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Abstract—Energy harvesting and cooperative communication
are promising solutions to overcome the power limitations
of Wireless Sensor Networks (WSNs) comprising of battery-
powered nodes. In order to maximize the efficiency of such
systems, measured in terms of packet delivery ratio achieved
over time, efficient scheduling algorithms need to be designed.
In particular, relay usage scheduling is critical for addressing
the trade-off between energy consumption and efficiency in the
network. However, the stochastic nature of the recharge and
traffic generation processes at the sensor nodes, along with partial
state information availability about neighboring nodes, makes the
transmission and relay scheduling problem quite challenging. To
address this problem, we model the system using a stochastic
framework, and formulate the scheduling problem at source
sensor node, when only partial state information about the relay
is available at the source, as a Partially Observable Markov
Decision Process (POMDP). We characterize an approximate
solution to the optimality equations, which provides us with
useful insights into the system dynamics. We observe that the
structure of optimal policy is quite sensitive to system parameters,
which makes it unsuitable for practical deployment. Therefore,
we design a simple and practical threshold based relay scheduling
policy, and show using simulations that it achieves close to
optimal performance.

Index Terms—Cooperative communications, Energy harvest-
ing, Relay scheduling

I. INTRODUCTION

Wireless Sensor Networks have a wide range of applications

in various fields but are typically limited by the size of the

battery and the power it can store. Existing research has shown

that cooperative diversity gains can be achieved in distributed

networks using relaying transmissions [1], [2], resulting in

either higher network capacity or lower energy consumption

with the same capacity. This paper addresses the problem of

scheduling transmissions in sensor networks where nodes may

use cooperative communications strategies.

The cooperative communication considered in this paper

is the simple discrete memoryless three-terminal relay net-

work [3], [4]. For such networks, the capacity, the strate-

gies on the relay, energy efficiency and distribution among

the network, have been the focus of intensive research [5].

However, exploiting the cooperative gain itself is not enough

to address the fundamental problem of the limited battery

capacity in sensor nodes. The limited battery capability of

sensor nodes is a key challenge in the widespread deployment

of WSNs. Although current battery technology is incapable of

facilitating sensor networks with a sufficiently long life for

many applications, energy harvesting or energy scavenging

has become a promising and feasible approach to address

the energy supply problem [6]. However, to improve the

performance of energy harvesting WSNs to acceptable levels,

harvesting-aware communication policies and protocols need

to be developed.

This paper considers sensor networks with energy har-

vesting capability and addresses the problem of scheduling

cooperative, relay based communications. We consider a time-

slotted source-relay-destination system, where a sensor (the

source) has the option to have another sensor (the relay) help

to transmit its data to the destination. All sensor nodes under

consideration are equipped with energy harvesting capability.

From an energy efficiency perspective, the source may achieve

the same bit error rate (BER) for a lower transmission power if

it uses a relay, as compared to a direct transmission.1 However,

this increases the power consumed by the relay and as a result,

the relay sensor may not have energy to report its own data

in the future.

In order to optimally determine if the relay should be used or

not at a given time to maximize the long term ratio of the data

that is successfully delivered to the total data that is generated,

in addition to its own state information (e.g. current battery

level), the source also needs to know the state information

at the relay. It is reasonable to assume that when a relay

transmits or relays data, the header of the packets includes the

relay’s state information. However, in periods without data,

broadcasting the state information of the relay in real time

represents a significant overhead. Thus the source may have

to base its decision on stale relay state information. The focus

of this paper is to determine optimal decision at the source

despite the partial information availability in the system.

The rest of the paper is organized as follows. Section

II describes the system model. The transmission scheduling

problem is formulated as a Partially Observable Markov

Decision Process (POMDP) in Section III and the structure of

optimal reward is derived as a function of system parameters.

A near-optimal, practical and simple relay usage scheduling

scheme is developed in Section IV, its performance is com-

pared with the value iteration results representing the optimal

performance, and the application is extended to multi-node

networks. Section V concludes the paper.

1The actual gain depends on the relative positions of the nodes and it is
possible to have scenarios where a direct transmission may be more energy
efficient. Our work is applicable for cases where relay based transmissions
are preferable.
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TABLE I
NOTATION: ENERGY GENERATION PROCESS AND EVENT GENERATION PROCESS

Symbol Definition

qon probability that the sensor harvests energy in the next slot given that it harvested energy in the current slot

qoff probability that no energy is harvested in the next slot given that no energy is harvested in the current slot

c units of energy harvested per time slot

µon the steady-state probability of energy harvesting in a slot

pon probability that an event is generated in the next slot given that an event is generated in the current slot

poff probability that no event is generated in the next slot given that an event is generated in the current slot

πon the steady-state probability of event occurrence

II. SYSTEM MODEL

We consider a WSN where each sensor can be categorized

as either a source or a relay sensor. Every source sensor

has a designated relay counterpart. A source sensor has two

transmission modes: the direct mode in which the sensor

transmits the packet directly to the destination and consumes

δs
1 units of energy and the relay mode (which consumes δs

2

units of energy at the source) in which the packet is transmitted

by the source and relayed by the relay sensor. A relay sensor

also has two transmission modes: own-traffic mode and relay

mode. In own-traffic mode, the relay sensor transmits its own

packet to the destination consuming δr
1 units of energy while

in relay mode the relay sensor’s own traffic is discarded (if

any) and δr
2 units of energy is consumed to relay another

sensor node’s packet. For energy consumption, we assume that

direct transmission mode requires more than relay mode, that

is, δ1 > δ2, where we have dropped the superscript (s or r
to indicate source and relay sensors, respectively) to indicate

that the relation holds for both source and relay sensors. We

assume that the sensors are deployed in real-time monitoring

scenarios. Thus no retransmissions are attempted for packets

with errors and no packets are buffered.

A discrete time model is assumed where time is slotted

in intervals of unit length. Each slot is long enough so that a

source node and a relay node can either cooperatively transmit

one data packet for the source, or both can transmit one of their

own packets. At most one data packet is generated at a node

in a slot. Each sensor has a rechargeable battery and an energy

harvesting device. The energy generation process at each

sensor is modeled by a temporally correlated, two-state process

with parameters (qon, qoff ), assuming 0.5 < qon, qoff < 1.

In the on state (i.e. when ambient conditions are conducive to

energy harvesting), the sensor generates energy at a constant

rate of c units in a time slot. In the off state, no energy is

generated. The data packets that the sensors report to a sink are

also generated according to a temporally correlated, two-state

process with parameters (pon, poff ) with 0.5<pon, poff <1,

where in the on state an event (i.e. data packet) is generated

in each slot, and no events are generated in the off state. Table

I summarizes the parameters for both energy harvesting and

event generating processes. Note that for analytical tractability

we assume the event generation process is independent across

different sensors, but the model can be extended to the scenario

where the event process is correlated among nodes. The

parameters corresponding to the source and relay nodes are

denoted with a superscript of s and r respectively (e.g. ps
on).

The communication strategy of a sensor pair {source, des-

ignated relay} is governed by a policy Π that decides on the

transmission mode to be used for reporting events. Denote the

set of actions as A = {0, 1, 2, 3, 4}. The action taken by the

sensor pair in time slot t is denoted by at with at ∈ A denoting

{no transmission, no transmission}, {direct, no transmission},

{relay, relay}, {direct, own-traffic}, and {no transmission,

own-traffic}. A transmission action can be taken only if the

corresponding sensor has enough power and an event occurs at

the beginning of the slot. A node is said to be active in a time

slot if the action is taken such that it has a packet transmission

in the time slot (either its own traffic or relaying), and inactive

if there is no transmission.

The state information of a sensor includes: (a) its current

energy level, (b) whether there is an event generated at the

node in current slot, and (c) whether its battery is currently

recharging or not. We assume that when a sensor transmits a

packet, its current state information is included in the packet’s

header. However, if a relay is inactive in a slot, the source will

not have the updated state information of the relay. We refer

to such system as a partially observable system.

We assume that the communication strategy is decided at

the source sensor. The decision may be based on: (a) the state

information of the source; (b) the partial state information of

the relay obtained at the source when the relay was last active.

The objective of the decision policy Π is to maximize the

packet delivery ratio, which is defined as the long term ratio

of the total number of events reported, to the total number of

events generated in the network.

III. OPTIMAL SCHEDULING POLICY USING POMDP

FORMULATION

For the partially observable system, we first outline the

formulation of the decision problem as a POMDP, and then

focus on approximating a solution to the optimality equations

and the optimal reward.

A. POMDP Formulation

Denote the system state at time t by Xt =
(Ls

t , E
s
t , Y s

t , Lr
t , E

r
t , Y r

t ) where Ls
t , L

r
t ∈ {0, 1, 2, · · · ,K}

represents the energy available at the sensors at time t.
Y s

t ∈ {0, 1} equals one if the source is being charged

during time interval [t, t + 1) and zero otherwise. Also,

Es
t ∈ {0, 1} equals one if an event to be reported during
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time interval [t, t + 1) is generated at time t at the source and

zero otherwise. The variables Y r
t , Er

t ∈ {0, 1} are defined

similarly for the relay, but equal one if the recharge and event

processes, respectively, are on during time interval [t − 1, t).
The state of the relay at time t is defined in terms of the

previous slot since that is the latest information the source

may have about the relay. We assume that the battery at a

sensor has a finite capacity K. Denote the state space as X .

The system observation at time t at the source sensor

is denoted by Yt. The source is assumed to always have

complete information about itself. Thus the observation Yt is

characterized by the action taken at time t − 1,

Yt =

{

Xt if at−1 ∈ {2, 3, 4}
(Ls

t , E
s
t , Y s

t , φL, φE , φY ) if at−1 ∈ {0, 1}

where φω denotes that a variable ω is unknown. The observa-

tion space is denoted by Y .

In the presence of only partial observations, the optimal

action depends on the current and past observations, and on

past actions. Existing work has shown that a POMDP may be

formulated as a completely observable MDP with the same

finite action set [7], [8]. The state space for the equivalent

MDP comprises of probability distributions on the original

state space.

It can be shown that the structure of the POMDP in this case

leads to a countable state space for equivalent MDP, which

guarantees the existence of an optimal solution to the average

cost (reward) optimality equation [7].2 Further, the state of the

equivalent MDP at time t, Zt, can be represented as

Zt = (Ls
t , E

s
t , Y s

t , Lr, Er, Y r, i), (1)

representing the following: (a) the relay had no transmissions

in the past i slots; (b) the state of the relay when it last

transmitted was (Lr, Er, Y r); (c) the current state at the

source is (Ls
t , Es

t , Y s
t ).

The POMDP can be transformed to an equivalent MDP with

state space ∆ and the optimality equations for this MDP are

given by [8]:

Γ∗+h∗(Z) =max
a∈A



R̄(Z, a)+
∑

y∈Y

V (y, Z, a)h∗(W (y, Z, a))



 ,

∀Z ∈ ∆. (2)

where h∗(Z) is the optimal reward when starting at state Z, Γ∗

is the optimal average reward, R̄(Z, a) is the reward associated

with the states Z of the equivalent MDP, V (y, Z, a) is inter-

preted as the probability of system observation Yt+1 = y given

the past actions and observations, and W (y, Z, a) represents

the probability of Xt+1 = i for all i ∈ X , given the system

observation Yt+1, past system observations and actions. The

optimal reward (in the optimality equation) of equivalent MDP

is same as that in the original POMDP [7].

2For more detail of formulations and evaluations of MDP/POMDP for
wireless sensor networks with cooperative relays and recharging capability,
the reader is referred to [9]. The focus of this paper is towards analyzing the
optimal reward and designing practical near-optimal and practical policies.

B. Optimal Performance Characterization

In this subsection, we characterize the structure of the

optimal reward Γ∗ as a function of system parameters by

analyzing some simple cases. The structure reveals how the

optimal reward depends on the system parameters and is

used to design practical and efficient relay usage scheduling

policies.

Consider a state Z = (Ls, Es, Cs, Lr, Er, Cr, SI), Z ∈ ∆,

where ∆ is the state space of the equivalent MDP. The h∗(Z)
can be expressed approximately as

h∗(Z) ∼= ζ1L
s +ζ2L

r +η1C
s +η2C

r +Ψ1E
s +Ψ2E

r +γSI.
(3)

Note that we are ignoring the cross terms here (e.g. EsEr),

and the unknowns are given by ζ1, ζ2, η1, η2, Ψ1, Ψ2

and γ. We numerically solve (2) using value iteration, and

the numerical solution matches closely with this approximate

solution, thus justifying the linearity assumption in (3). Using

some example scenarios, we find the relationship between the

above mentioned unknowns and express them as functions of

system parameters (such as ps
off ).

For example, in state Z = (0, 0, 0, 0, 0, 0, 0) the only

feasible action is 0, and it is therefore the optimal action. With

the combination of different state transitions in the event and

energy generation processes at both the source and the relay

sensor, the set of possible next states is,

{Z ′
1 = (0, 0, 0, 0, 0, 0, 1), Z ′

2 = (c, 0, 1, 0, 0, 0, 1),

Z ′
3 = (0, 1, 0, 0, 0, 0, 1), Z ′

4 = (c, 1, 1, 0, 0, 0, 1)}.

Substituting (3) into the optimality equation and simplify-

ing, we get

Γ∗ = γ + (1 − qs
off )(ζ1c

s + η1) + (1 − ps
off )Ψ1. (4)

Similarly, the only feasible and thus optimal action in state

Z = (0, 0, 1, 0, 0, 0, 0) and state Z = (0, 1, 0, 0, 0, 0, 0) is 0,

and we have

Γ∗ + η1 = γ + qs
on(ζ1c

s + η1) + (1 − ps
off )Ψ1. (5)

Γ∗ + Ψ1 = γ + (1 − qs
off )(ζ1c

s + η1) + ps
onΨ1. (6)

Substituting (4) into (5) and (6) respectively, we get

η1 =
ζ1c

s(qs
on + qs

off − 1)

2 − qs
on − qs

off

, Ψ1 = 0. (7)

Proceeding in the same way, we consider other states where

the optimal actions are obvious and unique, and use the opti-

mality equation (2) to develop the relationships between above

unknowns and system parameters. Due to space constraints,

we only list the results we have as following:

ζ1 =
θs

δs
1

, Ψ2 = 0, ζ2 =
θr

δr
1

(8)

η2 =
ζ2c

r(qr
on + qr

off − 1)

2 − qr
on − qr

off

, γ =
θrcr

δr
1

µr
on (9)
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Γ∗ =
θrcr

δr
1

µr
on +

θscs

δs
1

µs
on. (10)

Γ∗ is the optimal average reward, and thus corresponds to the

maximum achievable performance. Specifically in this model,

Γ∗ equals the number of events reported per unit time. Since

in the long run, the number of events occurred per unit time

equals πs
on + πr

on, denoting the optimal policy as Πopt and

optimal performance as U(Πopt), we have,

U(Πopt) =
Γ∗

πs
on + πr

on

=

θscs

δs

1

µs
on + θrcr

δr

1

µr
on

πs
on + πr

on

. (11)

The analytical solution presented above can be used to

derive optimal action in different states. For every state, using

the structure of h∗(Z) function given in (3), we can evaluate

the optimality equation (2) for all feasible actions in order

to determine the optimal action in this state. For example,

the optimal action for state Z = (δs
2, 1, 0, L, 0, 0, 0, 0) is

action 2 while action 0 and 4 are optimal in state Z =
(Ls, 0, 0, Lr, 0, 0, 0, 0). The evaluation process is omitted here

due to the space constraints. It is clear that the choice of

optimal action (and hence the optimal policy) is very sensitive

to system parameters. The same observation is obtained from

the results of value iteration algorithm as well. Thus the

optimal policy is not only difficult to characterize but also not

suitable for practical deployment. Therefore, we next focus on

outlining a near-optimal and practical scheme that could be

used by a source node in practice and is not very sensitive to

system parameters.

IV. A PRACTICAL (NEAR-OPTIMAL) RELAY SCHEDULING

SCHEME

In this Section, we design a practical relay scheduling policy

and show (using analysis and simulations) that the proposed

policy performs close to optimal in most scenarios. To simplify

our discussion, we assume that the reward for a successful

packet transmission at the source and the relay are the same,

and the energy consumption parameters are identical at the

source and the relay sensors.

If the source has no event at the beginning of a slot (i.e.

Es = 0), then the only feasible actions are {0,4}. We know

from Section III-B that action 4 could be optimal. Since the

relay’s status is not completely observable at the source, even

if action 4 is chosen at the source but not taken at the relay

(insufficient energy level or medium is busy), the system does

not have much to lose by choosing action 4. Thus we choose

action 4 instead of action 0. The same action happens when

the source does not have enough energy to transmit a packet

even with the help of relay.

When the source has data to report, and δs
2 ≤ Ls < δs

1, the

feasible actions are {0,2,4} and action 2 is a good choice from

the Section III-B. Note that with the equal energy consumption

and equal reward assumption, and if δ1 > 2δ2, the relay usage

does not cost more energy (in total) than direct transmission.

The optimal action could be different from action 2 if the

reward of transmitting a source packet is much less than that of

transmitting a relay packet or if the total energy consumption

Algorithm 1 A Practical Relay Usage Scheduling Algorithm

1: if Es = 0 OR Ls < δs
2 then

2: â = 4;

3: else if Es = 1 AND Ls ≤ TH then

4: â = 2;

5: else

6: â = 3;

7: end if

of relay usage for a packet is much higher than that of a direct

transmission.

When the source has data to report, and Ls ≥ δs
1, the

feasible actions are {0,1,2,3,4}. When both action 1 and 3 are

feasible, it is preferable to choose action 3 even though the

relay may not transmit (as discussed earlier in the section).

From the results of value iteration, we see that when the

source has enough energy for transmission, action 4 is not

optimal. Thus, either action 2 or 3 is the best choice and the

question of interest is whether to use relay or not? We propose

a practical decision choice here. Consider a threshold energy

level TH , when the source’s energy level is less then TH , relay

usage is scheduled; otherwise source and relay are scheduled

to transmit their own data. The algorithm is summarized in

Algorithm 1.

For any state Z = (Ls, Es, Cs, Lr, Er, Cr, SI), let â
denote the chosen action and let TH denote the energy level

threshold such that δs
1 ≤ TH ≤ K.

Note that this simple threshold based scheme is not only

easier to deploy, but its performance is also close to that of

the optimal policy, as shown in Section IV-A. In addition,

unlike the optimal policy which is very sensitive to various

system parameters, the threshold scheme has only one tunable

parameter TH . The simplicity in fact provides better analytical

tractability.

A. Simulation Results

We compare the performance of the optimal policy obtained

using value iteration algorithm with that of the proposed

threshold based scheme, and discuss the choice of a good

threshold. We consider a network where a three-node-group

model (i.e. source, relay and destination) is applied and each

group is independent of others. The simulations are based

on a single group and the results can be generalized. The

simulations were done using a simulator developed by us,

primarily because energy harvesting is not well supported in

existing simulators. All simulations were run for a duration of

5 × 106 time units.

Figure 1 (a) compares the packet delivery ratio between the

optimal policy and the threshold policy. The threshold used

is half of the battery capacity, that is, TH = K/2. In the

simulation scenario, the event occurrence parameters are fixed

for both the source and the relay. The steady-state probability

of event occurrence at the source πs
on = 3/4 and at the

relay πr
on = 2/3. The recharge process parameters (qs

on, qs
off )

of the source are fixed while those of the relay (qr
on, qr

off )
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Fig. 1. (a) The packet delivery ratio comparison between the optimal policy
and the threshold based policy. (b) Effect of TH on the packet delivery ratio.
Parameters used: ps

on = 0.9, ps
off

= 0.7, qs
on = pr

on = 0.85, qs
off

=

pr
off

= 0.7, cs
= cr

= 1, δs
1

= δr
1

= 3, δs
2

= δr
2

= 1, K = 20, TH = 10.

are changing. The result shows that the performance of the

threshold policy is very close to that of the optimal policy.

Figure 1 (b) depicts the performance for various choices of

the threshold. The performance trend observed while varying

the threshold depends upon the choice of system parameters.

Particularly, if relay has surplus energy a larger threshold

performs better (since relay usage is more often scheduled)

and vice-versa. However, TH = K/2 seems to be a good

choice under various parameter settings.

B. Multi-node Networks and Simulation Results

The practical scheduler can be applied to a more realistic

multi-node network. Effectively, each node tries to maximize

its own quality of coverage in a distributed way. The results

show that the threshold scheduling scheme performs very well

in multi-node network scenarios as well.

In the network, a node may act as a source node for

its packets, a destination for receiving other node’s packets,

or a relay as well for its neighbor’s packet. Considering

the dynamic and complex characteristics such networks, we

modify the practical relay scheduling scheme proposed in

Section IV as: line 2: ⇒ â = 0; line 6: ⇒ â = 1. In other

words, a node only decides its own transmission scheme. This

is more suitable in multi-node networks where data exchange

happens distributively and possibly simultaneously.

We consider a network with 50 nodes, spread randomly over

a 1000×1000 square meter region. The transmission range of

each sensor is 100 meters. We consider one-hop traffic and the

source picks the relay at random from available candidates.

Random backoff based MAC protocol with request-to-send

(RTS)/clear-to-send (CTS) is used by each node.

Figure 2 shows the per-node throughput averaged over all

nodes in the network. The throughput is defined as the ratio

of the average number of packets successfully transmitted

by a node to the total number of packet generated by the

node. Parameters are chosen such that traffic rate is relatively

low compared to energy harvesting rate, which makes the

usage of energy harvesting applicable. The figure compares

the performance of the optimal policy obtained by solving the

POMDP with value iteration for three-node network model

(referred as POMDP policy), the threshold policy and the
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Fig. 2. The average per-node throughput comparison between the POMDP
policy, the threshold-based policy and the modified threshold-based policy in
a multi-node network with 50 nodes. Parameters used: qs

on = qr
on = qon,

qs
off

= qr
off

= qoff , ps
on = pr

on = 0.6, ps
off

= pr
off

= 0.9, δs
1

= δr
1

=

3, δs
2

= δr
2

= 1, cs
= cr

= 1, K = 20, TH = 10.

modified threshold policy. It shows that the performances are

very close to each other and the modified threshold policy

in general works slightly better than the threshold policy

in a multi-node network. Figure 2 (b) shows that POMDP

is slightly worse than threshold polices at some parameter

settings. One of the possibility is that our models do not

consider the scenario where a source node may in turn act

as the relay for another node. However it has been shown

that POMDP still achieves better performance as compared to

direct transmissions.

V. CONCLUSIONS

This paper addresses the problem of developing transmis-

sion and relay usage strategies for WSNs in the presence of

energy harvesting sensor nodes. The problem is formulated

as a POMDP. An approximate solution to the optimality

equations and the optimal reward is outlined. Due to the

sensitivity of the optimal scheduler to system parameters, a

practical threshold based relay usage scheduler is proposed,

analyzed and evaluated.
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