
Mutual Authentication in IoT Systems using
Physical Unclonable Functions
Muhammad Naveed Aman, Kee Chaing Chua, and Biplab Sikdar

Department of ECE,
National University of Singapore, Singapore

Abstract—The Internet of Things (IoT) represents a great
opportunity to connect people, information, and things, which
will in turn cause a paradigm shift in the way we work, interact,
and think. IoT devices are usually small, low cost and have
limited resources, which makes them vulnerable to physical, side-
channel, and cloning attacks. Therefore, any protocol designed
for IoT systems should not only be secure but also efficient in
terms of usage of chip area, energy, storage, and processing. To
address this issue, we present light-weight mutual authentication
protocols for IoT systems based on Physical Unclonable Functions
(PUFs). Protocols for two scenarios are presented, one when
an IoT device and server wish to communicate and the other
when two IoT devices want to establish a session. A security and
performance analysis of the protocols shows that they are not only
robust against different types of attacks, but are also very efficient
in terms of computation, memory, energy, and communication
overhead. The proposed protocols are suitable for real time
applications and are an attractive choice for implementing mutual
authentication in IoT systems.

I. INTRODUCTION

The number of IoT devices has been increasing rapidly over
the past decade, outnumbering humans by a ratio 1.5 to 1 as
of 2014 [1]. IoT is envisioned as the enabling technology for
smart cities, power grids, health care, and control systems for
critical installments and public infrastructure. This diversity,
increased control and interaction of devices, and the fact that
IoT systems use public networks to transfer large amounts
of data make them a prime target for cyber attacks. IoT
security and human safety are tied to each other, e.g., causing
accidents by disrupting vehicular networks, putting a patient
at risk by tampering with a body network, causing blackouts
by interfering the smart grid, and causing accidents in nuclear
reactors etc.

Network and Internet security has been an area of active
research over the last two decades. However, existing se-
curity mechanisms are far from perfect and major security
breaches involving personal, corporate and government data
are reported regularly. Similar to the Internet, IoT systems
have a long way to go in terms of achieving the desired
security level. The major areas of concern in the context of IoT
systems are secure booting, authentication, privacy protection,
data integrity, user profiling and tracking, access control, and
digital forgetting [2], [3], [4].

IoT devices can be considered as embedded systems that
have the following properties. First, they are designed for a
specific task and have enough memory and processing power
for that task [2], [3]. Second, IoT devices are considered

“headless” because these devices are not operated by a human
and have to make their own decisions [3]. Finally, many
IoT devices will not have any batteries or a constant power
source; they will rely on energy harvesting or wireless transfer
of energy [2]. These properties make the task of designing
security protocols for IoT systems very challenging. Thus, any
security protocol designed for IoT systems should have very
low processing, communication, and memory requirements.

The existing security protocols and techniques of the In-
ternet cannot be adopted for IoT systems due to two reasons
[3], [4]. First, the implicit assumption of the nodes having
unlimited power and memory is not valid in IoT systems.
Second, Internet devices are considered to be physically well-
protected. Unlike the Internet, IoT devices are small, simple,
low cost, and are installed in locations where an adversary
can capture them easily. Therefore, physical security of IoT
devices is a major concern. For example, keys stored in the
memory may be read off a physically captured device and
used by an adversary to launch an attack. To address these
issues, we consider the use of hardware security primitives
based on physical unclonable functions, which work on a
challenge-response mechanism. In this paper we show how
PUFs can be used to eliminate the requirement of storing
secrets in the nodes of a network. PUFs take advantage of the
inherent variability of the manufacturing/fabrication process of
integrated circuits (ICs). The output of the challenge-response
mechanism of a PUF is correlated to the input and the physical
(sub-)microscopic structure of the device. The random and
uncontrollable effects of the IC fabrication process result in
the uniqueness of PUFs i.e., it is not possible to create two
identical copies of a PUF.

One of the important security requirements in IoT systems
is authentication. A device/user should be able to verify that
the data received from another device/user is indeed collected
by the stated sensor. Therefore, authentication is the first step
towards establishing a session after a secure boot of the IoT
device. However, as mentioned previously, this authentication
must be done in a secure and efficient way, without saving
any secrets in the IoT device’s memory. To address this
issue, this paper presents a secure and light-weight mutual
authentication protocol for IoT systems. The proposed protocol
achieves the desired security and efficiency requirements using
PUFs. The major contributions of this work are as follows: (i)
Design of a mutual authentication protocol using PUFs, which
has very low energy, memory, and communication overhead.



2

Moreover, the protocol is safe against physical attacks; (ii) A
mechanism to establish a secure session key without any extra
computational or communication overhead.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the related work. Section III gives a
brief introduction to PUFs. Section IV discusses the network
model, threat model, requirements and assumptions for our
IoT system. Section V presents the proposed PUF based
mutual authentication protocols. Section VI presents a security
analysis of the proposed protocols and Section VII discusses
the protocol simulations. We present a formal verification of
the proposed protocols in Section VIII. Finally, in Section IX
we present the performance analysis of the proposed protocols
and conclude the paper in Section X.

II. LITERATURE REVIEW

The different security challenges for designing IoT sys-
tems are outlined in [2]. The authors recommend the use
of hardware security primitives such as PUFs for securing
IoT systems. A one-time password (OTP) based authentica-
tion protocol for IoT devices is presented in [5]. However,
multiple iterations and the requirement of computing the
OTP using public/private keys increases the complexity and
computational burden of the algorithm. In another work [6],
the authors propose a group authentication protocol. However,
collective authentication and key sharing among multiple
nodes puts multiple nodes at risk even if one of the nodes
is compromised. A certificate-based authentication protocol
for distributed IoT systems is proposed in [7]. However, the
cryptographic credentials are stored in the edge node, exposing
the protocol to cloning attacks. Similarly, other works like [8],
[9], [10] describe different mechanisms for authentication in
IoT systems.

PUFs have been previously used in authentication protocols
for wireless sensor networks (WSNs) and radio-frequency
identification (RFID) systems [11], [12], [13], [14], [15]. How-
ever, these PUF based as well as non-PUF based authentication
protocols mentioned previously rely on some secrets (e.g.
public/private keys) being stored in the memory of an IoT
device. Some of these works propose to store the secrets in a
highly secure manner. However, even if the memory is highly
secure the bits still need to be stored in a non-volatile digital
memory which opens doors for attackers. Moreover, some of
the PUF based authentication protocols require a trusted party
to store a large number of challenge response pairs (CRPs)
for each IoT device [11], [12]. Given the increasing number
of IoT devices, these protocols are not scalable. Moreover,
for PUF based authentication protocols, storing secrets locally
contradicts with the philosophy of using PUFs.

The most relevant PUF based authentication protocol is pre-
sented in [16]. The authors of [16] propose an authentication
protocol based on PUFs that uses the zero-knowledge proof
of knowledge (ZKPK) of discrete logarithm. Their protocol
does not reveal the CRP in any of its messages by using
the zero-knowledge proofs. However, their protocol requires
a user to input a password to the device each time it requires

Fig. 1: Network model.

authentication, which reduces the effectiveness of this protocol
in IoT systems. Moreover, their protocol can only be used
to perform authentication between a user and a server and
not for two devices authenticating each other. The use of the
ZKPK of discrete logarithm also increases the complexity of
the protocol.

III. PRELIMINARY BACKGROUND

Before presenting the proposed protocol, we first present a
brief introduction to PUFs in this section.

A PUF may be regarded as a unique physical feature of a
device, just like the biometric features of human beings such
as fingerprints. A good definition of a PUF is given in [17] as
“an expression of an inherent and unclonable instance-specific
feature of a physical object”. The most notable property of
a PUF is that it cannot be reproduced using cryptographic
primitives, rather, it requires a physical basis. Moreover, the
term “physically unclonable” means that it can be shown
through physical reasoning that it is extremely hard or even
impossible to produce a physical clone of a PUF [18]. So the
idea behind using a PUF in IoT systems is that just like human
beings, every device will have a unique fingerprint in the form
of a PUF and this fingerprint cannot be reproduced or cloned.

In another place, a PUF is defined as “A Physical Un-
clonable Function (PUF) is a function that maps a set of
challenges to a set of responses based on an intractably
complex physical system” [11]. Therefore, a PUF can be
considered as a function, which takes a challenge in the form
of a string of bits and produces a response in the form of a
string of bits. We represent a PUF as a function P as follows

R = P (C) (1)

where R is the response of a PUF, while C is the challenge
given to the PUF. A challenge C and its response R from a
PUF is called a challenge response pair (CRP). PUFs have the
following properties in terms of the response:

1) The PUF produces the same response with the same
challenge with high probability even if the same challenge
is used multiple times.



3

TABLE I: Notations

Notation Description
IDi ID of the IoT device
H(X) Hash of X
‖ Concatenation operator

{M}k Message M is encrypted using key k
Ci Challenge for the i-th iteration
Ri Response of the respective PUF for Ci

2) The same challenge will produce responses far apart with
high probability if it is input to different PUFs.

IV. NETWORK MODEL AND ASSUMPTIONS

A. Network Model

Figure 1 describes our network model. In this model we
have IoT devices connected to the Internet through border
router elements (e.g. based on 6LoWPAN). Each IoT device
is equipped with a PUF. The IoT devices send the information
(over the Internet) to a server in the data center.

B. Assumptions

In this paper, we make the following assumptions regarding
the system:
a. An IoT device consists of an embedded system equipped

with a PUF. Any physical tampering with the PUF such as
an attempt to separate it from the embedded system will
destroy the PUF.

b. The IoT device micro-controller and the PUF are con-
sidered to be a system on chip, and the communication
between them is considered secure [19], [20].

c. The data center is considered the trusted party and has
no limitation of resources. However, the IoT devices have
limited resources.

d. Table I gives the set of notations used to describe the
protocol.

C. Attack Model

IoT devices send their data to the data center server through
the Internet. We assume that the IoT devices use the standard
or compressed (e.g. 6LoWPAN) TCP/IP protocol suite to
send data to the server [21]. The packets containing IoT
data may follow different paths and pass through multiple
communication links and network routers. We assume that the
adversary may compromise one or more network entities and
may even capture an IoT device. We assume the adversary
can eavesdrop, inject packets, mimic other devices, initiate a
session, and replay older messages.

The objective of the adversary is to gain authentication into
the data center server or any of the IoT devices without being
detected. By getting access into the data center server or an
IoT device, the adversary wishes to launch various attacks with
the intention of causing physical or economical damage. For
example, if vehicles equipped with IoT devices are talking to
the traffic light and the adversary manages to authenticate itself
to the vehicles as the traffic light, it can cause large scale road

accidents. The objective of this paper is to develop a mutual
authentication protocol which is secure against different kinds
of attacks including illegal user profiling, cloning attacks, man-
in-the middle attacks, replay attacks, tampering attacks, and
physical attacks.

D. Security Requirements

To achieve mutual authentication, we designed the proposed
protocol according to the following security requirements:

1) Achieve mutual authentication between an IoT device and
a server or between two IoT devices.

2) Establish a secure session key between the two entities
before packet transmission.

3) Attacker cannot compromise the security of the scheme
even if he/she captures an IoT device.

V. PROPOSED PUF BASED MUTUAL AUTHENTICATION
AND KEY EXCHANGE PROTOCOL

In this section we present the proposed mutual authentica-
tion protocol. The following two scenarios are considered for
mutual authentication:

1) An IoT device wants to establish a connection with a
server in the data center.

2) One IoT device wants to talk to another IoT device.
The server starts with a single CRP for each IoT device.

This initial CRP can be obtained by the server using the Time-
based One-time Password Algorithm (TOTP) mechanism [22].
When an IoT device is deployed in the field for the first time,
an operator inputs a password into the device to exchange
the initial CRP with the server using the TOTP approach.
Once the initial CRP is exchanged with the server, the IoT
device can function independently without the need for any
operator. Thus, the server stores the identity IDA, and the
CRP (Ci, Ri) for each IoT device, while the IoT device does
not store anything.

A. Protocol 1: IoT Device and Server Mutual Authentication

The proposed mutual authentication protocol for the case
when an IoT device and a server want to communicate with
each other is shown in Figure 2. The steps are as follows:

1) IoT device IDA sends its ID, IDA, and a randomly
generated nonce, N1, to the server.

2) The server tries to locate IDA in its memory and if
the search fails the authentication request is rejected.
Otherwise, the server reads the CRP (Ci, Ri) stored in
its memory for this device. The server then generates a
random number RS1

and uses Ri to form the encrypted
message MA = {IDA, N1, RS1}Ri . The server then
sends Ci, MA, and the message authentication code
(MAC) to the IoT device IDA in message 2 in Figure 2.
The MAC ensures data integrity and freshness. The first
two parameters in the MAC function ensure data integrity
while the last parameter, i.e., RS1

serves as the freshness
identifier for the source, which in this case is the server.
The same approach is followed for data integrity, message
freshness, and source identifier throughout the protocol.



4

Fig. 2: Mutual authentication for IoT device and server.

3) IoT device IDA generates Ri using its PUF and challenge
Ci as given in (1). The device then obtains RS1

using
Ri and verifies the source, integrity, and freshness of
the message using the MAC. If verification fails, IoT
device IDA terminates the authentication. Otherwise, it
generates a random number NA and computes the new
response Ri+1 by using the new challenge H(NA ‖ RS1

)
and its PUF. This new CRP (Ci+1, Ri+1) will be used
for future authentications.
IoT device IDA then sends an encrypted message MS =
{IDA, RS1 , NA, R

i+1}Ri and the corresponding MAC to
the server and then deletes all the temporary variables
stored in its memory including RS1

, NA, R
i, Ci+1, and

Ri+1.
4) The server computes NA and Ri+1 using Ri and verifies

the MAC. If the verification fails, the server rejects
the authentication. Otherwise, mutual authentication is
considered complete and the two entities can now form
a session.

We can use RS1 and NA to construct a session key as
follows

H(RS1)⊕H(NA). (2)

We note that the session key is constructed using the hash of
the two random nonces RS1 and NA. Therefore, even if the
session key is obtained by an adversary, he/she still cannot
calculate Ri.

B. Protocol 2: Mutual Authentication for Two IoT Devices

In this section we describe the mutual authentication and
key exchange protocol for the scenario when two IoT devices
want to start a session and need to authenticate each other.

Consider a scenario where IoT device IDA wants to es-

Fig. 3: Mutual authentication of two IoT devices.

tablish a session with another IoT device IDB . The mutual
authentication protocol for this scenario is shown in Figure 3.
The steps for the mutual authentication protocol are as follows:

1) IoT device IDA sends its ID, IDA, and a random nonce,
N1, to IoT device IDB .

2) IoT device IDB sends the two ID’s IDA and IDB

with the corresponding nonces to the server as shown
in message 2 in Figure 3.

3) The server searches its memory for IDA and IDB , and
reads the respective CRPs (Ci, Ri), and (Cj , Rj). The
server then generates two random numbers RS1

and RS2

and uses Ri and Rj to form the following encrypted
messages

MB = {IDA, IDB , N2, RS1
, RS2

}Rj (3)
MA = {IDA, IDB , N1, RS1

, RS2
,MB}Ri . (4)

The server then sends the challenges Ci and Cj along
with MA and the two MACs to IoT device IDA.



5

4) IoT device IDA obtains Ri using the challenge Ci and
its PUF. It then carries out the following tasks:

(i) It decrypts the received message using Ri to obtain
RS1

, RS2
, and MB .

(ii) It verifies the MAC. If the verification fails, IoT
device IDA does not respond and terminates the
current authentication attempt.

(iii) It generates a random number NA and computes the
new challenge Ci+1 and new response Ri+1 from
its PUF.

IoT device IDA sends Ri+1 in an encrypted message
MS1

along with a MAC to the server as shown in message
4 in Figure 3. IoT device IDA sends another message
MB1 = {IDA, N3} along with the corresponding MAC
to IoT device IDB . It also forwards the challenge Cj ,
message MB and the corresponding MAC received from
the server to IoT device IDB . This is shown in message
5 in Figure 3.

5) The server obtains NA and Ri+1 using Ri. The server
then verifies the MAC. If the verification fails, the server
rejects the new CRP. Otherwise, the server updates the
CRP for IoT device IDA.

6) On receiving message 5, IoT device IDB obtains Rj

using Cj and its PUF. It then carries out the following
tasks:

(i) It decrypts MB using Rj to obtain RS1
, and RS2

.
(ii) It decrypts MB1

using RS2
to obtain the nonce N3.

(iii) It verifies the corresponding MACs. If the verifica-
tion fails, IoT device IDB does not respond and
terminates the current authentication attempt.

(iv) It generates a random number NB and computes the
new challenge Cj+1 and new response Rj+1 from
its PUF.

IoT device IDB uses Rj to encrypt and send Rj+1 in
message MS2

along with a MAC to the server as shown
in message 6 in Figure 3. IoT device IDB sends another
message as an acknowledgment to IoT device IDA, as
shown in message 7 in Figure 3.

7) The server obtains NB and Rj+1 using Rj and verifies
the corresponding MAC. If the verification fails, the
server rejects the new CRP. Otherwise, the server updates
the CRP for IoT device IDB .

8) On receiving message 7, IoT device IDA verifies the
MAC. If verification fails the authentication is rejected.
Otherwise, the authentication is considered complete and
IoT device IDA and IoT device IDB have successfully
authenticated each other.

Similar to Section V-A, the two IoT devices can now use
RS1

and RS2
to establish a secret symmetric key. For example,

H(RS1) ⊕ H(RS2) can be used as the session key between
IoT device IDA and IoT device IDB .

VI. SECURITY ANALYSIS

In this section we present a formal security analysis of the
proposed mutual authentication protocols. The use of formal

logical approaches for the security analysis of protocols is
important to make sure an adversary cannot obtain or alter
vital information. The work of Burrows, Abadi, and Needham
[23], called the BAN logic, has been widely used for the secu-
rity analysis of authentication and key distribution protocols.
However, Mao and Boyd [24] showed several weaknesses in
the BAN logic and put forward an improved extension of the
BAN logic. We analyze our mutual authentication protocols
using the Mao and Boyd logic and show that the protocols are
secure against different types of attacks. For ease of notation,
we represent IoT device IDA, IoT device IDB , and the server
by A, B, and S respectively.

A. Security Analysis For Protocol 1

In this section we present a security analysis of the mutual
authentication protocol for an IoT device and a server. To
establish the security claims of the proposed protocol, we
show that the secrets RS1 , NA, and Ri+1 are good shared
secrets between IoT device IDA and the server (i.e. these
secrets cannot be obtained or altered by an adversary). To
apply the Mao and Boyd logic, the first step is to idealize the
messages of a given protocol. The details on protocol message
idealization are given in the Appendix. We start the formal
proof by presenting the idealized versions of the message
exchanged by protocol 1 as follows:

1) A→ S : A,N1.
2) S → A : {A,N1RRS1

}Ri .
3) A→ S : {A,RS1

RNARRi+1}Ri .
Note that our protocol uses MACs for effective data integrity

and origin verification which is a pre-requisite for the Mao
and Boyd logic. To establish the security of shared secrets,
the Mao and Boyd logic uses a set of inference rules. The set
of inference rules used in our analysis can be found in the
Appendix. The initial beliefs/assumptions for Protocol 1 are
given below:

1) A A
Ri

↔ S and S A
Ri

↔ S: S saves a CRP for each
IoT device in its memory while A can generate Ri by
using the respective challenge.

2) A Sc/ ‖ NA and S A {S}c/‖NA: NA is generated
by A.

3) A
Ri

|∼ NA: Message 3 in the idealized protocol.
4) A #(NA) and A #(N1): A generates a new NA

and N1 each time.
5) S #(RS1

)): S generates a new RS1
each time.

6) A sup(S): S is the super principal with-respect-to RS1
.

7) S sup(A): A is the super principal with-respect-to NA

and Ri+1.
8) A

Ri

/ N1 R RS1 : Message 2 in the idealized protocol.

9) S
Ri

/ RS1
R NA and S

Ri

/ RS1
R Ri+1: Message 3 in

the idealized protocol.
10) A S {A}c/‖RS1

and S Ac/‖RS1
: S generates a new

RS1
each time.

11) A {S}c/‖Ri+1 and S A {S}c/‖Ri+1 and A
#(Ri+1): A computes a new response each time using



6

its PUF.

12) S
Ri

|∼ RS1 : Message 2 in the idealized protocol.

13) A
Ri

|∼ Ri+1: Message 3 in the idealized protocol.
The tableau of Figure 4(b), shows the proof of the fact that

A believes NA is a good shared secret between A and S.
To establish this fact, we write the statement to prove i.e.,
A A

NA↔ S at the bottom. Next we apply the good-key rule
from (26). This rule states that NA is a good secret between
A and S, if we can show that A is certain that no one else
except A and S has seen NA (A {A,S}c/ ‖ NA) and
that NA is a fresh nonce (A #(NA)). The confidentiality
rule from (23) can be used to prove A {A,S}c/ ‖ NA,
which requires us to show that A and S share a good secret

Ri (A A
Ri

↔ S), and A sent NA to S encrypting it with

Ri (A
Ri

|∼ NA). We observe that these statements as well as
A #(NA) can be found in the set of initial beliefs. Thus, we
can infer the truth of our initial statement i.e., A A

NA↔ S.
Similarly, Figure 4(a) establishes the fact that RS1 is a good
shared secret between A and S. Similar analysis for NA and
RS1

on the site of principal S is shown in the tableaux of
Figures 4(c) and 4(d) respectively. We can conduct a similar
analysis to prove the secrecy of Ri+1 as given in the tableaux
of Figures 4(e) and 4(f), respectively.

Without the knowledge of Ri, Ri+1, RS1
, and NA it is not

possible for an adversary to construct valid data. It does not
matter what kind of attack the adversary uses, the adversary
cannot obtain these secrets as shown in the formal proofs.
Moreover, even if the attacker captures the IoT device, he/she
cannot obtain a valid CRP or any other secret because the
device does not store any secrets and any attempt to remove
the PUF from the IoT device destroys the PUF and makes it
useless. Therefore, the proposed protocol is considered safe
against all the major security attacks such as the spoofing at-
tacks, cloning attacks, interleaving attacks, man-in-the-middle
attacks, eavesdropping, and replay attacks.

B. Security Analysis of Protocol 2

In this section we present the security analysis for the
proposed mutual authentication protocol for two IoT devices.
Following the same approach as the previous section, the
idealized versions of the messages exchanged during protocol
2 are given as follows:

1) A→ B : A,N1.
2) B → S : A,B,N1|N2.
3) S → A : {A,B,N1RRS1

RRS2
, {A,B,N2RRS1

RRS2
}Rj}Ri .

4) A→ S : A, {A,NARRS1RRi+1}Ri .
A→ B : {A,B,N2RRS1RRS2}Rj , {A,N3}RS2

.
5) B → S : {B,NBRRS2

RRj+1}Rj .
The tableaux created using the Mao and Boyd logic for

the security analysis of the secrets RS1
and RS2

on the site
of principals A and B are shown in Figure 5. Again, an
adversary cannot compromise the proposed protocol without
the knowledge of Ri, Rj , Ri+1, Rj+1, RS1 , RS2 , NA, and

NB . This shows that the proposed protocol is resilient against
various kinds of attacks including replay attacks, tampering
attacks, cloning attacks, interleaving attacks, eavesdropping,
and man-in-the middle attacks etc.

C. Protection Against Cloning

A large number of IoT devices are deployed out in the open,
making them vulnerable to cloning attacks. However, each
PUF has a unique output and it is not possible to recreate
a PUF [11], [12]. The proposed protocol exploits this unique
feature of a PUF to prevent it from cloning attacks. In the
proposed protocol each IoT device is equipped with its own
PUF and as it is not possible to clone a PUF, our proposed
protocol is secure against cloning attacks.

D. Protection against Physical Attacks

One of the security requirements for IoT devices outlined
in Section IV-D is that an IoT device should not expose any
secrets even if it is captured by an attacker. As described in
Section II, most of the authentication protocols proposed in
existing literature require the device to store one or more
secrets. This requirement greatly reduces the effectiveness
of these protocols as it makes them susceptible to physical
attacks. The proposed mutual authentication protocol has two
features which safeguard it against physical attacks. First,
the devices do not need to store any secrets. Second, the
communication between the IoT device’s micro-controller and
its PUF is considered to be secure as they are on the same
chip [19]. Thus, even if an attacker has physical access to an
IoT device, he/she cannot obtain any secrets. This shows that
our proposed mutual authentication protocol is secure against
physical attacks.

VII. SIMULATIONS

The security properties of the proposed protocols were ver-
ified using rigorous simulations and experimentation using the
security verification tool ProVerif (PV) [25]. PV is considered
to be sound (correct) in proving security properties [25] and
can thus be used to prove reachability properties, observational
equivalence, and correspondence assertions. We model the IoT
devices and the server as separate processes and simulate
arbitrarily many sessions of the protocol between the protocol
entities. The simulation scripts for the proposed protocols can
be downloaded from [26].

A. Protocol 1 Simulation

The primary objective of protocol 1 is to ensure mutual au-
thentication of the IoT device IDA and the server. Therefore,
when the protocol reaches the end and the IoT device IDA

believes it has completed the protocol with the server, then IoT
device IDA has indeed engaged in a session with the server.
Similarly, when the server reaches the end of the protocol, it
has indeed engaged in a session with the IoT device IDA. To
prove the desired security properties of the proposed protocol
we define the following events in PV:
• event beginAfull(IDA, IDS , NA, NB) is used by the

server to record the belief that the IoT device IDA with



7

A A
RS1↔ S

A {A,S}c/‖RS1

A S {A,S}c/‖RS1

A S A
Ri
↔S

A #(N1)
∧

A S
Ri

|∼N1

A A
Ri
↔S

∧
A

Ri

/ N1

∧
A S {A}c/‖RS1

∧
A S

Ri

|∼RS1

A A
Ri
↔S

∧
A

Ri

/ RS1

∧
A sup(S) ∧

A sup(S)
∧

A #(RS1
)

A #(N1)
∧

A/N1 R RS1

A
Ri

/ N1 R RS1

(a) Proof of “A believes RS1 is a good shared key of A and S”.

A A
NA↔ S

A {A,S}c/‖NA

A A
Ri
↔S

∧
A Sc/‖NA

∧
A

Ri

|∼NA ∧
A #(NA)

(b) Proof of “A believes NA is a good
shared key of A and S”.

S A
NA↔ S

S {A,S}c/‖NA

S A {A,S}c/‖NA

S A A
Ri
↔S

S #(RS1
)
∧

S A
Ri

|∼RS1

S A
Ri
↔S

∧
S

Ri

/ RS1

∧
S A {S}c/‖NA

∧
S A

Ri

|∼NA

S A
Ri
↔S

∧
S

Ri

/ NA

∧
S sup(A) ∧

S #(NA)

S #(RS1
)
∧

S/RS1
R NA

S
Ri

/ RS1
R NA

(c) Proof of “S believes NA is a good shared key of A and S”.

S A
RS1↔ S

S {A,S}c/‖RS1

S A
Ri
↔S

∧
S Ac/‖RS1

∧
S

Ri

|∼RS1 ∧
S #(RS1

)

(d) Proof of “S believes RS1 is a good
shared key of A and S”.

S A
Ri+1
↔ S

S {A,S}c/‖Ri+1

S A {A,S}c/‖Ri+1

S A A
Ri
↔S

S #(RS1
)
∧

S A
Ri

|∼RS1

S A
Ri
↔S

∧
S

Ri

/ RS1

∧
S A {S}c/‖Ri+1 ∧

S A
Ri

|∼Ri+1

S A
Ri
↔S

∧
S

Ri

/ Ri+1

∧
S sup(A) ∧

S #(Ri+1)

S #(RS1
)
∧

S/RS1
R Ri+1

S
Ri

/ RS1
R Ri+1

(e) Proof of “S believes Ri+1 is a good shared key of A and S”.

A A
Ri+1
↔ S

A {A,S}c/‖Ri+1

A A
Ri
↔S

∧
A Sc/‖Ri+1 ∧

A
Ri

|∼Ri+1 ∧
A #(Ri+1)

(f) Proof of “A believes Ri+1 is a good
shared key of A and S”.

Fig. 4: Security Proofs for Protocol 1

shared secret NA has commenced a run of the protocol
with it (where NB is the shared secret of the server).

• event endAfull(IDA, IDS , NA, NB) which means the
IoT device IDA has successfully completed the protocol
with the server, and the two parties agree to the shared
secrets NA and NB .

• event beginBfull(IDA, IDS , NA, NB) which denotes
IoT device IDA’s intention to launch the protocol with
the server with the given protocol parameters.

• event endBfull(IDA, IDS , NA, NB) which means the
server has successfully completed the protocol with IoT
device IDA with the given protocol parameters.

The protocol is expected to satisfy the following properties:

1) Authentication of the server to IoT device IDA: IoT
device IDA intends to to share its data only with the
server. Thus, if it believes it has executed the protocol
with the server, then IoT device IDA indeed completed
the protocol with the server. Thus, authentication of the
server to IoT device IDA holds. PV uses correspon-
dence assertions to prove authentication. We define the
following correspondence assertions in PV to prove this
property:

inj−event(endBfull(· · · )) ==>

inj−event(beginBfull(· · · )). (5)

Note that in PV the statement EA ==> EB is used
to check the fact “if an event EA has been executed,
then it has been preceded by the execution of event EB

previously.”
2) Authentication of IoT device IDA to the server: The

server can establish a session with any of its client
IoT devices. Thus, if it believes it has completed the
protocol with IoT device IDA, authentication from IoT
device IDA to the server should hold. The following
correspondence assertion is used to prove this property
in PV:

inj − event(endAfull(· · · )) ==>

inj − event(beginAfull(· · · )). (6)

3) Secrecy for IoT device IDA and the server: If IoT
device IDA completes a run of the protocol with the
server, then the secrets NA and RS1

that IoT device IDA

has are good secrets. In PV we can check which terms
are available to an attacker by querying an attacker. We
prove the secrecy of a term by using it as a session key to
encrypt an arbitrary term M and then checking whether
an attacker can successfully obtain M . The syntactic
secrecy of NA, RS1

, and Ri+1 is established using this



8

A A
RS1↔ B

A {A,B,S}c/‖RS1

A S {A,B,S}c/‖RS1

A S A
Ri
↔S

A #(N1)
∧

A S
Ri

|∼N1

A A
Ri
↔S

∧
A

Ri

/ N1

∧
A S {B,S}c/‖RS1

A S A
Ri
↔S

∧
A S Sc/‖RS1

∧
A S

Ri

|∼(RS1
,B)

A A
Ri
↔S

∧
A

Ri

/ (RS1
,B)

∧
A S

Ri

|∼RS1

A A
Ri
↔S

∧
A

Ri

/ RS1

∧
A sup(S) ∧

A sup(S)
∧

A #(RS1
)

A #(N1)
∧

A/N1 R RS1

A
Ri

/ N1 R RS1

(a) Proof of “A believes RS1 is a good shared key of A and B”.

A A
RS2↔ B

A {A,B,S}c/‖RS2

A S {A,B,S}c/‖RS2

A S A
Ri
↔S

A #(N1)
∧

A S
Ri

|∼N1

A A
Ri
↔S

∧
A

Ri

/ N1

∧
A S {B,S}c/‖RS2

A S A
Ri
↔S

∧
A S Sc/‖RS2

∧
A S

Ri

|∼(RS2
,B)

A A
Ri
↔S

∧
A

Ri

/ (RS2
,B)

∧
A S

Ri

|∼RS2

A A
Ri
↔S

∧
A

Ri

/ RS2

∧
A sup(S) ∧

A sup(S)
∧

A #(RS2
)

A #(N1)
∧

A/N1 R RS2

A
Ri

/ N1 R RS2

(b) Proof of “A believes RS2 is a good shared key of A and B”.

B A
RS1↔ B

B {A,B,S}c/‖RS1

B S {A,B,S}c/‖RS1

B S B
Rj
↔S

B #(N2)
∧

B S
Rj

|∼N2

B B
Rj
↔S

∧
B

Rj

/ N2

∧
B S {A,S}c/‖RS1

B S B
Rj
↔S

∧
B S Sc/‖RS1

∧
B S

Rj

|∼(RS1
,A)

B B
Rj
↔S

∧
B

Rj

/ (RS1
,A)

∧
B S

Rj

|∼RS1

B B
Rj
↔S

∧
B

Rj

/ RS1

∧
B sup(S) ∧

B sup(S)
∧

B #(RS1
)

B #(N2)
∧

B/N2 R RS1

B
Rj

/ N2 R RS1

(c) Proof of “B believes RS1 is a good shared key of A and B”.

B A
RS2↔ B

B {A,B,S}c/‖RS2

B S {A,B,S}c/‖RS2

B S B
Rj
↔S

B #(N2)
∧

B S
Rj

|∼N2

B B
Rj
↔S

∧
B

Rj

/ N2

∧
B S {A,S}c/‖RS2

B S B
Rj
↔S

∧
B S Sc/‖RS2

∧
B S

Rj

|∼(RS2
,A)

B B
Rj
↔S

∧
B

Rj

/ (RS2
,A)

∧
B S

Rj

|∼RS2

B B
Rj
↔S

∧
B

Rj

/ RS2

∧
B sup(S) ∧

B sup(S)
∧

B #(RS2
)

B #(N2)
∧

B/N2 R RS2

B
Rj

/ N2 R RS2

(d) Proof of “B believes RS2 is a good shared key of A and B”.

Fig. 5: Security Proofs for Protocol 2

approach in PV as follows:

query attacker(ANa); attacker(BNa); (7)
attacker(ANb); attacker(BNb); (8)
attacker(AR new); attacker(SR new) (9)

where, ANa, ANb, and ARnew are used to prove the
secrecy of NA, RS1

, and Ri+1, respectively, on the site of
principal IoT device IDA, i.e., we encrypt these arbitrary
terms using the respective secrets and then check whether
an attacker can obtain these terms. For example, the
arbitrary term ANa is encrypted using NA and is sent
by IoT device IDA on an open channel. Later we check
whether ANa is available to an attacker. Similarly, the

secrecy of NA, RS1
, and Ri+1 on the site principal of

the server is proved using BNa, BNb, and BR new,
respectively. The PV simulations show that the proposed
protocol is secure against any definite or possible attack.

B. Protocol 2 Simulation

The primary objective of protocol 2 is the mutual authen-
tication of principals IoT device IDA and IoT device IDB

using the server as the trusted party. We define the following
events in PV to prove the desired security properties:
• event beginAfull(IDA, IDB , NA, NB) which is used

by IoT device IDB to record IoT device IDA’s intention
to commence the protocol with IoT device IDB using
NA and NB as the shared secrets.



9

• event endAfull(IDA, IDB , NA, NB) records IoT de-
vice IDA’s belief that it has successfully completed the
protocol with IoT device IDB with NA and NB being
the shared secrets .

• event beginBfull(IDA, IDB , NA, NB), which repre-
sents the IoT device IDA’s intention to initiate the pro-
tocol with the IoT device IDB using the given protocol
parameters.

• event endBfull(IDA, IDB , NA, NB), which means IoT
device IDB has successfully completed the protocol with
the IoT device IDA with the given protocol parameters.

The desired security properties proved for protocol 2 are as
follows:

1) Authentication of IoT device IDB to IoT device IDA:
IoT device IDA intends to engage in a session with IoT
device IDB . Hence, if it completes the protocol, it has
indeed done so with IoT device IDB and the two parties
agree on the set of given protocol parameters. We prove
this property in PV as follows:

inj − event(endBfull(· · · )) ==>

inj − event(beginBfull(· · · )). (10)

2) Authentication of IoT device IDA to IoT device IDB:
If IoT device IDB believes it has reached the end of the
protocol with IoT device IDA, it has indeed done so with
IoT device IDA. We use the following correspondence
assertion using the following:

inj − event(endAfull(· · · )) ==>

inj − event(beginAfull(· · · )). (11)

3) Authentication of IoT device IDA and IoT device IDB

to the server: Each time an authentication protocol is
run, the server needs to update its CRP for the respective
IoT device. In protocol 2, the server needs to update the
CRPs for both IoT device IDA and IoT device IDB . For
this purpose it is also desirable that mutual authentication
between the respective IoT devices and the server is
also satisfied. The authentication properties between IoT
device IDA and the server, and IoT device IDB and the
server are proved in a similar fashion as protocol 1 and
can be found in [26].

4) Secrecy for IoT device IDA: If IoT device IDA com-
pletes the protocol successfully then the secrets RS1 , RS2 ,
NA, and Ri+1 can be considered good secrets at the site
principal of IoT device IDA. We establish the syntactic
security of these secrets using the following queries in
PV:

query attacker(ARs1); attacker(ARs2); (12)
attacker(ANa); attacker(AR new); (13)

where ARs1, ARs2, ANa, and AR new are arbitrary
terms used to check the secrecy of RS1

, RS2
, NA, and

Ri+1, respectively, at the site principal IoT device IDA.
5) Secrecy for IoT device IDB: If IoT device IDB reaches

the end of the protocol then the secrets RS1
, RS2

, NB ,
and Rj+1 are good secrets at the site principal of IoT
device IDB . The PV queries for this property are as
follows:

query attacker(BRs1); attacker(BRs2); (14)
attacker(BNa); attacker(BR new); (15)

where the secrecy of Rs1, Rs2, NA, and Rj+1 is
checked using the arbitrary terms BRs1, BRs2, BNa,
and BR new, respectively.

6) Secrecy for the server: If the server believes it has
successfully completed the protocol with IoT device IDA

and IoT device IDB , then RS1
, RS2

, NA, NB , Ri+1, and
Rj+1 are good secrets at the site principal of the server.
We use the following PV queries to prove this property:

query attacker(SRs1); attacker(SRs2); (16)
attacker(SNa); attacker(SNb); (17)
attacker(SR newA); attacker(SR newB); (18)

where SRs1, SRs2, SNa, SNb, SR newA, and
SR newB are used to prove the secrecy of RS1 , RS2 ,
NA, NB , Ri+1, and Rj+1, respectively at the site prin-
cipal of the server.

Running the simulation script for protocol 2 in [26] in PV
shows that the proposed protocol satisfies all the desired
security properties.

VIII. VERIFICATION

In this section we provide a formal verification for the
correctness of the proposed protocols. A protocol is considered
correct if it possesses the following properties [27]:

1) Completeness: All valid inputs are accepted by the
protocol.

2) Deadlock freeness: The protocol does not enter a state
where it can stay indefinitely.

3) Livelock or tempo-blocking freeness: There are no
infinite loops in the protocol.

4) Termination: The protocol always reaches a well-defined
final state starting from the initial state.

5) Absence of non-executable interactions: The protocol
only contains transmission, reception, and interaction
paths realizable under normal operating conditions.

We use a finite state machine (FSM) and reachability analysis
technique proposed in [27] to verify the correctness of the
proposed protocols. Note that this section provides a proof that
the protocol is correct with respect to its specifications, and
does not provide any proof of security. The security analysis
of the protocol is given in Section VI.

The first step to prove the correctness of the protocol using
[27] is to represent each entity of a protocol as a directed
graph. The directed graphs for the two entities in Protocol 1 are
shown in Figure 6, where gA and gserver represent the directed
graphs for IoT device IDA and the server, respectively. Each
of these directed graphs can be considered as an FSM for that



10

Fig. 6: Directed graphs for Protocol 1.

Fig. 7: Directed graphs for Protocol 2.

entity. Similarly, the directed graphs for the three entities of
Protocol 2 are shown in Figure 7. The state of the protocol
machine is represented by numbers in the nodes, while -n and
+n represents the transmission and reception of a message,
respectively. Moreover, transitions or events are represented
by the integer labels on the arcs joining two states i.e., +m/-
n represents the reception of a message m followed by the
transmission of message n. For example, the interaction paths
for gA and gS corresponding to one run of Protocol 1 are
given below:

• gA : [0]− 1[1] + 2/− 3[0]
• gS : [0] + 1/− 2[1] + 3[0]

where “[]” denotes a state in Figure 6. The interaction path
for IoT device IDA represents the following sequence of
activities: IoT device IDA starts in state 0, sends message
1 to the server and enters state 1 of its FSM. IoT device IDA

then sends message 2 and receives message 3, entering state 0
again. We can similarly interpret the interaction patch for the
server. Moreover, S0 is considered the final state for both IoT
device IDA and the server in case of Protocol 1. However, S4

is considered the final state for IoT devices IDA and IDB ,
while S0 is the final state for the server in the case of Protocol
2.

We use the reachability analysis technique proposed in [27],
[28] to prove that our protocol possesses the properties (1) -
(5). Figures 8 and 9 show the result of the reachability analysis
for the proposed protocols. In this technique a matrix is used
to represent the state of the overall system. This matrix is
constructed using the states of all the entities in the protocol.
Equations (19) and (20) show the state matrices for protocol
1 and 2, respectively.


A

STATE
A → Server
CHANNEL

Server → A
CHANNEL

Server
STATE

 (19)

Fig. 8: Reachability analysis for Protocol 1.



A
STATE

A → B
CHANNEL

A → Server
CHANNEL

B → A
CHANNEL

B
STATE

B → Server
CHANNEL

Server → A
CHANNEL

Server → B
CHANNEL

Server
STATE


. (20)

Each element in the above matrices represents either the
current state of the FSM of an entity or a message sent by an
entity. In (19), the element in row 1 and column 1 represents
the state of entity A while the element in row 1 and column 2
represents the message sent by A to the server. Similarly, the
element in row 2 and column 1 represents the message sent
by the server to A while the element in row 2 and column 2
represents the current state of the server entity. For example,
at the start of a protocol all the protocol entities are in their
start states i.e, S0, and the channels are empty, as shown in
Figures 6 and 7. Let us consider protocol 1, in which IoT
device IDA sends message 1 to the server. This will cause a
transition in the state of the FSM of IoT device IDA from S0

to S1, as shown in Figure 6. The overall system state matrix
is then given as follows:[

S1 1
E S0

]
. (21)

The element at row 1 and column 1 of (21) shows that IoT
device IDA is in state 1, while the element at row 1 and
column 2 of the matrix shows that IoT device IDA has sent
message 1 to the server. Moreover, this matrix also shows that
the server is in state 0 (row 2 and column 2) and has not
sent any message to IoT device IDA (row 2 column 1). We
represent the overall system state by SSi, while the state of
the constituent subsystems (entities) is represented by Si.

We always start the reachability analysis from the initial
state SS0. This is the state in which all the channels are
empty, i.e., E, and all the protocol entities are in their initial
states, i.e, S0. Moreover, X+i and X−i represent the reception
and transmission of message i by entitiy X , respectively. The
reachability analysis for protocols 1 and 2 is shown in Figures
8 and 9, respectively.

Figure 8 shows a sequence of transitions for the overall
system state for protocol 1. When IoT device IDA sends
message 1, the overall system state transitions from the initial
state SS0 to SS1, followed by subsequent transitions. Figure
8 shows that the protocol accepts all valid messages implying
the completeness property. We defined a potential deadlock



11

Fig. 9: Reachability analysis for Protocol 2.

state as an overall system state in which all the channels are
empty and it is not an initial or final state. We observe that
Figure 8 does not have any potential deadlock states, implying
deadlock freeness. We also observe that there are no loops
among the overall system states implying livelock or tempo-
blocking freeness. Moreover, Figure 9 covers all the possible
transmissions, interaction paths, receptions and states and we
see that following any of the interaction paths we always end
up in the state SS0. This shows that the protocol possesses the
termination property and does not possess any non-executable
interactions. Thus, the proposed protocol is considered to be
correct.

The reachability analysis for Protocol 2 shows that SS18
is the final state for Protocol 2, i.e., the channels are empty
and all the subsystems are in their respective final states. We
observe that Protocol 2 always starts from the initial state
SS0 and terminates at the final state SS18, implying the
termination property. The protocol has one potential deadlock
state i.e., SS16. However, SS16 has outgoing transitions
involving a decision based on the random numbers N1 and
N2 in the protocol. Note that SS16 is observed by the system
when both IoT devices IDA and IDB attempt to initiate
authentication concurrently. We assume that the protocol uses
the random nonces N1 and N2 to break the tie. For example,
if N1 > N2 then IoT device IDA gets to act as the initiator
of the authentication and IoT device IDB sends message 2
to the server and vice versa. This leads to IoT device IDB

transitioning to state 2 as shown by the overall system state
SS3. This shows that the proposed protocol possesses the
deadlock freeness property. We observe that there are no
loops in Figure 9. Therefore, the proposed protocol can be
considered free from livelocks or tempo-blocking. We observe

TABLE II: Computational Complexity

Task IoT Device Server
Protocol 1 1NH + 2NMAC + 2NENC 1NH + 2NMAC + 2NENC

[16] 2NH + 2Nexp +N× 1NH + 3Nexp

Protocol 2 1NH + 4NMAC + 3NENC 2NH + 4NMAC + 4NENC

that the reachability analysis of Protocol 2 covers all the
interaction paths, states, transmissions, and receptions. This
shows that the proposed protocol does not contain any non-
executable interactions. This proves that the proposed protocol
is correct.

IX. PERFORMANCE ANALYSIS

In this section we present a performance analysis of the
proposed protocols and compare it with the most relevant
protocol in literature, proposed by Frikken et al. [16].

A. Computational Complexity

Table II shows the number of hash (NH ), MAC
(NMAC), encryption/decryption (NENC), modular exponen-
tiation (Nexp), and modular multiplication (N×) operations
required by the proposed mutual authentication protocols and
[16]. We can directly obtain these values by counting the
occurrence of the respective operations in Figures 2 and 3.

Let us assume the use of message authentication codes
based on universal hashing (UMACs) [29], that have a worst
case running time of O(n) [30], [31], where n is the message
size. Moreover, let us assume the use of block ciphers. Then
the encryption and decryption operations can be considered
O(n). Thus, the proposed protocols have a complexity of
O(n) for the IoT devices as well as the server. However,
the technique in [16] requires hash operations and modular



12

TABLE III: Parameter Lengths

Parameter Size (bits)
ID 8 [35]
N1, N2 48 [36]
NA, RS1

, RS2
128 [33]

C, R 128 [33]
MAC 32/64/96/128 [29]

exponentiation. Therefore, the complexity of their protocol
is O(n + M(l)k) for both the IoT devices as well as the
server, where M(l) represents the complexity of a general
modular multiplication with l bit operands, and k is the the
exponent. Moreover, M(l) is generally quadratic in l [32].
Thus the computational complexity of the proposed mutual
authentication protocols is lower.

B. Communication Overhead

We observe that message 2 is the longest message in
Protocol 1, while message 3 is the longest message in Protocol
2 as shown in Figures 2 and 3. To calculate the length of
these messages we use the parameter sizes given in Table
III. We assume the use of block ciphers such as CLEFIA
with 128-bit keys [33]. Note that the parameters in Table
III which are used to encrypt data in the proposed protocols
are 128-bit long. Moreover, we assume the use of UMAC as
the MAC, which provides the flexibility in meeting security
as well as performance needs [29]. UMAC offers MACs of
varying lengths as given in Table III.

For the purposes of calculating the communication over-
head, we use a MAC length of 32 bits. Thus, the length
of message 2 in Protocol 1 is 42 bytes, while the length of
message 3 in Protocol 2 is 120 bytes1. Moreover, the longest
message in [16] is approximately 68 bytes which is much
larger compared to Protocol 1.

C. Storage Requirement

The proposed protocols are very efficient in terms of storage
requirements. Variables such as NA, NB , RS1

, and RS2

are only stored temporarily during authentication and deleted
afterward. Moreover, only one CRP pair (Ci, Ri), and the
respective IDi are stored for each IoT device in the server.
In contrast, most of the protocols in existing literature impose
one the following requirements:

1) The IoT devices store secret information.
2) The server stores a large number of CRPs for each IoT

device. One of the CRPs is used each time the server
authenticates an IoT device. Given the large number of
IoT devices, this approach is not scalable.

The proposed mutual authentication protocols do not impose
these requirements and have very low storage requirements.

1Note that 6LoWPAN has a maximum transmission unit (MTU) size of
127 bytes [34]. Although the maximum length of messages in the proposed
protocols is less than 127 bytes, the addition of IP and other headers may
result in fragmentation of the packets at the 6LoWPAN adaptation layer [34].

X. CONCLUSIONS

This paper presented mutual authentication protocols for
two different scenarios in IoT systems: (i) for cases when
an IoT device and a server want to communicate with each
other, and (ii) for the case when two IoT devices want to
communicate with each other. The proposed protocols are
based on a challenge-response mechanism using PUFs and
have the unique security feature of not saving any secrets in
the IoT devices, while keeping the storage requirements at the
server to the minimum. Moreover, a session key can also be
established using the proposed protocols. Performance analysis
of the proposed protocols shows that they have very low
computation, storage, and communication overhead. However,
to use these protocols for applications with strict timing
requirements such as vehicular networks, it is desirable to
further reduce the latency of authentication by reducing the
number of messages exchanged between the entities.

REFERENCES

[1] The Internet of Things Reference Model, CISCO, 2014,
http://cdn.iotwf.com/resources/71/IoT Reference Model White
Paper June 4 2014.pdf.

[2] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of IoT Systems: Design
Challenges and Opportunities,”Proceedings of IEEE/ACM ICCAD, pp.
417-423, San Jose, CA, November 2014.

[3] Security in the Internet of Things, Wind River, January 2015, http:
//www.windriver.com/whitepapers/security-in-the-internet-of-things/
wr security-in-the-internet-of-things.pdf.

[4] G. Woo, P. Kheradpour, D. Shen and D. Katabi, “Gartner Says the
Internet of Things will Transform the Data Center,” Gartner, March
2014.

[5] Shivraj, V.L., Rajan, M.A., Singh, M., and Balamuralidhar, P., “One time
password authentication scheme based on elliptic curves for Internet
of Things (IoT),” Proceedings of National Symposium on Information
Technology: Towards New Smart World (NSITNSW), pp.1-6, Riyadh,
KSA, February 2015.

[6] P. N. Mahalle, N. R. Prasad, and R. Prasad, “Threshold Cryptography-
based Group Authentication (TCGA) Scheme for the Internet of Things
(IoT),” Proceedings of IEEE VITAE, pp. 1-5, Aalborg, Denmark, May
2014.

[7] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila,
“Two-phase Authentication Protocol for Wireless Sensor Networks in
Distributed IoT Applications,” Proceedings of IEEE WCNC, pp. 2728-
2733, Istanbul, Turkey, April 2014.

[8] X. Yao, X. Han, and X. Du,“A Lightweight Multicast Authentication
Mechanism for Small Scale IoT Applications,” IEEE Sensors Journal,
vol.13, no.10, pp.3693-3701, Oct 2013.

[9] V. Petrov, S. Edelev, M. Komar, and Y. Koucheryavy,“Towards the Era
of Wireless Keys: How the IoT Can Change Authentication Paradigm,”
Proceedings of IEEE WF-IoT, pp.51-56, Seoul, South Korea, Mar 2014.

[10] Y. Kim, S. Yoo, and C. Yoo,“DAoT: Dynamic and Energy-aware
Authentication for Smart Home Appliances in Internet of Things,”
Proceedings of IEEE ICCE, pp.196-197, Las Vegas, NV, Jan 2015.

[11] G. E. Suh, and S. Devadas “Pysical Unclonable Functions for Device
Authentication and Secret Key Generation,” Proceedings of IEEE/ACM
DAC, pp. 9-14, San Diego, CA, June 2007.

[12] P. Tuyls, and L. Batina, “RFID-tags for Anti-Counterfeiting, Topics in
Cryptology CT-RSA”, Lecture Notes in Computer Science, Vol. 3860,
pp.115-131, San Jose, CA,2006.

[13] P. Cotese, F. Gemmiti, B. Palazzi et al., “Bernardo, Efficient and
Practical Authentication of PUF-Based RFID Tags in Supply Chains,”
Proceedings of IEEE RFIDTA, pp. 182-188, Guangzhou, China, June
2010.

[14] H. Ghaith, O. Erdinc, and S. Berk, “A Tamper-Proof and Lightweight
Authentication Scheme”, Pervasive Mobile Computing, Vol.4, no.6, pp.
807-818, 2008.



13

[15] Y. S. Lee, H. J. Lee, and E. Alasaarela, “Mutual Authentication in
Wireless Body Sensor Networks (WBSN) based on Physical Unclonable
Function (PUF),” International Wireless Communications and Mobile
Computing Conference (IWCMC), pp.1314-1318, Sardinia, July 2013.

[16] K. Frikken et. al., “Robust Authentication Using Physically Unclonable
Functions”, In: P. Samarati et al. (eds.): ISC 2009, LNCS 5735, pp.
262-277, Springer, Heidelberg 2009.

[17] R. Maes, “Physically Unclonable Functions: Constructions, Properties
and Applications,” Katholieke Universiteit Leuven Belgium DEngg
Thesis, 2013.

[18] C. Bohm, and M. Hofer, “Physical Unclonable Functions in Theory and
Practice,” Springer, 2012.

[19] S. Guilley, and R. Pacalet, “SoCs security: a war against side-channels”,
Annals of Telecommunications, Vol. 59, no. 7, pp 998-1009, 2004.

[20] M. Kirkpatrick et. al., “System on Chip and Method for Cryptography
using a Physically Unclonable Function,” U.S. Patent 8750502 B2,
issued March 22, 2012.

[21] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-
Welsey Publishing Company, 1994.

[22] “TOTP: Time-Based One-Time Password Algorithm”, IETF RFC 6238,
2011.

[23] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication”,
ACM Transactions on Computer Systems, 8, February 1990.

[24] W. Mao and C. Boyd, “Towards formal analysis of security protocols”,
Proc. Computer Security Foundations Workshop VI, pp. 147-158, June
1993.

[25] B. Blanchet and B. Smyth, ProVerif: Automatic Cryptographic Protocol
Verier, User Manual and Tutorial.

[26] https://www.ece.nus.edu.sg/stfpage/bsikdar/scripts/IoTJ.
[27] D. P. Sidhu, “Authentication protocols for computer networks: I”,

Computer Networks and ISDN systems, Vol. 11, pp. 287-310, 1986.
[28] G. V. Bochman, “Finite state description of communication protocols”,

Computer Networks, Vol. 2, pp. 361-372, 1978.
[29] T. Krovetz, “UMAC: Message Authentication Code using Universal

Hashing”, IETF RFC 4418, March 2006.
[30] M. Babka, “Properties of Universal Hashing,” Charles University in

Prague, Master Thesis, 2010.
[31] Y. Mansour, N. Nissan and P. Tiwari, “The Computational Complexity

of Universal Hashing,” Theoretical Computer Science, vol. 107, no. 1,
pp. 121-133, 1993.

[32] T. Kivinen and M. Kojo, “More Modular Exponential (MODP) Diffie-
Hellman groups for Internet Key Exchange (IKE),” IETF RFC 3526,
May 2003.

[33] M. Katagi and S. Moriai, “The 128-bit blockcipher CLEFIA,” IETF RFC
6114, March 2011.

[34] G. Montenegro et. al., “Transmission of IPv6 Packets over IEEE
802.15.4 Networks,” IETF RFC 4944, September 2007.

[35] P. Kim, “ IoT Specific IPv6 Stateless Address Autoconfiguration with
Modified EUI-64,” IETF Internet-Draft, July 2015.

[36] D. Whiting et. al., “Counter with CBC-MAC (CCM),” IETF RFC 3610,
September 2003.

APPENDIX

This section serves as a brief introduction to the formal
analysis of security protocols using the Mao and Boyd logic
[24]. In this techniqe we start by idealizing the protocol mes-
sages. Three types of information is used to construct logical
formulas: M : messages, P : principals, and F : formula. We use
capital letters A, B, P , Q, · · · to represent principals, letters
K, M , N, · · · to denote messages, while X , Y , Z, · · · are
used for formulas. We use the following predicate constructs
in our analysis:
• P X: P believes X is true and may act accordingly.

• P
K

|∼ X: P encrypted X using key K.
• P

K
/ X: P sees X using decipherment key K. In the

absence of encryption we use P / X .
• P

K↔ Q: K is a good shared key for P and Q.

• #(M): M is fresh (not used before).
• sup(S): Principal S is the trusted party.
• P/ ‖M : Message M is not available to principal P .
Next, we present some definitions to understand the rules

for protocol message idealisation.
• Atomic Message: A piece of data in a message con-

structed without using any of the symbols “,”, “|”, “R”, or
“{}” is called an atomic message. We use “,” to separate
fields in a message and “{}” for encryption. The purpose
of the symbols “|” and “R” is defined below.

• Challenge: An atomic message sent and received in
separate lines by the same principal (the originator). A
time stamp is not considered an atomic message.

• Replied Challenge: A challenge that appears in a mes-
sage sent to the originator.

• Response: An atomic message (except timestamps) and
a replied challenge sent together by the sender of the
response.

• Nonsense: An atomic message is a nonsense if it is not
a challenge, response, or a timestamp.

We idealize the messages of a protocol using the following
rules:

1) Any nonsense is removed.
2) An atomic message is considered a response if it acts as

a challenge as well as a response in a line.
3) Combine challenges separated by commas using operator

“|”.
4) Combine responses separated by commas using operator

“|” to form a combined response.
5) Combine a challenge and its response using “R” into

“response R replied challenge”.
6) Combine a message and its corresponding timestamp

using “R” into “message R timestamp”.
Finally we use the following inference rules:

1) Authentication Rule: If K is a shared secret key between
P and Q, and P used K to decrypt a received message
M , then P can believe that Q sent M . The rule is given
as

P Q
K

|∼M

P P
K↔Q

∧
P

K
/M

. (22)

2) Confidentiality Rule: If K is a shared secret key between
P and Q and P encrypted M with K and sent it without
sharing it with anyone else, then P can believe that M is
only available to P and Q. The rule can be represented
as

P (S∪{Q})c/‖M

P P
K↔Q

∧
P Sc/‖M

∧
P

K

|∼M
. (23)

3) Super-Principal Rule: P believes what Q believes if P
believes Q is a trusted server. The rule is given as

P X

P Q X
∧

P sup(Q)

. (24)



14

This rule can be interpreted as P can trust Q about X .
This means that an IoT device can be the super-principal
for a nonce it generated. For example, in Protocol 1 IoT
device IDA generates NA. Therefore, we can consider
IDA as the super principal in terms of NA. This fact has
been used in the tableaux of Figures 4(c) and 4(e).

4) The Fresh Rule: P can believe N is fresh if P believes
M is fresh and P has recieved N and M together in a
message. The rule is given as

P #(N)

P #(M)
∧

P/NRM

. (25)

5) The Good-Key Rule: There are two variations to this
rule: (i) if P believes K is only available to P and Q,
and P knows that K is fresh, then P can believe K is a
good key between P and Q

P P
K↔Q

P {P,Q}c/‖K
∧

P #(K)

(26)

and (ii) if P believes K is only available to P , Q and

R and no one else, and P trusts R, and P knows K is
fresh, then P can believe K is a good key between P
and Q. The rule is given as

P P
K↔Q

P {P,Q,R}c/‖K
∧

P sup(R)
∧

P #(K)

. (27)

6) Intuitive Rule: P has seen message M if it can decrypt
message M using K. The rule is given as

P/M

P
K
/M

. (28)

7) Derived Rule: This rule is obtained by combining the
belief axiom

P (X
∧

Y ) if and only if P X
∧

P Y (29)

with the confidentiality rule. The rule can be represented
as

P Q (S∪{P})c/‖M

P Q P
K↔Q

∧
P Q Sc/‖M

∧
P Q

K

|∼M
. (30)


