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Abstract— Recent outbreaks of virus and worm attacks tar-
geted at cell phones have have bought to the forefront the
seriousness of the security threat to this increasingly popular
means of communication. The ability of smart cell phones
to communicate through both the Internet and the telecom
networks along with the presence of a number of communication
interfaces makes them vulnerable to attacks from a number of
sources which can then propagate at extremely fast rates. In
this paper we develop an analytic framework for modeling the
dynamics of malware propagation in networks of smart phones
that specifically accounts for the mobile nature of these devices.
We also characterize the conditions under which the network
may reach a malware free equilibrium and derive the necessary
conditions for its global asymptotic stability. The model accounts
for malware transfers through the Internet and peer to peer
networks, through the telephone network and through Bluetooth
and WLAN interfaces.

I. I NTRODUCTION

While malware such as worms and viruses have been
prevalent in the Internet for more than a decade, such attacks
have recently been reported in cell phones. Proof-of-concept
worms for smart phones likecabir [2] as well as malicious
code such as theskulls [4] andmosquito [3] trojans have
recently been reported. As recently as August 2005, mobile
phones at the world athletics championship held at Helsinki’s
Olympic stadium were compromised by a virus attack [12], as
were the mobiles at a public concert in Germany [7]. With the
growing popularity and prevalence of advanced cell phones
with a myriad of communicational capabilities, such threats
are extremely important and capable of causing extensive
damage. Owing to their ability to inter-operate between the
Internet and the cell phone or telephone network coupled
with the improvements in their computational abilities, built
in functionalities and mobility, malware propagation in these
networks has the potential to spread extremely fast and com-
promise a large number of phones, in addition to crippling the
telecom infrastructure.

The communication capabilities of the new generation of
cell phones, as shown in Figure 1, can be broadly grouped
into three categories(1) access to the telecom network through
technologies like (GSM) and code division multiple access
(CDMA) (2) access to the Internet which may occur either
via accessing the telecom network or by using Bluetooth or
wireless local area networking (WLAN) interfaces and(3)
communication through other smart phones in its physical
vicinity through Bluetooth interfaces etc. Consequently, the
possible ways in which malware may spread in these devices
are(1) malware downloads from the Internet and peer to peer
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Fig. 1. Communication paradigms in smart cell phones.

networks (for example theskulls and mosquito trojans
[3], [4]), (2) phone to phone spread which results when a com-
promised phone sends the malware to other phones either by
random dialing or dialing the numbers in the address book (for
example using mechanisms similar to thetimfonica virus
in Spain, 2000 and thecommwarrior andmabir worms)
and (3) phone to phone or computer to phone spread through
Bluetooth or WLAN interface (for example thecabir worm
[2]). Node mobility and the resulting variations in the number
of other devices in the vicinity of a phone also affects
the propagation of the malware, specially those that spread
through the Bluetooth or WLAN interfaces.

There exists a slew of modeling work characterizing numer-
ous aspects of worm spread, [9], [8], [10], [11] to name a few,
but seldom has the setting been a wireless environment. Also,
unlike our model, existing work only considers static nodes.
We believe that new generation smart phones are largely
vulnerable to, and can act as the catalysts for the spread
of mobile viruses and thus are important from a practical
perspective.

In this paper, we present a comprehensive analytical model
to explore the impact that the interplay between the com-
munication capabilities and behavioral patterns such as node
mobility and heterogenity in the locality of the smart cell
phones has on the spread of malware in such networks. We
then use the model to derive the necessary conditions for the
existence of a malware free equilibrium and substantiate our
claim with numerical results. A detailed explaination of the
analytical procedure can be found in [13].

The rest of the paper is organized as follows: Section II
further motivates the paper, Section III presents the analytical
framework. We present numerical results and sensitivity analy-
sis in Section IV and finally, Section V presents the concluding



remarks.

II. M OTIVATION AND BACKGROUND

The first malicious code which specifically targeted mobile
phonescabir appeared in June, 2004. Since then, numerous
other forms of malware, with different degrees of sophisti-
cation, have continued to appear. Recent specimens of such
malware exploit various capabilities, such as Bluetooth and
MMS enhancements, associated with the cell phone in order
to spread.

Most of the early malware for cell phones likemosquito
andskulls were either trojans which infected a cell phone
once they were downloaded from the Internet or likecabir
andlasco which used Bluetooth to infect cell phones in its
vicinity. Another example is thecommwarrior worm which
uses the infected host’s multimedia messaging service (MMS)
to spread itself to the phone numbers stored in the address
book of the infected phone. Of greater cause of worry are the
more recent specimen likecommwarrior andmabir which
use Bluetooth in addition to MMS for infecting other nodes.
It is only a matter of time that more sophisticated malware
appear which exploit all the communication capabilities of the
host cell phone.

None of the existing forms of malware have been able
to achieve epidemic proportions due to a number of factors.
While some of the malware were proof of concept versions,
others have slowed down due to errors (e.g.comwarrior)
etc. However, as newer and more sophisticated malware
appear, the threat they pose to users and service providers
is becoming serious. For example, though the initial mode
of attack employed bycabir was primarily through the
Bluetooth interface thereby limiting the physical range within
which it may infect others, subsequent and more advanced
versions of the virus have since surfaced in 17 countries around
the world. One only needs to note that while it took more
than a decade for computer malware to evolve to their current
state, it has taken less than two years for cell phone malware
to achieve similar capabilities. At the extreme end, Warhol
worms [6] for cell phones, which attack all possible systems
in the shortest possible time, are now fast becoming a real
possibility.

As the first step in developing effective defenses against
these malware, this paper develops a model for their prop-
agation under very general conditions. The model can then
be used to gain insights into the most effective and efficient
conditions for controlling the damage they may cause.

III. M ODELING FRAMEWORK

In this section we develop our model for the propagation
of malware in smart phones. Due to space constraints, the
mathematical derivations for the necessary conditions for the
existence of a malware free equilibrium are not detailed here.
The interested reader may refer [13] for a more complete
version of this paper. We now provide an overview of the
model and its assumptions.

A. Model Overview

This paper develops a modeling framework for the dynamics
of malware propagation in smart cell phones. The model
considers a network with a large number of smart cell phones.
The phones are assumed to have the capability to communicate
with other phones or computing using the telecom or cellular
network as well as the Internet. The new generation of
smart phones also have a number of communication devices
including Bluetooth and infra red interfaces as well as Wifi
or IEEE 802.11 based interfaces. Our model assumes that the
phones are equipped with such devices. We also assume that
the cell phone users are mobile and travel through a number
of different regions, with varying degrees of node densities
and connectivity.

Our model considers three different mechanisms through
which malware may infect and propagate in cell phones.
First, the malware may be inadvertently downloaded by a
cell phone user from the Internet or another computer. Such
malware often come in the form of trojans likeskulls
[4] and mosquito [3] that are downloaded and executed
by unsuspecting users.Second,malware in infected phones
may try to infect other phones which come in its vicinity by
transferring its payload through the Bluetooth, infra red or
WLAN interfaces. These methods are widely used by the mal-
ware specimen such ascabir, lasco, andcommwarrior.
Third, an infected phone may dial numbers stored in its
address book or dial numbers randomly and transfer the
malware code as a SMS or MMS message in an attempt
to infect other phones. Note that both random and selective
dialing have been used by existing specimens of malware such
astimfonica, commwarrior andmabir. Our modeling
framework facilitates the incorporation of all of the above three
(or any subset thereof) spreading mechanisms and evaluate
their individual as well as combined effect on the malware’s
dynamics.

The model developed in this section is based on a com-
partmental epidemic model with four classes. At any given
point in time, a cell phone is in one of the following four
classes: susceptible, exposed, infected and recovered. Initially
all phones belong to the susceptible phase and stay there until
they come in contact with the malware. The exposed state
corresponds to the latent period of an infection. In our case
this corresponds to the case when a malware is sent to a phone
which is currently turned off. The phones then stay in the
infected state until they are either patched or quarantined upon
which they move to the recovered state and stay there.

In our model, new phones may enter the network and some
phones may leave the network. However, the birth and death
rates are the same and the total population at any given instant
is assumed to be a constant. This assumption is based on the
fact that the time for a fast worm to spread can be considered
to be quite small compared to the rate at which the cell phone
population in a country or city changes. Also, we assume
that the time taken to download the malware through any
of the communication interfaces is quite small and may be



considered instantaneous. This assumption may be justified by
noting the small size of most worms as well as the increasingly
high data rates achieved by the new generation of smart
phones.

We first present our model for capturing the effect of the
physical movement of the phones through different environ-
ments and geographical locations in Section III-B. The model
is then extended to account for the malware spread through
the different communication paradigms in Section III-C.

B. Model for Spatial Dynamics

An inherent characteristic of cell phone usage is the asso-
ciated mobility of the user. Over the course of a day, a user
may move from a residential area to a workplace environment
and pass through public places with reasonably high density
of other cell phone users. In addition, users may occasionally
pass through places like airports and other transportation hubs,
stadiums etc. where it is quite likely that it may come in
close proximity with infectious cell phones. To capture the
impact of such heterogeneous environments, we classify each
possible location that a cell phone may visit as one ofP
patches or regions [1]. Each patch is characterized by its own
infection rate and visitation probabilities. Thus an airport and a
small stadium, where an arbitrary cell phone may come across
roughly the same number of other phones and may stay for
roughly equal times are treated as belonging to the same patch.
Similarly, two residential areas in opposite sides of a city or
in two different cities may be classified into the same patch.

Classifying the locations that cell phone users may visit
in terms of patches also aids in reducing the state space and
the corresponding number of equations in the mathematical
formulation. As opposed to having 4 equations to characterize
each location that a cell phone may visit, classifying the
locations intoP patches reduces thetotal number of equations
in our model to4P. We denote the rate of travel from patchq
to patchp by mpq. The rate of change in the susceptible (Sp),
exposed (Ep), infectious (Ip) and recovered (Rp) populations
in patchp, 1 ≤ p ≤ P due toonly the movements between
the patches is then given by

dSp

dt
=

PX

q=1

mpqSq −
PX

q=1

mqpSp (1)

dEp

dt
=

PX

q=1

mpqEq −
PX

q=1

mqpEp (2)

dIp

dt
=

PX

q=1

mpqIq −
PX

q=1

mqpIp (3)

dRp

dt
=

PX

q=1

mpqRq −
PX

q=1

mqpRp (4)

C. Incorporating Infection Mechanisms

We first consider the spread of the malware due to down-
loads from the Internet or a P2P network. Given that a cell
phone is on and in patchp (which happens with probabilitypp

on

and is derived in Section (III-D)), we denote the probability
that an arbitrary cell phone in patchp downloads the malware
from the Internet or P2P network at timet by γp(t). Also,

γp(t) is a decreasing function of time since users are less
likely to download a malware with time because of factors
like awareness and publicity etc.

Now, only the susceptible cell phone population may in-
advertently download the malware from the Internet and the
number of such downloads per second is proportional to the
susceptible population in the patch. Also, since the downloads
are completed in a very small amount of time, the susceptible
cell phones move directly to the infected phase. The rate of
change in the populations of the four classes due to downloads
from the Internet is then:dSp

dt = −dIp

dt = −pp
onγp(t)Sp,

dEp

dt =
dRp

dt = 0. Now consider the spread of the malware through
Bluetooth or WLAN interfaces when susceptible phones come
in the physical vicinity of infected phones. The rate of spread
through these interfaces depends on the type of patch as well
as the number of susceptible and infectious cells phones in
a patch. We denote byβp the rate at which a cell phone in
patchp tries to infect other phones through the Bluetooth and
WLAN interfaces. Again, since only phones currently turned
on may be infected with this mechanism and the malware
transfer between two devices is considered instantaneous, the
susceptible population directly moves to the infectious state.
The contributions to the rate of change of populations of
the four classes in this case are given by:dSp

dt = −dIp

dt =
−pp

onβpSp
Ip

Np
,

dEp

dt = dRp

dt = 0.
Finally, we consider the case where the malware may spread

when a compromised phone randomly or selectively dials other
numbers and transfers the malware through MMS or SMS.
The dialed number may be in any of theP patches and thus
a phone in one patch may infect a phone in another patch.
The rate of such infections is proportional to the strength of
the infectious population in the patch and given byIp/Np

for patch p. We denote the rate at which a compromised
phone tries to dial other numbers byα. Also, some of the
randomly dialed or out-dated numbers in the address book
numbers may be non-existent and thus all infection attempts
will not be successful. We denote byρ the probability that a
dialed number is non-existent. Finally, some of the dialed cell
phones may be switched off and in these cases, we assume that
the malware gets queued up in the base station and is delivered
once the phone is switched on. For this spreading mechanism,
we thus have:dSp

dt = −dEp

dt = −∑P
i=1 α(1 − ρ)Sp

Ii

Ni
,

dIp

dt =
dRp

dt = 0. Note that in the equations above, all phones infected
through random or selected dialing pass through the exposed
state, even though the phones that are turned on get infected
immediately. This does not result in any inaccuracies because
in Section III-D, we evaluate and incorporate the estimated
time that a phone spends in the exposed state in patchp, 1/εp,
based on whether it was turned on or not when it was infected.

D. Combined Model

We now combine the various contributions along with the
arrival and departures of cell phones to complete the model.
First, we note that while new phones may join only in the
susceptible phase, cell phone uses may decide to quit the



network permanently while they are in any of the four states.
With the average phone lifetime in patchp denoted by1/dp,
the rate of population change due to the joining on new phones
and departure of old ones is−dpEp, −dpIp and−dpRp for
the exposed, infected and recovered classes anddpNp − dpSp

for the susceptible state. Note that the birth term ofdpNp is
devised to keep the total cell phone population constant.

The average time spent by an arbitrary cell phone in the
exposed phase in patchp is denoted by1/εp. With 1/λp

on

and 1/λp
off denoting the average on and off times of a cell

phone in patchp, we have:pp
on =

λp
off

λp
on+λp

off
and pp

off =
1 − pp

on. The expected duration of the exposed state in patch
p, 1/εp = E[latent period|on]pp

on + E[latent period|off]pp
off ,

is then given by 1
εp

= λp
on

λp
off (λp

on+λp
off )

. Exposed cell phones
in patchp leave the exposed state at a rate ofεpEp and thus
enter the infected state at the same rate. Finally, with1/δp

denoting the average time spent by a cell phone in patchp in
the infected state, infected phones leave the infected state at
a rate ofδpIp and enter the recovered phase at the same rate.

Combining the models of the previous two subsections with
the contributions to the population change rates described
above, we obtain the following equations which complete our
model for malware propagation in cell phones:

dSp

dt
= dp(Np − Sp) − pp

onγp(t)Sp − pp
onβpSp

Ip

Np

−
PX

i=1

α(1 − ρ)Sp
Ii

Ni
+

PX

q=1

mpqSq −
PX

q=1

mqpSp (5)

dEp

dt
=

PX

i=1

α(1−ρ)Sp
Ii

Ni
− (dp+εp)Ep +

PX

q=1

mpqEq

−
PX

q=1

mqpEp (6)

dIp

dt
= pp

onγp(t)Sp + pp
onβpSp

Ip

Np
− (dp + δp)Ip

+εpEp +
PX

q=1

mpqIq −
PX

q=1

mqpIp (7)

dRp

dt
= δpIp − dpRp +

PX

q=1

mpqRq −
PX

q=1

mqpRp (8)

where we haveNp = Sp + Ep + Ip + Rp,
∑P

p=1 Np = C,
Np > 0 andSp, Ep, Ip, Rp ≥ 0 at t = 0.

E. Discussion of Assumptions

We now discuss the implications of some of the assumptions
made in this paper and the justifications behind these assump-
tions. First implicit assumption in our analysis is that that of
homogeneous mixing of cell phones inside a patch. Locations
are classified into patches based on factors like the expect
time a phone spends in the location, the density of phones etc.
Since only locations with similar characteristics are grouped
together, the behavior of phones in any of these locations will
be similar. Also, if the requirement of uniform node density

is used in demarcating the patches, the homogeneous mixing
assumption is justified. Note that node density can be assumed
to be uniform in places like stadiums, residential areas, office
spaces etc.

In real life cell phones use a number of different operating
systems and have hardware manufactured by different ven-
dors. Consequently, not all phones are vulnerable to a given
malware. Our model can be easily extended to this case by
considering the cell phone populationC to correspond to the
population of the vulnerable cell phones. Also, the infection
ratesβp through the Bluetooth, WLAN and infrared interfaces
and the probability(1 − ρ) that an infection attempt through
SMS or MMS messaging is successful need to be scaled by
the fraction of vulnerable cell phones in the entire cell phone
population.

The assumption of instantaneous download of the malware
is justified when one considers the high data transfer rates
achieved by the new generation of cell phones and the small
size of typical malware. Also, the fact that the duration of
a typical malware infestation is quite small compared to the
rate of change in the cell phone population in a country or city
justifies the assumption of constant cell phone population.

IV. N UMERICAL RESULTS

In this section we evaluate the model presented in the
previous two sections in order to explore the impact of various
parameters on the dynamics of malware propagation. To easily
isolate the effects of various parameters, we consider a simple
scenario where the mobility of the cell phones is limited to
two patches.

Figures 2(a) and 2(b) show the number of infected hosts in
the two patches as a function of time for two different cases.
In Figure 2(a) we have a case where the basic reproduction
number,R0 < 1, and thus the system reaches a virus free
equilibrium while in Fig. 2(b),R0 > 1 and thus the malware
achieves an endemic state in the network.

In both the figures, the impact on node mobility on malware
spread can be infered from the rate at which it spreads in the
two patches. The greater mobility of patch 2 nodes (m12 = 0.1
andm21 = 1) results in the malware spreading more rapidly
in the first patch due to the high influx of external infected
phones and low departure rate of native infected phones.
The parameter values used in the results presented so far,
enumerated in [13], reflect only one instance of the possible
system settings. We now explore the dynamics of malware
propagation in the network as the values of various parameters
are varied. In Fig. 3 we show the impact of the various
parameters on the basic reproduction number,R0. We observe
that α is more dominant as compared topon and ρ in terms
of its effects onR0. This is evident from Figures 3(a) and
3(b), where the graph shows a faster increase inR0 for high
α values even when the other corresponding parameter is
numerically insignificant. This is intuitive too since a higher
dialing rate increases the likelihood of contacting a susceptible
cell phone. We also note from Fig. 3(c) that for our 2 patch
wireless model parameters, the rate of travel from patch 1 to
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(a) m12 = 0.1, m21 = 1 (b)m12 = 0, m21 = 0 andγ1 = 0.05, γ2 = 0.5

Fig. 2. Malware distribution in P2P and wireless networks
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Fig. 3. Impact of various parameters onR0

patch 2,m21, has a bigger impact as compared to the rate of
travel from patch 2 to patch 1,m12. This is because in the
parameters chosen here, the rate of infections from Bluetooth
or WLAN interfaces is smaller in patch 1 than in patch 2
(β1 < β2).

V. CONCLUSION

In the current work, we motivated the need to understand
the dynamics of malware spread, especially in the context
of interacting heterogeneous environments such as wired
and wireless networks. Analysis for the impact of various
spreading mechanisms such as downloads from the Internet
or P2P networks, transfers through Bluetooth, WLAN and
infra red interfaces and through MMS or SMS messages on
the dynamics of malware propagation in networks of smart
cell phones was presented and conditions for a malware free
wireless network state were derived. Further, conditions for the
global asymptotic stability of the malware free equilibrium of
the network was derived.
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