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Abstract— We consider crossbar switches for switching variable length
packets. Analysis of such switches is important in the context of IP switches
where the packet interarrival times and packet lengths are drawn from con-
tinuous distributions. Assuming a single stage M � N switch we obtain a
very general throughput delay model for Poisson packet arrivals and expo-
nential service times. We then analyze an M � N switch for self similar
packet arrivals and exponential packet lengths. An MMPP-based self sim-
ilar arrival process model corresponding to the arrival rate, the autocorre-
lation, the Hurst parameter and the time scales over which burstiness exists
in the input process is first obtained using results from [1]. We then use
queuing theory available for MMPP/G/1 queues to model the switch per-
formance for self similar packet arrivals. The results from the analytical
model are compared against those from a simulation model that is driven
by traces that are statistically similar to the Bellcore traces. We also analyse
the effect of link multiplicities (speedup) to the output and asymmetries in
the input traffic.

Keywords—Variable Length Packet Switches, IP Switching, Self Similar
Traffic.

I. INTRODUCTION

W
E analyse input-queued, space-division, variable-length-
packet switches. The packet lengths and interarrival

times are assumed to be random and drawn from continuous
distributions. With the emergence of IP switching technologies
[15], such a continuous time analysis of space division packet
switches becomes relevant and important. For fixed packet
lengths with the switch operation synchronized into slots (typi-
cally of the size of the packet lengths), discrete time analyses un-
der various assumptions are available. Patel [18] analyzes such
switches with no input or output buffers under Bernoulli arrivals.
In this model, an output contention is resolved by dropping all
but one of the contending packets. The maximum throughput
under this model is � � ��e � ����. Karol et al [8] show
that the saturation throughput of an input queued switch with
infinite input buffers is � � p

� � �����. Li [11] shows that
when the arrivals are correlated, the maximum throughput of
the in these switches comes down to 0.5. Fuhrman [7] presents
a continuous time analysis of an input queued packet switch (a
crossbar) by considering a M � N crossbar switch with vari-
able length packets as inputs. Assuming iid Poisson arrival pro-
cesses at each node and uniform routing probabilities he shows
that M��M 	 N 	 �
 is the saturation throughput per port of
such a switch. He also presents a delay analysis by first devel-
oping a state dependent server model to obtain the service rate

when there are i packets in the system and then using these rates
in an M/M/1 queue model for the switch. The first part of our
paper can be considered to be a generalization of the results of
[7] where we present a throughput delay analysis for an M �N
input queued switch with arbitrary Poisson arrivals at each in-
put, exponential packet lengths, arbitrary output line rates and
arbitrary routing probabilities.

The very little literature that there is on the analysis of vari-
able length packet switches are for Poisson packet arrival pro-
cesses. Recent measurement studies over a wide range of packet
networks have established the self-similar nature of packet traf-
fic and the failure of the traditional Poisson models to capture
the long range dependence (LRD) and the burstiness of such
packet arrival processes. The long range dependence in the
arrival process is marked by the presence of correlations and
burstiness over many time scales which are known to have a
considerable impact on the queuing performance. We now know
that queuing behavior with LRD arrival processes has a marked
variation from those with Poisson arrivals. Extreme burstiness
of packet traffic spanning over a number of time scales give rise
to extended periods of large queue build ups and also to sus-
tained periods low activity. Thus if the arrival process feeding
each port of an input queued switch is from a LRD process, their
interaction with the HOL blocking in an input queued switch
can lead to a very bad queuing behavior. In view of the ex-
treme queuing behavior expected, a deeper understanding of the
switch behavior becomes necessary because the switch is the
critical component in providing various quality of service guar-
antees in the multiservice Internet of the future. In this paper we
extend the delay models for Poisson traffic arrivals to LRD input
processes and present some results from our investigations into
the queuing behavior of input queued, variable length packet
switches under such input.

The rest of the paper is organised as follows. Section II intro-
duces the delay throughput analysis for a M � N switch with
Poisson arrivals and exponentially distributed packet lengths. In
section III we present the analysis technique for aM�N switch
with the arrival stream at each input port characterised by a self-
similar process. We also analyse the switch under link multiplic-
ities and asymetries in the traffic conditions. Finally, Section IV



presents a discussion on the results and concluding remarks.

II. M �N SWITCH WITH POISSON ARRIVALS,
EXPONENTIAL PACKET LENGTHS

We first consider a single stage unslotted, internally non-
blocking M � N input queued packet switch. Packet arrivals
to input port i form a Poisson process of rate �i and choose a
destination j with probability pij . The line rate on output port
j is �j and there are no buffers at the output. Input packets are
served according to FIFO. When a packet moves to the head of
its queue, if its destination is busy, the packet will wait at the
head of the input queue till the destination output port is free
and chooses to evacuate the packet. When an output port fin-
ishes service, of the packets that are waiting at the head of the
queues of the inputs, the packet that was blocked first is served
first. Service in random order, round robin or processor shar-
ing disciplines can also be analyzed using the method developed
here but we do not investigate them. From above, the arrival rate
to output port j, �j , and its utilization, �j , are

�j �
MX
i��

�ipij �j �
�j

�j
(1)

The sojourn time of an input packet has two components -
waiting time in the input queue till it moves to the head of the
line (HOL) and the time spent at the HOL of the input queue
till the HOL packets from other input queues that were blocked
earlier finish their service and the packet is evacuated. The time
spent at the HOL of the input queue corresponds to the “service
time” in the input queue. This service time, once again, has
two components - a blocking delay, the time until the output
starts evacuating it, and the actual service time, the time taken
to evacuate the packet by the destination port. Figure 1 shows
these times in detail. Since the arrivals to the input queue are
Poisson, each input queue can be seen to be a M/G/1 queue with
service time distribution given by the time spent by a packet at
its HOL. To analyse the queuing behavior the distribution of the
time spent at the HOL of the queue needs to be obtained and this
is derived below. In this derivation, we use techniques similar to
the analysis of queueing networks with blocking [20].

Consider output port j. It has room for only the packet that
is being evacuated (served). However, the HOL positions at the
M input queues can contain a packet meant for output j which
are waiting for the port to become free. These packets form a
virtual queue for output j and are served FCFS. Thus the vir-
tual queue of any output has at most M buffers. The time taken
by the output port to evacuate a packet from the HOL of the
inputs is exponentially distributed with mean ���j . If we ap-
proximate the arrival process to the virtual queue by a Poisson
process of throughput�j , then output queue j can be modeled as
a M/M/1/M queue. We can easily show that as M ��, the ar-
rival process to the output queue is indeed Poisson under certain
conditions. Since the queue has finite buffers, the throughput
is not equal to the arrival rate. The throughput of output port j
should be �j . Therefore the “arrival rate” corresponding to this
throughput, let us call this the effective arrival rate ��j , will be

obtained by solving for ��j in the equation

�j � ��j

�
�� �� ��j

�� ��M��
j

��
M

j

�
� ��j

�� ��
M
j

�� ��M��
j

(2)

where ��j � ��j��j . The term in the square brackets in the first
equality corresponds to the probability that an arriving packet
into an M/M/1/M queue is not blocked.
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Fig. 1. Time diagram for the sojourn time in the switch. an represents the nth

arrival to the input queue and all times shown in this figure correspond to
this packet.

The probability that there are k packets in the virtual queue
of output port j, �j�k
, is given by

�j�k
 �
��� ��j
��

�

j

k

�� ���j

M��

for k � � � � �M (3)

Packet arrivals to the head of an input queue are approximated
to form a Poisson process. Thus the probability that it will see
k packets ahead of it in the virtual queue of the output will be
�j�k
. However a packet moving to the head of an input queue
can see only �� �� � � �M �� and will never see M packets ahead
of it. Therefore the probability that a packet arriving to the head
of an input queue wanting to go to output j sees k packets ahead
of it, �j�k
, will be

�j�k
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�
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for k � �� �� � � �M � � (4)

In the virtual queue of output port j if there are k packets
ahead of it, the packet has to wait for the evacuation of these
packets before it can begin its service and its waiting time is a
k stage Erlangian distribution (sum of the k independent, expo-
nentially distributed evacuation times). In addition to the block-
ing delay there is the evacuation time that has an exponential
distribution of mean ���j . Thus the conditional (conditioned
on the packet wanting to go to output port j) sojourn time of a
packet at the HOL of the input queue has a phase type distribu-
tion like that shown in Figure 2. The Laplace-Stieltjes Trans-
form (LST) of the unconditional distribution of the sojourn time
at the head of input i, Xi�s
, can be seen to be

Xi�s
 �
NX
j��

pij

�
M��X
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Fig. 2. Phase-type distribution for sojourn time in virtual queue of output j
when a packet reaches the HOL of input i. The blocking delay is a k-stage
Erlangian with probability �ij�k�, the probability that there are k packets in
the virtual queue of output port j ahead of this packet. There is an additional
service stage corresponding to the evacuation of the packet from the input
queue by the output port.

Here the term in the first square brackets corresponds to the
blocking delay and that in the second corresponds to the evac-
uation time given that the packet wants to go to output j. The
first three moments of the blocking delay at input queue i, Bi,
B�
i and B�

i respectively, are
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Likewise, the first three moments of the service time for the in-
put queue, Xi, X�

i , X�
i respectively, are
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and the sojourn time in the switch for an input packet to port i,
Di, is (from the Pollaczek-Khinchin formula)

Di �
�iX�

i

���� �iXi

	Bi 	

NX
j��

pij
�j

(8)

The maximum arrival rate that input port i can support is ob-
tained by solving for �i in �iXi � ���.

Consider the special case of anN�N switch with pij � ��N
for all i� j; �i � � for all i and �j � ��� for all j. Figure 3
shows the total delay and the blocking delay for various values
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Fig. 3. Mean blocking total delays vs throughput. From analytical and simula-
tion models for N � �� 	� 
�� �� and ��.

of N from analytical and simulation models as a function of �.
Note that the difference between the analytical and simulation
models improves for both the total and the blocking delay as the
switch size increases. It is easily seen that our delay model is
exact for N � �. As N � �, the virtual M/M/1/N queue
of the outputs becomes an M/M/1 queue with arrival rate � and
service rate 1.0. As N � �, the arrival process to the input
queue is Poisson with rate � and it in turn is an M/G/1 queue
with service time equal to the sojourn time in an M/M/1 queue
with arrival rate � and service rate 1.0. Thus for the input queue
to be stable, � should be less than the reciprocal of the sojourn
time of an M/M/1 queue with arrival rate � and service rate 1.0.
This yields the condition, � � �� � or � 	 ��� for stable
queues at the input.

III. M �N SWITCH WITH SELF SIMILAR INPUT AND

EXPONENTIAL PACKET LENGTHS

Having modeled switch behavior under the somewhat ideal-
ized model of Poisson inputs we will now examine the behav-



ior under a more realistic model of self similar inputs. Before
presenting the delay analyses for self similar arrival processes
we give a brief overview of the various equivalent definitions
of self similarity and the packet arrival models that can be used
with each of these. Finally, we will select the self similar packet
arrival model that has a well developed queueing theory.

Packet arrival instants are modeled as point processes. Divide
the time axis into nonoverlaping intervals of unit length and let
X � fXt 
 t � �� �� �� � � �g be the number of points (packet
arrivals) in the tth interval. Measurements and analysis of such
packet arrival processes in real networks has indicated that X
is a self similar process. This means that although analysis of
packet switches for the Poisson packet arrival model gives us a
“first-order-feel” for their performance, to understand their per-
formance in real networks, it is necessary to study their perfor-
mance for self similar packet arrivals.

Mathematically, self similarity in the process X can be ex-
pressed in many ways. Let X be covariance stationary with
mean �, variance 
� and autocorrelation function r�k
� k � �.
For each m � �� �� � � �, let X�m� � �X

�m�
k 
 k � �� �� � � �
 be

the new covariance stationary time series (with corresponding
autocorrelation function r�m�) obtained by averaging the orig-
inal series X over non-overlapping blocks of size m, i.e., for
each m � �� �� � � �, X�m� � �Xkm�m�� 	 � � � 	 Xkm
�m,
k � �. Then self-similarity of X means any of the following
X has a slowly decaying variance: The variance of the sample

mean decreases more slowly than the reciprocal of the sample
size. var�X�m�
 	 am�� as m � � and � 	 � 	 � (a is a
finite positive constant)
X is long range dependent (LRD): The autocorrelations decay

hyperbolically rather than exponentially fast, implying a non-
summable autocorrelation function.

P
k r�k
 �� and

X is ��f -noise: The spectral density f��
 obeys a power-law
near the origin, i.e., f��
 	 b��� , as � � � with � 	 � 	 �
and � � �� � (b is a finite positive constant)

Each of the above descriptions of a self similar process can
lead to a class of models for the packet arrival process. From the
point of understanding queuing behavior of systems, we con-
sider those that are derived to match the LRD statistics of the
packet arrival process. In [10] Leland et al show that Gaussian
noise or nonlinear transformations on Gaussian noise such as
fractional ARIMA can be used to characterise a LRDX . In [19],
Paxson and Floyd show that superposition of on/off sources that
have a fixed rate in the on period and have a heavy-tailed dis-
tribution for the on and off period lengths can be used to model
LRD X . Erramilli, Singh and Pruthi use deterministic nonlinear
chaotic maps to define a LRD X [5]. Andersen and Nielsen pro-
pose a Markovian approach in which an LRD X is obtained by
superposing a number of two state Markov Modulated Poisson
Processes (MMPPs) [1] with the resultant arrival process being
an MMPP. The advantage of this last method is that in addition
to allowing the modeling of burstiness over a number of time
scales with the desired covariance structure, since the packet ar-
rivals are MMPP, a well developed queuing theory is available
for analysis. Further, it can be shown that this model converges
to fractional Brownian motion in the sense of finite dimensional
distributions as the number of MMPPs increases. Therefore, we

will use this in the analysis of the variable length packet switches
with input queuing.

We first summarise the technique outlined in [1] to fit an
MMPP process to an LRD arrival process. Let the packet ar-
rival process to input port i be a second order self similar pro-
cess with with mean �i, correlation at lag 1 
i, Hurst parameter
Hi, and the number of time scales over which the burstiness is
to be modeled, ni. This will be modeled as the superposition of
a number of two state Interrupted Poisson Processes (IPPs), typ-
ically four, and a Poisson process. The covariance function of
this superposed process is fitted to that of the self-similar pro-
cess that we are modeling over several time scales. For input
port i we will superpose di IPPs and the jth two-state IPP is
parameterized by its generator matrix Qj

i and rate matrix Rj
i as

follows

Qj
i �

� �c�ji c�ji
c�ji �c�ji

�
Rj
i �

�
rji �
� �

�
(9)

The superposed process will be

Qi �

diM
j��

Qj
i Ri �

diM
j��

Rj
i (10)

where
L

denotes the Kronecker sum. Note that the individual
Poisson process in the fitting procedure may also be represented
as a special case of a MMPP and added in the Kronecker sum of
Eqn 10 to obtain the complete MAP model of the arrival process.
The steady state probability vector of the Markov chain,�i, can
be obtained by simultaneously solving the following equations,

�iQi � � �iei � � (11)

where ei � ��� �� � � � � ��T is a unit column vector of length �di .
Let ri � �r�i � r

�
i � � � � � rdii �. Then the average arrival rate to input

i, �i � �ir
T
i . The procedure to fit c�ji , c�ji and rji to �i, 
i, Hi

and ni are described in [1].
As in the previous section we assume that each packet at input

i chooses output j independent of other packets with probability
pij and the the rate at which a packet is evacuated from an input
queue by output port j is �j which is the line rate at output port
j. Packets lengths are exponentially distributed with unit mean.
There are infinite buffers at the input and none at the output. The
output ports evacuate packets from the HOL of the input queues
according to “first blocked first served” discipline. The “service
time” of the input queue, time spent at the HOL by packet, is
obtained exactly as before by making the approximation that the
virtual queue to each output is an M/M/1/M queue. The sojourn
time in this M/M/1/M queue is thus the service time for the
input queue which we can now model as an MMPP/G/1 queue.
Since the service time for the input queue is like before, the
maximum throughput per port will be 0.5 and is derived exactly
as before. Thus the moments of the service times are obtained
exactly like in the previous section using Eqns 1-7. The first
and second moments of the packet delays in the input queue can
now be obtained using well known techniques for MMPP/G/1
queues [6]. The procedure is summarised in the appendix.

Numerical results are obtained as follows. We use the Bell-
core traces [10] and derive their statistical properties in terms



of the Hurst parameter, the correlation at lag 1 and the time
scales over which the burstiness occurs. These parameters and
the arrival rate � are used to fit the parameters c�ji , c�ji and ri
for j � �� � � � � � of the MMPP model described in [1]. The
analytical results are obtained for the MMPP/G/1 queue as de-
scribed earlier. To validate the analytical results we also develop
a simulation model in which the arrivals are MMPP with param-
eters derived above. The arrival process generator is validated
by simulating a single server queue and comparing with the re-
sults given in [4]. The magnitudes of our delays and the knee
region of the delay-throughput graph match that given in Figure
2 of [4]. In the simulation model a separate and independent
MMPP arrival process generator is used for each of the input
ports with the traces generated by each of the sources having
identical statistical properties. Thus, statistically identical self-
similar traces but with different sample paths are used as the in-
put processes to the simulation model. In this paper we primar-
ily use the Bellcore traces pAug.TL (H � ���� and 
 � �����)
and pOct.TL (H � ���� and 
 � �����). We model burstiness
over 4 time scales.

We mention here that we considered feeding the traces to ob-
tain the simulation results. Since the number of inputs was large,
the size of the traces was insufficient. The same trace cannot be
fed to all the inputs because in that case the arrivals at each input
will have a correlation of one, an obviously wrong choice for an
arrival process. Also, we did not use shuffled versions of a sin-
gle trace because shuffling of the time series of the traces would
lead to a loss of the correlation structure and consequently the
long range dependence.

In Figures 4–7 we show the first and second moments of total
and blocking delays in the switch. It can be seen that the sim-
ulation and analytical results are in extremely good agreement
except at loads close to the capacity of the switch. We see a
marked difference in the shape of the delay characteristics for
the pOct.TL trace at low loads which can be attributed to its
comparatively low correlation value at lag one. At low loads, the
low correlation suggests a lower probability of successive inter-
vals having packet arrivals, which in turn leads to low delays.
Further investigation of the effect of the correlation structure is
done in Section III-B. As discussed earlier, the throughput de-
lay curves in Figure 4 show that the switch saturates at a load of
0.5. Also, note that the first and second moments of the block-
ing delay shown in Figures 6 and 7 are identical for both the
traces for a given switch size. This is because the virtual queue
at each output port is modeled as an M/M/1/M queue whose de-
lay characteristics depend only on the average arrival rate of the
input processes and not on any of their other statistical proper-
ties.

From Figure 4 we see that the mean delay increases exponen-
tially as the arrival rate. The delay performance can be divided
into three regions - low ����� ����
, medium ������ ����
 and
high ����� � ����
 loads. Note that in the medium load load
region the mean delay is of the order of the order of ���. In all
these regions the mean delay increases exponentially with in-
creasing arrival rate. For comparison, we have shown the delays
that would have been experienced in a single server queue with-
out HOL blocking. This would be the delay experienced in an

output queued switch in which the arrival rate to an output port
would be described by the corresponding MMPP process. This
shows that for a given arrival rate mean delay in the input queued
switch could be at least double and nearly 10 times higher even
at medium load.

The moments of the blocking delay for the case of Poisson
arrivals and that of the MMPP arrivals is identical in the analyt-
ical models. Comparisons with the simulation model suggests
that the analytical models are a good approximation. Hence we
note that the effect of increase in the second moment in the case
of self similar arrivals is significantly larger.

We have performed extensive analysis and simulations to un-
derstand the switch behavior under self similar arrivals and we
have observed that when the burstiness extends over 3 time
scales, the delays are of the order of ���.

From the above results we note that the analytical results
match the simulations reasonably well. Therefore, in the fol-
lowing we do not present any simulation results.

A. Evacuating Multiple Packets in Parallel to an Output

To increase the throughput and reduce the delay through the
switch, we could introduce parallelism by increasing the link
multiplicity to an output port similar to the discrete time switch
described by Oie et al in [17]. Note that this will require queuing
at the output too.

It is easy to see that in this case if there are more than m HOL
packets at the inputs destined for a particular output port, m of
them are served simultaneously while the others are blocked.
Here too we assume the input process to the queue to be Pois-
son which is an approximation when M is finite. Thus the vir-
tual queue of each output port will be modeled as an M/M/m/M
queue and the effective arrival rate to output port j correspond-
ing to a throughput of �j is obtained by solving for ��j in

�j � ��j
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where ��j �

�

j

m�j
. �j�k
, �j�k
 and Xi�s
 are obtained

like before by considering an M/M/m/M queue rather than an
M/M/1/M queue at the outputs. Similarly the blocking and total
delay moments are also obtained like before and are given by,
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Fig. 4. First moment of total delay vs throughput. Results are from analytical
and simulation models for Bellcore traces pAug.TL and pOct.TL. Top
graph shows results for an 	 � 	 switch and bottom graph for a 
� � 
�
switch.
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Note that the summations over the index k for the blocking
delay is from k � m to k � M �� because only when there are
m or more packets waiting in the virtual queue will the packet
at the HOL of an input queue have to wait. We can now use
the expressions for the average delay and its second moment as
given in Eqns 16 to obtain the latency for the arriving packets.

Figure 8 shows the analytical results for the delay throughput
characteristics for N � N switches with N � �� ��� �� and ��
for speedup factors of 2 and 4. We assume identical loads on
all the inputs and uniform routing probabilities pij . We see that
effect of the switch size on the delay characteristics becomes
negligible as the switch size increases. Also, the medium load
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Fig. 5. Second moment of total delay vs throughput. From analytical and
simulation models for Bellcore traces pAug.TL and pOct.TL. Top graph
shows results for an 	� 	 switch and bottom graph for a 
�� 
� switch.

region can be extended till the arrival rate of 0.75 for a speedup
factor of 2 and upto 0.85 for a speedup factor of 4. Further, the
mean delay is considerably lower with speedup than without.
Also, the steep rise in the mean delay in the low load region
does not manifest in the speeded up switch.

The maximum throughputs for a given speedup factor is ob-
tained by solving for � in �X � ���, where X is obtained from
Eqn 14. Table I shows the maximum achievable throughputs for
switches of various sizes and for speedup factors of 2, 3 and 4.
Note that a switch with a speedup factor of 4 can support loads
in excess of 99%.

B. Effect of Asymmetries in Traffic

Recall that the parameters in characterizing the input process
are H the Hurst parameter, 
 the correlation a lag 1 and n the
number of time scales over which burstiness occurs. In addi-
tion there are the routing probabilities and pij that can generate
hotspots on some outputs. In this section we examine the ef-
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Fig. 6. First moment of blocking delay vs throughput. Results from analytical
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graph shows results for an 	 � 	 switch and bottom graph for a 
� � 
�
switch.

Speedup Factor
N 2 3 4
4 0.8670 0.9795 1.0000
8 0.8304 0.9616 0.9934

16 0.8284 0.9611 0.9934
32 0.8284 0.9611 0.9934
� 0.8284 0.9611 0.9934

TABLE I

MAXIMUM THROUGHPUT FOR VARIOUS SPEEDUP FACTORS.
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Fig. 7. Second moment of blocking delay vs throughput. From analytical and
simulation models for Bellcore traces pAug.TL and pOct.TL. Top graph
shows results for an 	�	 switch and the bottom graph for a 
��
� switch.

fect of asymmetries in these parameters across the inputs on the
throughput delay characteristics for the input queued switch.

First, consider the effect of a hotspot on output port h� � �
h � N with

pij �

�
� for j 
� h
�� for j � h, � � �

NX
j��

pij � � for all i (15)

As � increases, the contention for the hotspot output port h in-
creases and hence the blocking delay for these packets at the
head of their input queues increases. The increased blocking de-
lay increases the “input service time” and hence the total delay
of all the packets. In Figure 9 we show the effect of this hotspot
for � � �. As is evident from the figures, there is a marked rise
in the average delays in the presence of hotspots and a consider-
able reduction in the maximum achievable throughput.
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In our analytical model, asymmetry in the correlation or the
Hurst parameter of the traffic at the input ports does not affect
the delay performance of the other ports as long as the arrival
rate remains constant. This is because the “service time” for a
port depends on the blocking delay and the only factor affecting
the blocking delay at the ports are the arrival rates into the virtual
queues of the outputs. Thus the “service times” at all the ports in
the presence of parameter asymetries is the same. Hence, if the
arrival rates are the same, differences in H , 
 and n do not have
any effect on the “service times” of the other ports. However, the
total delay at the ports will depend on the traffic characteristics
at that input port.

C. Effect of 
 and H on Total Delay

Now let us consider the effect of the correlation structure of
the arrival process at each input on the delay throughput charac-
teristics. Figure 10 shows the effect of variation of the correla-
tion on delay characteristics. The three curves correspond to the
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Fig. 9. Effect of an output hotspot on mean blocking and total delay for a

��
� switch. The input process has the same characteristics as that of the
Bellcore trace pAug.TL.

case when the input processes have the same Hurst parameter
(H � ����) and arrival rate but correlations at lag one of �����,
����� and �����. Each input port of the switch is fed with traces
having the same parameters. Observe that the delay decreases
substantially with lower correlations. This is due to the reduced
probability of successive time units having packet arrivals and
thus reducing the queuing at the inputs.

Finally we study the effect of variation in the Hurst Parame-
ter. As in the previous case, we vary the Hurst parameter of the
input streams keeping all other parameters constant. The delay
throughput characteristics for the cases when the input steams
at each port have Hurst parameters of ����, ���� and ���� for
a correlation at lag one of ����� are shown in Figure 11. As
before, each input port is fed with traces having the same statis-
tical properties. Note that the delays decrease significantly with
even slight reduction in the Hurst parameter. This can be ex-
plained by considering the fact that a lower H reduces the long
range dependence and the burstiness thereby reducing the queue
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buildups at the inputs.

IV. CONCLUSION

In this paper, we have presented a generalized analytical
model for an input queued, variable length packet switch. Al-
though we have presented the analysis for switches with infinite
input buffers our model can easily be extended to analyse finite
buffer switches.

In [7] it was conjectured that FCFS service in the virtual out-
put queue gives the least average delay. Our analysis easily con-
firms this because FCFS service has the least variance and this
is the variance of the “service time” of the input queue which is
an M/G/1 queue. It is well known that for an M/G/1 queue the
variance of the service time, in addition to the mean, contributes
to the average delay. Also, from our models it is clear that the
conjecture in [7] that the performance of an M � N switch is

symmetric in M and N is not true.
From the throughput-delay characteristics of Figures 4, 10

and 11 we see that capturing all the statistical properties of the
arrival processes is essential to characterizing the switch per-
formance. Another important result to note is that operation in
continuous time limits the maximum achievable throughput to
0.5, though, with a speedup factor of 4, the achievable through-
put can be increased to more than 99%. Severe performance
degradation takes place in the presence of hotspots, which can
reduce the maximum throughput by 15% in a �� � �� switch.
Also, Figures 10 and 11 highlight the large variations in the de-
lay characteristics with changes in the correlation structure and
the Hurst parameter. Lower Hurst parameters and correlation
values reduce the burstiness of the arrival streams and reduces
the queuing effects at the inputs and can give significantly lower
delays at low loads. Thus the correlation structure and the Hurst
parameter of the arrival processes are of extreme importance in
determining the overall switch performance.

The model for variable length packet queues that we have de-
veloped here can easily extended to consider priorities in the in-
put queue. Also extending it to analyse finite input buffer queues
is rather straightforward and we do not present it due to lack of
space. This can be done by considering the input queue as an
M/G/1/K queue with the service time described by Eqn 5 for
the case of Poisson arrivals using results from [3], [9], [16] and
as an MMPP/G/1/K queue for the case of self similar arrivals
modeled as an MMPP process using results from [2].

Finally, we add that our model does not address many ar-
chitectures for variable length packet switches that are being
considered today, specifically the virtual output queued (VOQ)
switches. The buffer complexity of a VOQ switch is the same as
that of a crossbar switch with crosspoint buffers – N buffers per
input giving us N � buffers for a N � N switch. Furthermore,
VOQ switches require complex scheduling algorithms to ensure
fairness and a starvation-free operation. The scheduling algo-
rithms proposed in [12], [13] are too impractical to be imple-
mented in hardware [14]. Also, the “practical algorithm” of [14]
still as a complexity of O�N���
. Thus, although VOQ reduces
the effect of head of line (HOL) blocking, it is complex and does
not scale well enough to offset the throughput disadvantage of
input queued switches for large N . Thus, alternate architec-
tures like combined input output queued (CIOQ) switches with
speedup are interesting and of practical value. They provide
comparable throughputs for constant scale up of the switch. For
CIOQ switches, our model gives the delay at the input buffer.
The delay at the output buffer can be modeled separately.

APPENDIX

I. DELAY MOMENTS IN AN MMPP/G/1 QUEUE

The mean and second moment of the packet delay at input i,
Di and D�

i respectively, are given by [6]

Di �
�
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�
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and gi representing the steady state probability vector of the ma-
trixGi, the transition rate matrix of the embedded Markov chain
at departure epochs with k packets in the queue and the MMPP
arrival process in state j. We now present the procedure for cal-
culating the matrix G and a general algorithm to calculate the
first and second moments of the delay in an MMPP/G/1 queue
[6].

A. Computation of Gi for an m-state MMPP

Initial Step : Define

G	
i � � H	�k

i � I for k � �� �� �� � � �
� � max
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jj
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dH�x
 for n � �� �� � � � � n�

where n� is chosen such that
Pn�

k�� �k � �� ��, �� � �.
Recursion : For k � �� �� �� � � �, do
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Stopping Criterion :
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B. Computation of �n

The �n for Erlang-k and exponential service times are given
by

1. Erlang-k service
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2. Exponential service
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The �n for the service time distribution which is the summation
of the phase-type distribution with Erlang-k service times and
an exponential evacuation time is given by the weighted sum of
the individual �n values. The weights are the probabilities of
encountering each of the individual distributions, the �ij�k
s.

C. The MMPP/G/1 algorithm

Step 1. Compute the matrix G for the given input port.
Step 2. Compute the steady state vector g which satisfies

giGi � gi gi� � �

Step 3. Compute the moments of the waiting time using Eqn 16.
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