The Reconstruction Error based Detector DRE
	Threshold Computation

	Experimental Setup
	Hardware Description
	Firmware Description
	Dataset Generation

	Experimental Evaluation
	Binary Classification
	Analysis using the Proposed C-VAE based detectors
	Model Implementation Details
	Detector Performance
	Hyper parameter Analysis

	Time Complexity of the Framework

	Conclusion
	References
	Biographies
	Asif Iqbal
	Usman Zia
	Muhammad Naveed Aman
	Biplab Sikdar

